MILIK PERPUSTAKAAN
UNIVERSITAS Gadjah Mada YOGYAKARTA

Dinamai: [Redacted]
Penulis: H. H. Hanafi, S.H.
Ketua: E. G. H. N. I. H. Y. S.
Tanggal Diterima: 2 May 2004
PERBANDINGAN SEMEN DAN LIMBAH GENTENG DARI DAERAH GODEAN SEBAGAI FILLER PADA CAMPURAN IHR-S-B

TUGAS AKHIR SARIJANA STRATA SATU

Oleh:
MATEUS MUNANA
NPM : 99 02 09638

UNIVERSITAS ATMA JAYA YOGYAKARTA
Fakultas Teknik
Program Studi Teknik Sipil
Tahun 2003
PENGESAHAN

Tugas Akhir Sarjana Strata Satu

PERBANDINGAN SEMEN DAN LIMBAH GENTENG
DARI DAERAH GODOEAN
SEBAGAI FILLER PADA CAMPURAN HRS-B

Oleh:

MATEUS MUJANA
No. Mahasiswa : 9638 / TST
NPM : 99 02 09638

Telah diperiksa, disetujui dan daaji oleh Pembimbing

Yogakarta,.....................

Pembimbing 1

\[\text{Ir. Imam Basuki, MT.}\]

Pembimbing II

\[\text{Ir. P. Eliza Purdanasari, M. Eng.}\]

Disahkan oleh:

Ketua Program Studi Teknik Sipil

\[\text{Ir. Wiryawan Sarjono P., MT.}\]
PENGESAHAN

Tugas Akhir Sarjana Strata Satu

PERBANDINGAN SEMEN DAN LIMBAH GENTENG
DARI DAERAH GODÉAN
SEBAGAI FILLER PADA CAMPURAN HRS-B

Oleh :
MATEUS MUJANA
NPM : 99 02 09638

telah diperiksa dan disetujui oleh Penguji :

Ketua : Ir. Imam Basuki, MT.

Anggota : Ir. Johannes Luka, MT.

Anggota : FX. Prasoto Dirhan Putra, ST
KATA HANTAR

Puji syukur penyesuan panjatkan kepada Tuhan Yesus atas rahmat dan bimbingan-Nya mulai dari awal penentuan ide, penyusunan proposal, seminar, perelitian di laboratorium sampai dengan selesainya penyusunan tugas akhir ini.

Penyusunan tugas akhir ini untuk melengkapi persyaratan akademis guna memperoleh kesejahteraan strata satu (S 1) pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Atma Jaya Yogyakarta.

Bersama ini penyesuan ucapkan terima kasih kepada berbagai pihak yang telah memberikan kesempatan bantuan, pengarahan, bimbingan dan dorongan sehingga tugas akhir ini dapat terselesaikan, yaitu kepada:

1. Dr. Ir. A Koesmargono selaku Dekan Fakultas Teknik Universitas Atma Jaya Yogyakarta.
3. Ir. Imam Basuki, MT. selaku Dosen Pembimbing I.
4. Ir. P. Eliza Purnamasari, M.Eng. selaku Koordinator TGA PKS Transportasi dan Dosen Pembimbing II.
5. Bapak Iman Basuki yang telah memberikan pengarahan dan petunjuk.
6. Mas Benny Antana yang banyak membantu selama penelitian di laboratorium dan sampai penyesuan tugas akhir selesai.
7. Bapak JG Suharto yang lucu, yang selalu menghibur di laboratorium.
8. Bapak dan Ibu yang sudah memberikan segalanya buatku.

10. Teman-teman asisten, Winarko, Andi, Pulung, Eka, Riris, Tetri, Stevany, Dian, Tiara, Yana, Siska, Kadek, terima kasih atas semangat yang kalian berikan.

12. Teman-teman di laboratorium yang ngocol abis, Fidel, Ophie, Eko, Emi, Lyna, Yusti, Kimung, hidup terasa indah di laboratorium besar kalian.

13. Sepupuku Indung yang sudah banyak kurepotkan, teman-teman kos, Mas Pupud (Pak Tulang), dan Dedi, keep your spirit guys!

14. Terakhir dan tak kalah penting, Honda Supra-ku yang paling seia, menentar ke manapun kumau.

Mengingat terbatasnya waktu dan kemampuan yang ada, penulis menyadari bahwa tugas akhir ini jauh dari sempurna, oleh karena itu penyusun terbuka terhadap saran yang bersifat membangun. Akhir kata, semoga tugas akhir ini dapat berguna bagi yang memerlukan.

Yogyakarta, Oktober 2003

Penyusun
INTISARI

Lataston atau HRS adalah campuran antara agregat bergradiasi tinggi, mineral pengisi (filler) dan aspal keras yang dicampur, diharkarkan dan dipadatkan secara panas dalam suhu tertentu (minimum 124°C). Jenis agregat yang digunakan terdiri dari agregat kasar, agregat halus dan butiran pengisi (filler), sedangkan aspal yang digunakan biasanya aspal AC 60-70 dan AC 80-100. Dalam usaha mencari bahan perkerasan yang mudah didapat dan ekonomis, maka diperlukan bahan-bahan pengganti yang memenuhi syarat tersebut dan dapat dipakai sebagai bahan perkerasan. Limbah Genteng merupakan bahan yang mudah didapat di daerah Godean dalam jumlah yang cukup banyak dan selama ini tidak banyak dimanfaatkan. Mengacu pada Spesifikasi Teknik Bina Marga, penelitian ini bertujuan untuk mengetahui sejauh mana penggunaan filler Limbah Genteng terhadap karakteristik Campuran HRS-B apabila dibandingkan dengan bahan yang sudah biasa digunakan sebagai filler, dalam hal ini Portland Cement (PC).

Dari hasil penelitian diketahui bahwa dari seluruh campuran yang dibuat baik dengan filler PC maupun Limbah Genteng dapat ditemukan kadar aspal optimum. Penggunaan limbah genteng sebagai filler pada campuran HRS-B memberikan keadaan yang memenuhi spesifikasi Marshall untuk nilai Stabilitas, Flow, VTM, VFWA, dan Marshall Quotient, namun demikian secara garis besar meninggalkan nilai yang lebih rendah dari campuran yang menggunakan filler PC. Secara garis besar penggunaan Limbah Genteng sebagai filler pada campuran HRS-B menjadikan campuran menjadi lebih boros jika dibandingkan dengan menggunakan filler PC dalam hal kadar aspal optimum. Selain itu, filler Limbah Genteng mempunyai karakteristik yang lebih baik pada kadar yang lebih rendah (kadar filler limbah genteng 2% mempunyai nilai karakteristik yang lebih baik daripada kadar 5%).

DAFTAR ISI

Halaman Judul i
Halaman Pengesahan ii
Kata Hantaran iv
Intisari vi
Daftar Isi vii
Daftar Tabel ix
Daftar Gambar x
Daftar Lampiran xi

BAB I PENDAHULUAN
1.1. Latar Belakang 1
1.2. Tujuan Penelitian 3
1.3. Manfaat Penelitian 3
1.4. Batasan Masalah 3

BAB II TINJAUAN PUSTAKA
2.1. Aspal 4
2.2. Agregat 4
2.3. Filler 5
2.4. Lataston (Hot Rolled Sheet) 6
2.4.1. Stabilitas 7
2.4.2. Durabilitas (durability) 8
2.4.3. Fleksibilitas (flexibility) 8
2.4.4. Kekesatan (skid resistance) 8
2.4.5. Ketahanan kelelahan (fatigue resistance) 9
2.4.6. Kemudahan untuk dikerjakan (workability) 10

BAB III LANDASAN TEORI
3.1. Konstruksi Perkerasan Jalan 11
3.2. Hot Rolled Sheet (HRS) 12
3.2.1. Bahan Penyusun HRS 13
3.3. Parameter Marshall Test 16

BAB IV METODOLOGI PENELITIAN
4.1. Tahap Persiapan 20
4.1.1. Bahan 20
4.1.2. Peralatan laboratorium 20
4.2. Pelaksanaan Penelitian 22
4.2.1. Persiapan bahan 22
4.2.2. Persiapan gradasi agregat 23
4.2.3. Pembuatan benda uji 23
4.2.4. Pengujian Marshall 25
4.2.5. Cara analisis 27

vii
BAB V PEMBAHASAN

5.1. Pembahasan Hasil Penelitian terhadap Campuran HRS-B
 Dengan Uji Marshall
 5.1.1. Pengaruh terhadap stabilitas
 5.1.2. Pengaruh terhadap flow
 5.1.3. Pengaruh terhadap density / berat isi
 5.1.4. Pengaruh terhadap VITM
 5.1.5. Pengaruh terhadap VFWA
 5.1.6. Pengaruh terhadap Marshall Quotient
 5.1.7. Hasil yang memenuhi syarat

BAB VI KESIMPULAN DAN SARAN

6.1. Kesimpulan
6.2. Saran

DAFTAR PUSTAKA
LAMPIRAN
<table>
<thead>
<tr>
<th>Tabel</th>
<th>Deskripsi</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabel 3.1</td>
<td>Persyaratan HRS-B</td>
<td>13</td>
</tr>
<tr>
<td>Tabel 3.2</td>
<td>Spesifikasi Gradasi Agregat untuk HRS</td>
<td>14</td>
</tr>
<tr>
<td>Tabel 3.3</td>
<td>Persyaratan Aspal Keras untuk HRS-B</td>
<td>15</td>
</tr>
<tr>
<td>Tabel 5.1</td>
<td>Rangkuman Data Hasil Pendetian</td>
<td>30</td>
</tr>
<tr>
<td>Tabel 5.2</td>
<td>Kadar Aspal Optimum Carspuran</td>
<td>49</td>
</tr>
<tr>
<td>Tabel 5.3</td>
<td>Hasil Uji Marshall pada Kadar Aspal Optimum</td>
<td>49</td>
</tr>
<tr>
<td>Gambar</td>
<td>Deskripsi</td>
<td>Halaman</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>4.1</td>
<td>Alat Penekan Marshall</td>
<td>21</td>
</tr>
<tr>
<td>5.1</td>
<td>Grafik Stabilitas Campuran dengan filler 2% PC dan Limbah Genteng</td>
<td>32</td>
</tr>
<tr>
<td>5.2</td>
<td>Grafik Stabilitas Campuran dengan filler 5% PC dan Limbah Genteng</td>
<td>32</td>
</tr>
<tr>
<td>5.3</td>
<td>Grafik Nilai flow campuran dengan filler 2% PC dan Limbah Genteng</td>
<td>34</td>
</tr>
<tr>
<td>5.4</td>
<td>Grafik Nilai flow campuran dengan filler 5% PC dan Limbah Genteng</td>
<td>34</td>
</tr>
<tr>
<td>5.5</td>
<td>Grafik Nilai density campuran dengan filler 2% PC dan Limbah Genteng</td>
<td>36</td>
</tr>
<tr>
<td>5.6</td>
<td>Grafik Nilai density campuran dengan filler 5% PC dan Limbah Genteng</td>
<td>37</td>
</tr>
<tr>
<td>5.7</td>
<td>Grafik Nilai VITM campuran dengan filler 2% PC dan Limbah Genteng</td>
<td>39</td>
</tr>
<tr>
<td>5.8</td>
<td>Grafik Nilai VITM campuran dengan filler 5% PC dan Limbah Genteng</td>
<td>39</td>
</tr>
<tr>
<td>5.9</td>
<td>Grafik Nilai VFWA campuran dengan filler 2% PC dan Limbah Genteng</td>
<td>42</td>
</tr>
<tr>
<td>5.10</td>
<td>Grafik Nilai VFWA campuran dengan filler 5% PC dan Limbah Genteng</td>
<td>42</td>
</tr>
<tr>
<td>5.11</td>
<td>Grafik Nilai MQ campuran dengan filler 2% PC dan Limbah Genteng</td>
<td>45</td>
</tr>
<tr>
<td>5.12</td>
<td>Grafik Nilai MQ campuran dengan filler 5% PC dan Limbah Genteng</td>
<td>45</td>
</tr>
<tr>
<td>Lampiran</td>
<td>Keterangan</td>
<td>Halaman</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>Lampiran 1</td>
<td>Pemeriksaan Aspal</td>
<td>53</td>
</tr>
<tr>
<td>Lampiran 2</td>
<td>Pemeriksaan Aspal</td>
<td>54</td>
</tr>
<tr>
<td>Lampiran 3</td>
<td>Pemeriksaan Aspal</td>
<td>55</td>
</tr>
<tr>
<td>Lampiran 4</td>
<td>Pemeriksaan Aspal</td>
<td>56</td>
</tr>
<tr>
<td>Lampiran 5</td>
<td>Pemeriksaan Aspal</td>
<td>57</td>
</tr>
<tr>
<td>Lampiran 6</td>
<td>Pemeriksaan Aspal</td>
<td>58</td>
</tr>
<tr>
<td>Lampiran 7</td>
<td>Pemeriksaan Agregat</td>
<td>59</td>
</tr>
<tr>
<td>Lampiran 8</td>
<td>Pemeriksaan Agregat</td>
<td>60</td>
</tr>
<tr>
<td>Lampiran 9</td>
<td>Pemeriksaan Agregat</td>
<td>60</td>
</tr>
<tr>
<td>Lampiran 10</td>
<td>Pemeriksaan Agregat</td>
<td>62</td>
</tr>
<tr>
<td>Lampiran 11</td>
<td>Pemeriksaan Agregat</td>
<td>63</td>
</tr>
<tr>
<td>Lampiran 12</td>
<td>Pengujian Marshall</td>
<td>64</td>
</tr>
<tr>
<td>Lampiran 13</td>
<td>Pengujian Marshall</td>
<td>65</td>
</tr>
<tr>
<td>Lampiran 14</td>
<td>Pengujian Marshall</td>
<td>66</td>
</tr>
<tr>
<td>Lampiran 15</td>
<td>Pengujian Marshall</td>
<td>67</td>
</tr>
<tr>
<td>Lampiran 16</td>
<td>Pengujian Marshall</td>
<td>68</td>
</tr>
<tr>
<td>Lampiran 17</td>
<td>Foto Penelitian</td>
<td>69</td>
</tr>
<tr>
<td>Lampiran 18</td>
<td>Foto Penelitian</td>
<td>70</td>
</tr>
<tr>
<td>Lampiran 19</td>
<td>Foto Penelitian</td>
<td>71</td>
</tr>
<tr>
<td>Lampiran 20</td>
<td>Foto Penelitian</td>
<td>72</td>
</tr>
<tr>
<td>Lampiran 21</td>
<td>Foto Penelitian</td>
<td>73</td>
</tr>
<tr>
<td>Lampiran 22</td>
<td>Foto Penelitian</td>
<td>74</td>
</tr>
<tr>
<td>Lampiran 23</td>
<td>Foto Penelitian</td>
<td>75</td>
</tr>
<tr>
<td>Lampiran 24</td>
<td>Foto Penelitian</td>
<td>76</td>
</tr>
<tr>
<td>Lampiran 25</td>
<td>Foto Penelitian</td>
<td>77</td>
</tr>
<tr>
<td>Lampiran 26</td>
<td>Foto Penelitian</td>
<td>78</td>
</tr>
<tr>
<td>Lampiran 27</td>
<td>Perhitungan untuk Keadaan di Lapangan</td>
<td>79</td>
</tr>
<tr>
<td>Lampiran 28</td>
<td>Mineral-mineral Penyusun Lempung (Clay)</td>
<td>80</td>
</tr>
</tbody>
</table>