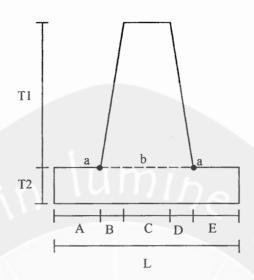
BAB III

FORMULASI PERMASALAHAN

3.1 <u>UMUM</u>

Asumsi-asumsi yang digunakan untuk memformulasikan masalah optimasi dinding batu penahan tanah adalah:


- 1. Tanah diatas pondasi dianggap rata
- 2. Perhitungan tekanan tanah menggunakan teori Coulomb
- 3. Menggunakan konstruksi batu kali
- 4. Fungsi obyektif mewakili volume dinding penahan tanah

3.2 PENYUSUNAN FUNGSI SASARAN

Tujuan dari tugas akhir ini adalah mencari volume minimum dari dinding penahan tanah, yang dapat dinyatakan sebagai:

$$V = T1(C + \frac{D}{2} + \frac{B}{2}) + T2(L)$$
(3.1)

Variabel desain dalam pembuatan program ini dapat dilihat pada gambar 3.1 dimana A dan E sebagai tebal kaki dan tumit, B dan D sebagai lebar kemiringan dinding, C lebar puncak.

Gambar 3.1 Dinding penahan tanah

3.3 PENYUSUNAN PERSAMAAN KENDALA

Persamaan kendala merupakan batasan yang harus dipenuhi oleh dinding penahan tanah. Pada dinding penahan tanah kendala yang dihadapi adalah stabilitas eksternal dan internal:

Stabilitas meliputi:

a. Stabilitas terhadap gaya Eksternal:

1. Eksentrisitas =
$$\frac{L}{2} - \frac{\sum Mp - \sum Ma}{\sum V} < \frac{L}{6}$$
 (3.1)

2.
$$\sigma_{Guling} = \frac{\sum Mp}{\sum Ma} \ge 1,5$$
 (3.2)

3.
$$\tau_{Geser} = \frac{\sum V \times f + \sum Ep}{\sum Ea} \ge 1,5$$
 (3.3)

4. Daya dukung tanah

a)
$$\sigma_{max} = \sigma_{Tanah} = \frac{\sum V}{L} \times \left(1 + \frac{6e}{L}\right) < \sigma_{Tanah}$$
 (3.4)

b)
$$\sigma_{min} = \frac{\sum V}{L} \times \left(1 - \frac{6e}{L}\right) > 0$$
 (3.5)

b. Stabilitas terhadap gaya Internal tinjauan terhadap titik a-a:

1. Eksentrisitas =
$$\frac{b}{2} - \frac{\sum Mp - \sum Ma}{\sum V} < \frac{b}{6}$$
 (3.6)

2.
$$\sigma_{Desak} = \frac{\sum V}{b} \times \left(1 + \frac{6e}{b}\right) \le \sigma_{Desak}$$
 (3.7)

3.
$$\sigma_{Tarik} = \frac{\sum V}{b} \times \left(1 - \frac{6e}{b}\right) \le \overline{\sigma}_{Tarik}$$
 (3.8)

4.
$$\tau_{Geser} = \frac{3}{2} \times \left(\frac{\sum Ea}{b}\right) \le \tau_{Bahan}$$
 (3.9)

Dari formulasi permasalahan yang ada, berat sendiri pasangan batu dan tanah uruq didefinisikan sebagai ΣV , momen aktif dan pasif berturut-turut adalah Ma dan Mp, f sebagai tangen sudut geser dalam tanah, e sebagai eksentrisitas pondasi, b adalah panjang titik a-a (dapat dilihat pada gambar 3.1), Ea sebagai tekanan aktif, L adalah lebar kaki pondasi, dan φn adalah sudut gesek dalam tanah.

3.4 PERUMUSAN MASALAH

Penyusunan formulasi permasalahan dari struktur dinding penahan tanah yang terdapat pada persamaan (3.1) dapat ditulis kembali sebagai berikut:

Minimalkan
$$V(x) = \sum_{i=1}^{m} T1i \times (Ci + \frac{Di}{2} + \frac{Bi}{2}) + T2i(Li)$$
 (3.10)

Persamaan-persamaan (3.1)-(3.10) dapat ditulis kembali sehingga persamaannya menjadi:

a. Stabilitas terhadap gaya Eksternal:

1. Eksentrisitas (a) =
$$\left[\left(\frac{L}{2} - \frac{Mp - Ma}{V} \right) \times \left(\frac{6}{L} \right) \right] - 1$$
 (3.11.1)

2. Eksentrisitas (b) =
$$\left(\frac{L}{2} - \frac{Mp - Ma}{V}\right)$$
 (3.11.2)

3.
$$\sigma_{Guling} = \left(\frac{MP}{Ma} \times \frac{1}{1.5}\right) - 1 \tag{3.12}$$

4.
$$\tau_{Geser} = \left(\frac{V \times \tan \phi + Ep}{Ea} \times \frac{1}{1.5}\right) - 1$$
 (3.13)

5. Daya dukung tanah

a.
$$\sigma_{max} = \left(\frac{\frac{V}{L} \times \left(1 + \frac{6Eks(b)}{L}\right)}{\sigma \tan ah}\right) - 1$$
 (3.14)

b.
$$\sigma_{min} = \left(\frac{L}{6 \times Eks(b)}\right) - 1$$
 (3.15)

b. Stabilitas terhadap gaya Internal tinjauan terhadap titik a-a:

1. Eksentrisitas (a) =
$$\left[\left(\frac{b}{2} - \frac{Mp - Ma}{V} \right) \times \left(\frac{6}{b} \right) \right] - 1$$
 (3.16.1)

2. Eksentrisitas (b) =
$$\left(\frac{b}{2} - \frac{Mp - Ma}{V}\right)$$
 (3.16.2)

3.
$$\sigma_{Desak} = \left(\frac{V}{b}\left(1 + \frac{6 \times Eks(b)}{b}\right) \times \left(\frac{1}{\sigma desak bahan}\right)\right) - 1$$
 (3.17)

4.
$$\sigma_{Tarik} = \left(\frac{V}{b}\left(1 - \frac{6 \times Eks(b)}{b}\right) \times \left(\frac{1}{\tau tarik bahan}\right)\right) - 1$$
 (3.18)

5.
$$\tau_{Geser} = \left[\left(\frac{3}{2} \times \frac{Ea}{b} \right) \times \frac{1}{\tau \, geser \, bahan} \right] - 1$$
 (3.19)

untuk mentransformasikan masalah dengan fungsi kendala pada persamaan (3.11)-(3.19) di atas menjadi masalah tanpa kendala digunakan fungsi pinalti luar (Wibowo 1996).