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Abstract: This paper presented a particle swarm optimization algorithm (PSO) for solving vehicle routing problem
(VRP) which involves single depot and clustered customers. Three different solution representations and decoding
methods aproposed for solving VRP using PSO. These representations are similar in the use {EBarticle with 2m
dimension to represent m vehicles. In the decoding step, these particle dimensions are transforming to a priority matrix of
vehicle to serve each customer. These rcprcscntns are different on how to create customer priority list: the first
representation directly uses the axtomcr list data as the customer priority list: the second pl'cprocs the customer list
data according to its polar angle as the customer priority list: the third uses random-key to build the customer priority list.
The custher priority list and vehicle priority matrix are utilized for constructing vehicle routes at the end of the decoding
step. A Gorautationa] experiment is conducted by applying the proposed algorithm on the benchmark data set of
capacitated vehicle routing problem (CVRP) and the vehicle routing problem with time windows (VRPTW). The result
showed that the proposed algonithm with the third representation is the most effective to solve CVRP and VRPTW
problems.

Keywords: Vehicle Routing Problem, Clustered Customers, Particle Swarm Optimization, Solution Representation.

1. INTRODUCTION

Recently, the Particle Swarm Optimization (PSO) had been applied for solving the Capac@d Vehicle Routing Problem
or CVRP (Chen ef al.. g806: A1 and Kachitvichyanukul. 2007). The CVRP is the basic vanant of the Vehicle Routing
Problem (VRP), which is a problem to design a set of vehicle routes in which a fixed fleet of delivery vehicles of uniform
capacity must service known cust(‘mr demands for a single commodity from a single depot at minimum cost. The general
requirements of this problem are (1) each route starts and ends at the depot. (2) each customer is visited exactly once by
exactly one vehicle, (3) the total demand of each route does not exceed vehicle capacity, and (4) the total duration of each
route (including travel and service times) does not exceed a preset limit. Christofides ef al. (1979) provided a
comprehensive review on problem Emulatinn and solution methods for the CVRP

Particle Swarm Optimization (PSO) is a population based search method proposed by Kennedy and Eberhart (1995),
which were motivated by the behavior of group organism such as bee swarm. fish school, and bird flock. PSO imitated the
physical movements of the individuals in the swarm as a sfffehing method, altogether with its cognitive and social
behavior as local and global exploration abilities. In the PSO, a solution of a specific problem is being repres@ed by a
position of an n-dimensional particle. The particle searches for solution by moving through search space with a velocity
vector. The PSO algorithm starts with population of particles with random initial position and velocity. The population of
particles is usually called a swarm. In one iteration step, every particle is moved from previous position to the new
position based offts velocity: and its velocity is updated based on its personal best position and the global best position
obtained so far. Once a partff} reach a position which has a better objective function than the previous best objective
function for this particle. the personal best position is updated. Also, if it found bet{Jobjective function than the previous
best objective function of the whole swarm, the global best position 1s updated. A brief and complete survey on PSO
mechanis{§l) technique, and application is provided by Kennedy and Eberhart (2001) and also Clere (2006).

The PSO works on finding the best position and commonly the position is represented by number. To make PSO
applicable to a specific problem: the relationship between the position of particles and the solutions of that problem must
be clearly defined. In CVRP case, the particle’s posEJon represents the vehicle route. The two published PSO for CVRP
applied different type of position representation: Chen ef al. (2006) used discrete value of position. while Ai and
Kachitvichyanukul (2007) used real value of position. The difference of the position representation has two consequences:
different mechanism for particles movement and different decoding method for transforming particle to vehicle route. The
real value PSO is favorable since it has simpler particle movement mechanism and more flexible decoding method than
the discrete value PSO. It was shown by the computational result of these PSO that the real value PSO is capable to solve




larger problem with faster computational time than the discrete value PSO, even though the real value PSO is
implemented without any local search or other hybrid method (Ai and Kachitvichyanukul, 2007).

This paper studies further the capability of the real value PSO by focus only on the probldEfvith single depot and
clustered customers and extend the work not only for the capacitated problem, but also for the vehicle routing profm
with time window (VRPTW). The VRPTW extends the CVRP by one additional set of constraints, in which each
customer must be served by a vehicle within a certain given time window. Three different solution representatif}s and its
decoding method for transforming particle to vehicle route are proposed here based on the real value PSO for CVRP (Ai
and Kachitvichvanukul, 2007). The PSO framework for CVRP is also extended to the general VRP and applied here using
three diff@nt solution representations and decoding methods.

The remainder of this paper is organized as follow: Section 2 reviews PSO framework for solving VRP. Section 3
explains tharoposod solution representations and decoding methods. Section 4 discusses the computational experiment
of the PSO on benchmark data set. Finally, Section 5 concludes the result of this study.

2. PSO FRAMEWORK FOR SOLVING VRP

The PSO framework for @'ing VRP is presented in Algorithm 1 for review purpose. The alurilhm is exactly same with
the PSO framework for CVRP (Al and Kachitvichyanukul, 2007), which is developed based on GLNPSO, a PSO
Algofhm with multiple social leaming structures (Pongchairerks and Kachitvichyanukul, 2005).

In this algorithm, the particles are mitialized in step 1, their corresponding fitness value are evaluated in steps 2-3,
their cognitive and social information are updated in steps 4-7, and their positions are updated in step 8. Step 9 is the
controlling step for repeating or stopping the iteration. This framework can be applied to different VRP variant with
different solution representation by changing the decoding method in step 2.

Notation
t :  Iteration index:; t=1...T
i : Particle index, i=1...J
Dimension index. d =1...D 7
u Uniform random number in the interval [0.1]
w(t) ¢ Inertia weight in the ¢ iteration
Via (f] © Velocity of the i particle at the @” dimension in the ¢ iteration
X (f) . Position of the i particle at the d” dimension in the " iteration
Pu © Personal best position (pbest) of the i particle at the d” dimension
Pea :  Global best positionmest) at the d" dimension
p,‘:‘, . Local best position (lbest) of the i particle at the d" dimension
P © Near neighbor best position (nbest) of the i particle at the ¢" dimension
c, : rsonal best position acceleration constant
¢, . Global best position acceleration constant
(.2 . Local best position acceleration constant
G, . Near neighbor best position acceleration constant
] . Vector position of the /" particle, [x, %, = %, |
| . Wector velocity of the /" particle, [vﬂ Vi - "':‘!J]
F, . Veetor personal best position of the i particle, I:p,l Pp p,-D]
P - Vector global best position, |:J”xl Per p;;DJ
Py Vector local best position of the i particle, [ Py oph p,-‘i)]

ﬂgori!hm I: PSO Framework for VRP

1. Initialize / particles as a population, generate the i particle with random position X, in the range [x"'i" e J ;

velocity I, =0 and personal best P, =X, for i=1.../ . Setiteration /=1,
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3
4.
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For i=1...7 , decode X (3‘) to a set of vehicle route R, .

For i=1...1 , compute the performance measurement of

(4] obtains the least fitness value to be P".

Update pbest: For i=1...7 . update F, =.X,.if ¢(X,)<¢(F).
: mdate gbest: For i=1...1 ,update P, = P, if p(FP) <¢(Pg) :

d set this as the fitness value of X, , qo(Xi) .

Update Ibest: For i=1...1 . among all pbest from K neighbors of the i* particle. set the personal best which

i %wrate nbest: For i=1...7 ., and d=1...D, set p, = p,, that maximizing fitness-distance-ratio ( KDR ) for

8

9.

j=1...] . Where FDR is defined as

?(X,)-9(R)

FDR = which 7 # j (8]
|-";.J — Py
. Update the velocity and the position of each i" particle:
1|‘(1)=w(T)+-'—T[1r(1)—w(T}:| 2)
-7
Vi (H—l) = w(f}v", (£)+ cpu[p“ —ei) Lt})+ cu (P_-,.,; —-x, {_f})+ qu(p:, -x, {f}]+ ('”u(p,':, —x, (f)) 3)
X, (1+1) =x, (1) +v, (+1) )

If the stopping criterion is met, i.e. { =7 . stop. Otherwise, f =¢+1 and return to step 2.

3. SOLUTION REPRESENTATIONS AND DECODING METHODS

Previous work of PSO for CVRP used a solution representation that incorporating idea of representing each vehicle by
reference point in two-dimensional Cartesian map (Ai and mhil\'wh_\mmkul, 2007). The reference point is called
vehicle route orientation within this paper. Route orientation of a vehicle is defined as a point in the service map that
represents a certain area in which the vehicle is most likely to serve. As a consequence. a vehicle route will tend to
aggregate around its corresponding route orientation. A simple illustration of relationship between vehicle route and route
orientation i1s shown in Figure L. Itis seen that each vehicle covers certain service area that can be represented by the route
orientation point. The computational result of previous work of PSO for CVRP also showed that the idea of vehicle route
orientation 1s effective for problems with clustered customers.

' Depot
e Customer

® Route Orientation

Figure 1. Vehicle Routes and Route Orientation




This paper explored further the idea of vehicle route orientation by proposing three different solution representations
and testing them on VRP with clustered customers. These representations are using the same idea of vehicle route
orientation in which a particle will consist of 2m dimensions representing m vehicles. In the decoding process. every two
dimensions of position are transformed to a vehicle route orientation point on a Cartesian map. The differences among
these representations are related to the additional dimensions of particle and the specific steps in the decoding method for
constructing vehicle routes. é

The basic mechanism of the proposed decoding methods is illustrated in Figure 2. Three steps are taken in order to
decode the solution representation into VRP solution. First, §ract customer list data or customer coordinate from the
problem information or the correspondffle particle position to make a priority list of customers. Second, convert the
corresponding 2m dif§fnsions into the route orientation point of vehicles and use this information altogether with the
customer coordinate to create priority matrix of vehicles. Third, construct the vehicle routes based on the customer
priority list and vehicle priority matrnx.

The major differences among the decoding method of the three solution representations (A, B. and C). are also
shown in Figure 2. In step | of the decoding method. solution representations A and B only used the problem information
such as customer list g and customer coordinate, while solution representation C is using both the problem information
and particle position. The details of each solution representations and decoding step will be discussed in the following
sub-sections.

Problem
Information

Particle
Position

A B A B, C
Y A
Step 1: Step 2:
Setting Setting
Customer Pricrity Vehicle Priority
A.B.CcY jre.c
Customer Priority Vehicle Priority
List Matrix
B
AB,C Step 3:_
Constructing
Route
‘A. B.C
Vehicle Route

=
Figure 2. Basic Mechanism of the Proposed Decoding Method

3.1 Solution Representations

Solution representations A and B are different with solution representation C in term of the numbers of particle dimension.
While the solution representation A and B use 2m dimensional particle, the solufn representation C needs 2m+n
dimensional particle to represent solutions for VREJwith 2 customers and nz vehicles. Each particle dimension is encoded
as a real number. For all representations, the 2m dimensions are related to vehicles, each vehicle is represented by two
dimensions. These dimensions will be exffljcted as the orientation point of vehicles in the Cartesian map.

Especially for representation C, the n dimensions represent priorities of customers: each customer 1s represented by
one dimension. The valuesfl} these dimensions will be converted to customer priority list in the decoding step. For
representation A and B, the customer priority list is coifucted based on the problem information only since there is no
dimension in the particle related to the customers. The summary of solution representations and its main conversion are
displayed in Figure 3.
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Figure 3. Solution Representations and Its Conversion

3.2 Decoding Method Step 1
The first step of decoding method is setting a priority list of customers. Each solution representation is using different
method to create the customer priority list. The customer list data. which is a list of customer [D in the original problem
data set, is directly used as the customer priority list for solution representation A; The custorf list data is preprocessed
according to its polar angle as the customer priority list for solution representation B; The n dimensions of particle is
converted to the customer priority list for utinn representation C.

No further explanation is needed for the first step of decoding method for solution representation A. The details of
the step for solution representation B and C is presented in Algorithm 2 and 3, respectively.
Algorithm 2: Step 1 of Decoding Method for Solution Representation B
1. Calculate the polar angle of each customer relative to the depot.
2. Sort the customer index based on its polar angle in ascending order.
3. Take the sorted customer index as the customer priority list.

Algorithin 3: Step 1 of Decoding Method l‘oralution Representation C

1. Take out the last n dimension of position value as the corresponding position value of customers.
2. Sort the customer index based on its corresponding position value in ascending order.

3. Take the sorted customer index as the customer priority list.

Note that the customer priority list for solution representations A and B remain the same for all particles during
overall iterative process. Hence. it is only predetermined once before the iteration process begin. In term of computational
effort, this is an advantage of these solution representations over the solution representation C in which the customer
priority list must be updated for every particles in each iteration.

3.3 Decudilﬁ Method Step 2

The second step is to extract the route orientation point of vehicles and to construct the priority matrix of vehicle. The
matrix is @hstructed based on the relative distance between these points and customers location. The diffhce can be
calculated as long as the reference points and the customer locations are placed in the same Cartesf{lh map. A customer is
prioritized to be served by vehicle with closer distance. For convenience of the subsequent step, each row in the matrix
keeps the vehicle priority for serving customer with the same index in the customer priority [EBt.

This step is identical for all reffisentations. since the representations are using the same 2m dimensions of particle to
represent m orientation points. The detail of this step is explained in Algorithm 4.




Algdglhm 4: Step 2 of Decoding Method
1. Take out the 2m dimension of position value as the vehicle route orientation points.
2. For each customer in the customer priority list:
a. Calculate the Euclidean distance between the customer and vehicle route orientation points.
b.  Sort the vehicle index based on its Euclidean distance in ascending order.
c. Take the sorted vehicle index as the corresponding row for the customer in the vehicle priority matrix.

3.4 gt-cmling Method Step 3
3

The last decoding step is to construct routes based on the customer priority list and the vehicle priority matrix. One by one
each customer in the customer priority list is assigned to a vehicle based on its {§flprity and other problem constraints, such
as vehicle capacity constraint, service duration constraint, and time window constraint. This newly assigned customer
may be inserted to the best sequence in the existing vehicle route based on the least additional cost. This heuristic is
usually called the cheapest insertion heuristic. Another effort to improve solution quality of the route is to re-optimize the
emerging route using some improvement heuristic methods, i.e. 2-opt method. The detail of this step is described in
Algorithm 5. This step is also identical for all representations.

Bcorithm 5. Step 3 of Decoding Method

For §:h customer in the customer priority list, starting from the first to the last priority:

1. Setj as the first vehicle priority of the customer.

2. Makea new candidate route by inserting the customer to the position which has the smallest additional cost in route j.

3. Check feasibility of the candidate route by evaluating all constraints: vehicle capacity. service duration, and time
window constraints.

4. If a feasible solution is reached, update route j with the candidate route and re-optimize emerging route with 2-opt
method; then retum to step | with the next customer.

5. Ifthe candidate route is infeasible, set j as the next vehicle prionty of the customer:; then go to step 2.

. 4. COMPUTATIONAL EXPERIMENTS
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Computational experiment is conducted in order to evaluate the effectiveness of each solution representations. All
solution representations are tested using the same PSO Algorithm (Algorithm 1 in section 2) and the same benchmark
problems of CVRP and VRPTW. Four problems with clustered customers [rom the CVRP benchmark data (Christofides,
1979) are used, which are consists of 10@ustomers (vrpnel2 and vrpnel4) and 120 customers (vipnell and vrpnel3).
For VRPTW case. seventeen problems of 100 customers from benchmark data of Solomon (1987) are used (C101 - C109,
C201 - CEPS)-

The algorithm is implemented in C# language using Microsoft Visual Studio.NET 1.1 on a PC with Intel P4 3.4 GHz
— 1 GB RAM. For each data sel. 5 replications of the algorithm are tried. TBRIPSO parameters are set similar with the
previous work of Ai and Kachitvichyanukul (2007). The parameters are: Mumber of Particle, 7 =100 : Number of

Iteration, 7' =1000; Number of Neighbor. K =35 First inertia weight. w(1)=0.9: Last inertia weight, w(7)=04;
Personal best position acceleration constant, ¢, =0.5: Global best position acceleration constant. ¢, =0.5 : Local best
position acceleration constant, ¢, =1.5 : Near neighbor best position acceleration constant, ¢, =1.5 . The range of initial
position is [,\' . da ]: [0, ](}(}]‘ since the position of customer and depot in the map for all problem is located within
this range

Summary of the computational result is preed in Table 1 comprise of the average of objective function
values, the percentage deviation of the average values from the best known solution (*@Z3v). and the standard deviation
of the objective function of each instance using three proposed solution representations. The percentage of deviation from
best-known solution is calculated by the following equation:

—mk
% Dev=L"2"_x100% 5)
where
% Dev . Percentage of deviation from best-known solution
@ . Objective function of current solution

p* . Objective function of best known solution




Information about the best known solution for CVRP instance is obtained from the VRP-Web
tp://neo.lcc.uma.es/radi-ach/Web VR P/index html? results/BestResults.htm) and for VRPTW is obtained from the
Solomon’s website (http://web.cba.neu.edu/~msolomon/problems htm).
The best found solution among iterations and the average computation time (displayed as minutes: seconds) for each
instance using three proposed solution representations 1s summarized in Table 2.

Table 1. Summary of PSO Solution: Average, % Dev, and Standard Deviation

Best Average PSO Solution % Dev of PSO Soluftion Standard Deviation
Instance | Known
Solution A B €] A B .C] A B &
vrpnel | 1042.11 | 1070.05 | 1069.87 | 105568 | 2.68% | 2.66% | 1.30% 10.44 0.00 8.54
vrpnel2 819.56 83943 | 83229 | 82190 | 2.42% [ 1.55% | 0.29% 0.48 18.97 2.18
vrpnel3 1541.14 | 1604.55 | 1588.28 | 157232 | 4.11% [ 3.06% | 2.02% 9.20 13.18 6.71
vrpne 14 866.37 903.87 | 877.00 | 874.08 | 4.33% | 123% | 0.89% 11.56 2.30 9.06
Clol 827.3 828.94 | 82894 | 82894 | 020% | 0.20% [ 0.20% 0.00 0.00 0.00
Cl02 8273 847.80 | 98164 | 82894 | 2.48% | 18.66% | 0.20% 8.82 22.65 0.00
Cl03 826.3 865.87 | 88357 | 82894 | 479% | 693% | 0.32% 12.53 11.43 0.00
Clo4 8229 933.46 | 888.83 828.94 | 13.44% | 8.01% | 0.73% 32.72 8555 0.00
Cl05 8273 82894 | 82894 | 82894 | 0.20% | 020% | 0.20% 0.00 0.00 0.00
Cloo 8273 828.94 | 890.03 828.94 | 0.20% [ 7.58% | 0.20% 0.00 26.55 0.00
Cl07 8273 82894 | 82894 | 82894 | 020% | 020% | 0.20% 0.00 0.00 0.00
Clo8 8273 85592 | 853.62 828.94 | 3.46% | 3.18% | 0.20% 1.79 0.00 0.00
Clo9 827.3 858.88 | 973.04 | 82894 | 3.82% | 17.62% | 0.20% 0.00 30.03 0.00
C201 589.1 591.56 | 59156 | 3591.56 | 042% | 042% | 0.42% 0.00 0.00 0.00
C202 589.1 638.14 | 91091 591.56 | 8.32% | 54.63% | 0.42% 0.00 3291 0.00
C203 588.7 807.21 80637 | 594.79 | 37.12% | 36.97% 1.03% 0.00 35.21 4.95
C204 588.1 759.79 | 769.54 | 590.60 | 29.19% | 30.85% | 0.42% 10.69 0.00 0.00
C205 586.4 71488 | 680.59 | 588.88 | 21.91% | 16.06% | 0.42% 14.83 0.00 0.00
C206 586.0 691.31 693.43 588.49 | 17.97% | 18.33% | 0.43% 0.00 6.34 0.00
C207 5858 60632 | 621.63 588.29 | 3.50% | 6.12% | 0.42% 0.00 0.00 0.00
C208 585.8 627.01 652.23 58832 | 7.03% | 11.34% | 0.43% 0.00 0.00 0.00
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Table 1 sh@s tlmt%t the average objective function value of solution representation A and B iffite similar. It is
also shown that the objective [unction values obtained from these representations are worse than the objective function
values obtained from algorithm using solution representation C. This finding is emphasized by the analogues pattern of
the best found objective function value in Table 2, in which the result of solution representation C isfltter than the result
of solution representation A aZ3. The best found objective function of solution representation is C very close to the best
known solution i most case less than 0.5% deviation from the best known solution.

In term of standard deviation of the objective funetion value, Table 1 shows that the solution representation C also
outperformed solution representations A and B. The standard deviation of C is generally smaller than A and B for each
instance. More over, the standard deviation of C is con Slsl(ﬂ‘ small, while unstable standard deviation is shown in the
result of A and B. The results with small standar}eviation demonstrate the robustness of the proposed method since the
solutions among replicatioffffare very consistent even though the method is a random search algorithm.

It is evident from the average and standard deviation of the objective function value that solution representation C

gives better solution than solution representations A and B. The better result may come from the method for constructing
the customer priority list. Solution representation C has advantage of more degree of freedom for constructing the

customer priority list. [t incorporates n dimensions of position. in which numerous combinations of customer priority list
could be constructed, while the others only used single customer priority list throughout the iteration process. It means
that more diverse solutions could be generated durinfliteration process using solution representation C, since different
customer priority list may lead to different solutions. This diversification of solutions will increase the possibility to find
a better solution.




Table 2. Best Found Solution and Average Computational Time

Best _]Et Found PSO Solution % Dev of Best Found Average Time (minutes)
Instance | Known
Solution A B C A B C A B C
vipnell 1042.11 | 1061.56 | 1069.87 | 104552 | 1.87% | 2.66% | 0.33% 02:12 02:10 | 03:25
vipnel2 819.56 838.91 823.38 | 82062 | 2.36% | 047% | 0.13% 01:29 01:29 | 02:29
vrpnel3 1541.14 | 1597.90 | 1569.93 | 1567.13 | 3.68% | 1.87% 1.69% 02:48 02:46 | 03:27
vrpneld 866.37 884.01 87400 | 867.73 | 2.11% | 0.88% | 0.16% 01:48 02:01 | 02:35
Cl01 8273 828.94 828.94 | 82894 | 0.20% | 0.20% | 0.20% 03:52 03:49 | 03:49
clo2 8273 843.86 05046 | 828.94 | 2.00% | 14.89% | 0.20% 03:30 04:27 | 03:47
Cl103 826.3 852.17 875.92 | 82894 [ 3.13% | 6.00% | 0.32% 03:20 03:26 | 03:31
Clo4 8229 898.13 886.72 | 828.94 | 9.14% | 7.76% | 0.73% 03:01 03:05 | 03:13
Cl105 8273 828.94 82894 | 82894 | 0.20% | 0.20% | 0.20% 03:39 03:37 | 03:40
Cl106 827.3 828.94 86432 | 82894 | 0.20% | 4.47% | 0.20% 03:37 04:50 | 03:45
Cclo7 8273 828.94 82894 | 82894 | 0.20% | 0.20% | 0.20% 03:28 03:11 03:34
Cl108 8273 852.72 85362 | 82894 | 3.07% | 3.18% | 0.20% 03:33 03:22 | 03:36
C109 8273 858.88 94197 | 82894 | 3.82% | 13.86% | 0.20% 03:00 03:51 | 03:28
C201 589.1 591.56 591.56 | 591.56 | 042% | 042% | 0.42% 10:22 10:06 | 09:29
C202 589.1 638.14 875.14 | 591.56 | 8.32% | 48.56% | 0.42% 10:31 15:34 | 09:47
C203 588.7 807.21 790.63 591.17 [ 37.12% | 34.30% | 0.42% 11:07 14:30 10:01
C204 588.1 751.99 769.54 | 590.60 | 27.87% | 30.85% | 0.42% 11:19 11:04 [ 09:11
C205 586.4 708.24 680.59 | 588.88 | 20.78% | 16.06% | 0.42% 10:25 10:10 | 09:28
C200 586.0 691.31 690.60 | 588.49 | 17.97% | 17.85% | 0.43% 08:55 10:21 | 09:25
C207 585.8 606.32 621.63 58829 | 350% | 6.12% | 0.42% 09:33 10:45 | 09:01
C208 585.8 627.01 652.23 58832 | 7.03% | 11.34% | 0.43% 09:18 09:17 | 09:27

The computational time for all solution representation is generally reasonable short. It is shown in Table 2 that the
computational time for CVRP instances are not more than 4 minutes, for VRPTW-C Ixx instances are less than 5 minutes,
and for VRPTW-C2xx instances are less than 16 minutes.

The hypothesis that the solution representations A and B lead to faster time than that obtained from solution
representation C due to the effort to set the customer priority listis only demonstrated by the result of CVRP instances. It
is clearly shown in Table 2 that the average computational time of solution representation A and B for CVRP mnstances are
quite similar, while the solution representation C gives longer computational time. However, the hypothesis is not
confirmed for the case of VRPTW since the computational time for all representations are mostly similar and there is no
clear pattern in the computational time results. This result implies that the step of setting customer priority list is dominant
in CVRP case, while it is not dominant in VRPTW case. The step for route construction is dominating the computational
effort in the VRPTW case, in which extra effort for constraints checking is required.

It 1s also shown in Table 2 that the VRPTW-C2xx instances required much longer computational time than
VRPTW-C Ixx in :-;tamccmcn though all instances are considering the same number of customers. This difference may
came from the different number of vehicles and the computational process related to the number of vehicles. Note that
instances Clxx use 10 vehicles to serve 100 customers, while instances C2xx use 3 vehicles to serve 100 customers.
Smaller number of vehicles can reduce the computational effort in the step of setting vehicle priority, but it will increase
the computational effort in the step for route construction. The effort reduction in the setting of vehicle priority is related
to the distance calculation and sorting procedures, where the smaller number of vehicles leads to the faster procedures.
The eff@lin the route construction step is for finding the best insertion point and re-optimizing using 2-opt method. The
smaller number of vehicles means theézcr number of customers in one route and it causes these steps to be slower. This
computational result showed that the time required to construct the route is dominating the time required to set vehicle
priority, so that the computational time for VRPTW-C2xx instances are longer than VRPTW-C Ixx instances.

o 5. CONCLUSION
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The computational reflk shows that the PSO with the solution representation that incorpof§fing random-key to build the
customer priority list is very effective to solve the VRP with clustered customers. The effectiveness of the proposed
method comes from the idea of vehicle orientation, route construction heuristics, and the simplicity of the PSO. The
vehicle orientation ensures that the constructed route will cover only a narrow area. The route construction heuristics is




capable to increase the solution quality of the route. Also, the structure and mechanism of PSO are facilitating to generate
diverse solutions and always maintaining or improving the best found solution.

The computational time aspect of the proposed algorithm need to be further improved. The details of the algorithm
and programifghg implementation need to be studied further, since some problem instances, i.e. VRPTW-C2xx instances,
still required long computatiofl time. The main objective of this further study would be improving the algorithm and
programming implementation in order to redla the computational time without reducing solution quality.

Some further research for applying the proposed method to other VRP variants or type of problem is promising.
Since the variants of VRP differ from one another only on the specific problem constraints. the only adjustment needed is
at the constraint feasibility checking on the decoding method. However, the effectiveness of this idea should be further
assessed.
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