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Abstract. This paper presents a study on an adaptive version of particle swarm optimization (PSO) algorithm 
for solving vehicle routing problems (VRPs). Recently, PSO has been showing promising results in solving 
many optimization problems include VRP. There are some parameters that need to be set in order to obtain a 
good performance of the PSO algorithm. However, finding the best set of parameters that is good for all 
problem cases is not an easy task. Many experiments must be performed to set the parameters and yet there is 
no guarantee that the best obtained parameter set will provide consistently good algorithm performance when 
it is applied to a new problem cases. Hence, a novel idea to have a self-adaptive PSO, that can adapt its 
parameters automatically whenever it is applied to solve a problem instance, is an alternative way to 
overcome this situation. The adaptive version of PSO proposed in this paper has additional capability to self-
adapt its inertia weight (w), one of the key PSO parameter, based on the velocity index of the swarm, the 
searching agents in PSO. The inertia weight is controlled so that the balance between exploration and 
exploitation phases of the swarm is maintained, since a better balance of these phases is often mentioned as 
the key to a good performance of PSO. The performance of this adaptive PSO is evaluated for solving VRP 
instances and is compared with the existing application of PSO for VRP. The computational experiment shows 
that the adaptive version of PSO is able to provide better solution than the existing non-adaptive PSO with 
slightly slower computational time.  
 
Keywords: Particle Swarm Optimization, Adaptive Parameters, Metaheuristic, Vehicle Routing Problem.  

 
 

1. INTRODUCTION 
 
This paper presents a study on an adaptive version of 

particle swarm optimization (PSO) algorithm which is 
applied for solving vehicle routing problems (VRPs). 
Recently, PSO, which is an emerging evolutionary 
computing method, has been successfully applied for 
solving some VRP variants, including the capacitated 
vehicle routing problem (Ai and Kachitvichyanukul; 2007a, 
2008a) and the vehicle routing problem with simultaneous 
pickup and delivery (Ai and Kachitvichyanukul, 2008b).  

Similar with other evolutionary computing methods, it 
is necessary to properly select the PSO parameters in order 

to yield good performance. The task to find the best set of 
parameters for all problem cases is not a trivial one. Much 
experiment needs to be performed to determine proper 
values of parameters. Moreover, there is no guarantee that 
the selected parameter set will yield best algorithm 
performance, especially when the algorithm is applied to 
solve new problem cases. A novel idea to replace the way 
to find the best set parameter is through a self-adaptive 
PSO algorithm that can adapt its parameters automatically 
whenever it is applied to solve a problem instance. It is 
noted that in the wider scope of evolutionary algorithm, 
some approaches for adaptively finding the algorithm’s 
parameter have been proposed, i.e. Annunziato and Pizzuti 
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(2000) and Back et al. (2000). 
In the scope of PSO, several researchers have also 

dealt with adaptive or self-finding parameter. Among PSO 
parameters, inertia weight has gained enormous attention in 
the earlier effort to adapt PSO parameters. Since the early 
development of PSO, the proper setting of inertia weight is 
believed to have significant effect on the PSO performance. 
The two most popular setting for the inertia weight are a 
linear decreasing function that was first proposed by Shi 
and Eberhart (1998), and a nonlinear decreasing function 
proposed by Gao and Ren (2007). With these settings, it is 
expected that the particles are able to explore the problem 
space more aggressively at the beginning of the iteration 
steps and to exploit promising solution in the end of 
iteration steps. 

Other approaches that have been proposed attempts to 
adjust the inertia weight adaptively based on the particular 
condition of the swarm. Ueno et al. (2005) proposed an 
adaptive PSO that alternates its inertia weight between a 
high value and a low value and vice versa in order to 
control the swarm’s velocity. Arumugam and Rao (2008) 
used the value of local best and global best at a particular 
iteration as the basis for updating the values of inertia 
weight. Population diversity of the swarm has also been 
used as the basis to adaptively adjust the inertia weight, i.e. 
Dan et al. (2006), Jie et al. (2006), and Zhang et al. (2007).  

Borrowing some ideas from those earlier researches in 
parameter adaptation, especially for adapting the inertia 
weight, an adaptive PSO algorithm is proposed. The 
adaptive PSO algorithm proposed in this paper has the 
capability to self-adapt its inertia weight based on the 
dynamics of the swarm, the searching agents in PSO. The 
mechanism of this adaptation is selected so that the existing 
PSO algorithm for solving VRP is only slightly modified to 
have the adaptive feature. Furthermore, the selected 
adaptive mechanism does not significantly increase the 
computational effort of PSO.  

The remainder of this paper is organized as follow: 
Section 2 briefly reviewed the PSO algorithm for solving 
VRP. Section 3 presents the adaptive mechanism for setting 
inertia weight. Section 4 describes the computational 
results on the benchmark data set. Finally, Section 5 
concludes the work presented in this paper and 
recommends further direction on this work. 

 
 
2. PSO FOR SOLVING VRP 

 
PSO is a population based search method which 

imitated the physical movements of the individuals in the 
swarm as a searching method. In the PSO, the best solution 
of a specific problem is being searched by a swarm of 
particles that act as a searching agent. A multi-dimensional 

particle position is being used to represent problem solution 
and a velocity vector is being used to represent the 
searching ability of the particle. Each PSO iteration step 
consists of the movement of every particle in the swarm 
from one position to the next based on the velocity. Moving 
from one position to another, a particle is evaluating 
different prospective solution of the problem. In imitating 
swarm’s cognitive and social behavior, the PSO mechanism 
also always keeps the information on the personal best 
position of each particle, which is defined as the position 
that gives the best objective function among the positions 
that have been visited by the particle, and the global best 
position, which is the best among all personal best. These 
personal best and global best position are used for updating 
particle velocity. More information on PSO mechanism, 
techniques, and applications is provided by Kennedy and 
Eberhart (2001) and also Clerc (2006). 

In the earlier works of Ai and Kachitvichyanukul; 
(2007a, 2008a, 2008b), a PSO framework for solving VRP 
had been proposed based on the GLNPSO, a PSO 
Algorithm with multiple social learning structures 
(Pongchairerks and Kachitvichyanukul, 2005). This PSO 
version also incorporates the local best, which is the best 
position among several adjacent particles, and the near 
neighbor best, which is social learning behavior concept 
proposed by Veeramachaneni (2003), besides the global 
best as components for social learning behavior. The PSO 
framework is briefly reviewed in Algorithm 1. 

 
Algorithm 1: PSO Framework for VRP 
Step 1. Initialization 

a. Generate particles as member of the swarm. 
b. Set the initial position and velocity of each 

particle. 
Step 2. Iteration Process 

a. Decode each particle position to a set of 
vehicle routes. 

b. Evaluate the performance of each set of 
vehicle routes and set the performance value 
as the fitness value of the corresponding 
particle. 

c. Update personal best, global best, local best 
and near neighbor best values. 

d. Update the velocity and position of each 
particle based on the updated values. 

Step 3. Stopping 
Stop if the stopping criterion is met, otherwise 
repeat Step 2. 

 
In this framework, L particles are initialized in Step 

1.a in which each particle dimension is randomly generated 
between a minimum and a maximum value. The initial 
velocity vector is zero for all particles. In the iteration 
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process, the following equations are used to update the 
velocity and position of each position:  

( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( )( )

1lh lh p lh lh g gh lh

L N
l lh lh n lh lh

w c u c u

c u c u

ω τ τ ω τ ψ θ τ ψ θ τ

ψ θ τ ψ θ τ

+ = + − + −

+ − + −
 (1) 

( ) ( ) ( )1 1lh lh lhθ τ θ τ ω τ+ = + +  (2) 
where: 

( )lhω τ  : Velocity of the thl  particle at the thh  
dimension in the thτ  iteration 

( )lhθ τ  : Position of the thl  particle at the thh  
dimension in the thτ  iteration 

( )w τ  : Inertia weight in the thτ  iteration 
lhψ  : Personal best position (pbest) of the thl  particle 

at the thh  dimension 
ghψ  : Global best position (gbest) at the thh  

dimension 
L
lhψ  : Local best position (lbest) of the thl  particle at 

the thh  dimension 
N
lhψ  : Near neighbor best position (nbest) of the thl  

particle at the thh  dimension 
pc  : Personal best position acceleration constant 
gc  : Global best position acceleration constant 
lc  : Local best position acceleration constant 
nc  : Near neighbor best position acceleration constant 

u  : Uniform random number in the interval [ ]0,1  
 

In this research, the adaptation is made on the PSO 
Framework for VRP by using the two solution 
representations that had been proposed in previous works 
of Ai and Kachitvichyanukul (2007a, 2008a, 2008b), which 
are called solution representation SR–1 and SR–2. For 
representing VRP with n customers and m vehicles, the 
representation SR–1 is using particle with (n+2m) 
dimensions and the representation SR–2 is using 3m 
dimensions. Each representation can be transformed into 
VRP solution by a specific decoding method. The detail of 
each decoding method is not presented here, since it has 
been clearly explained in cited references.  

 
 

3. PROPOSED ADAPTIVE MECHANISM FOR 
SETTING INERTIA WEIGHT 

 
The proposed adaptive mechanism for setting inertia 

weight borrows idea from Ueno et al. (2005), in which the 
algorithm self-adjusts the inertia weight in order to control 
movement of the swarm which is represented by its 
velocity index. It is known that different inertia weight 
value leads to different swarm movement behavior, since 
high value caused particles in the swarm to maintain its 
current movement and low value caused the particles to 
follow the cognitive and social terms. However as 
compared with Ueno’s work, the proposed algorithm uses a 

different velocity index pattern and a different mechanism 
for adjusting the inertia weight. 

It is noted that the velocity index of the swarm (ω ) 
can be calculated using following expression: 

1 1

L H

lh
l h

L H

ω
ω = ==

⋅

∑∑
 (3) 

where: 
l  : Particle index, 1l L= …  
h  : Dimension index, 1h H= …  
 

The velocity index measures how fast the swarm 
moves in certain iteration and is defined as the average of 
absolute velocity. This index indicates the moving behavior 
of the swarm: higher index means the swarm moves more 
aggressively in the problem space than the swarm with 
lower index.  

Regarding the velocity index pattern that must be 
followed by the swarm, Ueno et al. (2005) used a linear 
decreasing pattern. However, the study of the dynamic 
behavior of the swarm in PSO by Ai and 
Kachitvichyanukul (2007b) implied that different pattern 
should be used in order to achieve balance between 
exploration and exploitation process. It is noted that a better 
balance between these phases is often mentioned as the key 
to a good performance of PSO. Hence, the proposed 
algorithm incorporates the idea of latter work as the 
velocity index pattern. It is intended that half of iterations 
are placed as exploration phase and the other half as 
exploitation phase. Two-step linear decreasing pattern is 
selected to portray this condition, in which the desired 
velocity index ( *ω ) has following equation: 

max

max

1.81 , 0 2
*

0.20.2 , 2

T
T

T T
T

τ ω τ
ω

τ ω τ

⎧ ⎛ ⎞− ≤ ≤⎪ ⎜ ⎟
⎪ ⎝ ⎠= ⎨
⎛ ⎞⎪ − ≤ ≤⎜ ⎟⎪⎝ ⎠⎩

 (4) 

where: 
τ  : Iteration index; 1 Tτ = …  

maxω  : Maximum Velocity Index 
 
By using equation 4, the desired velocity index is 

gradually decreased from maxω  at the first iteration to 
max0.1ω  at the first half of iterations. It is expected that the 

problem space is well explored by the swarm in this phase, 
so that the swarm is able to exploit the existing solutions at 
the second half of iterations when the desired velocity 
index is small enough and slowly reduced from max0.1ω  
to 0. A comparison of the desired velocity index pattern of 
Ueno’s and this proposed mechanism is illustrated in Figure 
1. 
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Figure 1: Desired Velocity Index Pattern of the Swarm  

 
In Ueno’s work, there are only two preset values of 

inertia weight, the lower and the higher value, and the 
inertia weight that is used in certain iteration is selected 
based on the current swarm velocity index. When the 
swarm velocity index is greater than the desired velocity 
index, the inertia weight is set to the lower value in order to 
reduce swarm velocity index in the subsequent iteration. In 
the reverse situation, when the swarm velocity index is 
lower than the desired velocity index, the inertia weight is 
set to the higher value in order to increase swarm velocity 
index in the subsequent iteration.  

In this proposed mechanism, the inertia weight is set 
in the range of minimum ( minw ) and maximum value 
( maxw ) instead of using two preset values only. 
Nevertheless, the updating mechanism principle is similar 
with Ueno’s work: whenever the swarm velocity index is 
lower than the desired velocity index, the inertia weight is 
increased, and reversely when the swarm velocity index is 
greater than the desired velocity index, the inertia weight is 
decreased. The amount of increases or decreases of inertia 
weight depends on the difference between the velocity 
index of the swarm and the desired velocity index. The 
following equations are used to update the inertia weight: 

( ) ( )max min
max

*
w w w

ω ω

ω

−
Δ = −  (5) 

w w w= + Δ  (6) 
maxw w=  if maxw w>  (7) 
minw w=  if minw w<  (8) 

 
Based on the description given above, the proposed 

mechanism only requires a slight modification of the PSO 
Framework for VRP (Algorithm 1). Since the inertia weight 
is only used while updating velocity in the Step 2d, the 

steps of calculating desired and actual velocity index and 
updating the inertia weight following equations 5 – 8 must 
occur before Step 2d. It is expected that these additional 
steps should have only slight impact on the computational 
effort. 

The complete algorithm of the adaptive PSO 
algorithm incorporating the proposed mechanism is 
presented in Algorithm 2, which is called the APSO-1 
algorithm. It is noted that the APSO-1 algorithm 
incorporates the same number of parameters as the non-
adaptive PSO algorithm in Algorithm 1, however, its inertia 
weight is controlled by swarm dynamics instead of strictly 
followed the pre-defined values.  

 
Algorithm 2: APSO-1 Algorithm for VRP 
Step 1. Initialization 

a. Generate particles as member of the swarm. 
b. Set the initial position and velocity of each 

particle. 
Step 2. Iteration Process 

a. Decode each particle position to a set of 
vehicle routes.  

b. Evaluate the performance of each set of 
vehicle routes and set the performance value 
as the fitness value of the corresponding 
particle. 

c. Update personal best, global best, local best 
and near neighbor best values. 

d. Calculate the actual and desired velocity 
index using Eqs. 3 and 4, and then update the 
inertia weight using Eqs. 5–8. 

e. Update the velocity and position of each 
particle based on the updated values. 

Step 3. Stopping 
Stop if the stopping criterion is met, otherwise 
repeat Step 2. 

 
 

4. COMPUTATIONAL TEST 
 
Computational test is conducted to compare the 

performance of existing non-adaptive PSO algorithm 
(Algorithm 1) and the proposed APSO-1 algorithm 
(Algorithm 2). For this purpose, totally new problem 
instances of vehicle routing problem are generated which 
incorporates the features of simultaneously pickup- 
delivery and time windows of customer. Two classes of 
200-customers problem are generated, in which each class 
consists of four instances. The main difference between the 
first and the second class is the time windows characteristic, 
in which the first class (class RL) has wider time windows 
than the second class (class RT). In both problem classes, 
the traveled time between two locations is defined to be 

APIEMS 2008 Proceedings of the 9th Asia Pasific Industrial Engineering & Management Systems Conference

December 3rd – 5th, 2008      Nusa Dua, Bali – INDONESIA  
2265



 

 

equal to its Euclidean distance. The detail specification of 
these two classes of problems is described in Table 1. 

 
Table 1: Specification of Generated VRP Benchmark Data 

Characteristic Class RL Class RT 
Depot   
Location (50, 50) (50, 50) 
Customer   
Location U[(0, 0); 

(100, 100)] 
U[(0, 0); 

(100, 100)] 
Pickup Quantity U[0, 30] U[0, 30] 
Delivery Quantity U[0, 30] U[0, 30] 
Service Time 10 10 
Earliest Time for Starting 
Service (ET) 

U[0, 100] U[0, 400] 

Latest Time for Starting 
Service (LT) 

ET + 
 U[0, 400] 

ET + 
 U[0, 100] 

Vehicle   
Fixed Cost 0 0 
Variable Cost 1 1 
Capacity 300 300 
Duration Limit 500 500 

 
For computational test purpose, both algorithms are 

written in C# language using Microsoft Visual Studio.NET 
1.1 and run on a PC with Intel P4 3.4 GHz processor and 1 
GB RAM. The test is conducted using only the solution 
representations SR–2 for representing VRP solution in both 
non-adaptive PSO and APSO-1 algorithm. It is noted that 
the non-adaptive PSO is using following parameters 
setting: 50L = , 1000T = , 5K = , ( )1 0.9w = , 
( ) 0.4w T = , 1pc = , 1gc = , 1lc = , and 1nc = . In 

addition, the APSO-1 is using the first iteration velocity 
index as the maximum velocity index ( maxω ), max 0.9w = , 
and min 0.1w = . For the remaining fixed parameters, the 
APSO-1 incorporated the same parameters as non-adaptive 
PSO, in which 50L = , 1000T = , 5K = , 1pc = , 

1gc = , 1lc = , and 1nc = . For each instance, five 
replications of algorithm runs are performed. The 
computational results comprising the average objective 
function found and computational result for each instance 
are presented in Table 2. 

As seen in Table 2, the APSO-1 result is relatively 
better than the non-adaptive PSO result. In the objective 
function column of this table, the bold typeface indicates 
smaller result between two algorithms results. It is found 
that the APSO-1 algorithm provides smaller average 
objective function value than the non-adaptive PSO 
algorithm in five out of eight instances. 

 
 

Table 2: Computational Results 
Objective Function Comp. Time* 

Instance PSO APSO-1 PSO APSO-1 
RL1 2159.78 2150.28 15:39.6 16:29.0 
RL2 2060.00 2080.51 16:23.4 16:52.5 
RL3 2106.58 2072.19 15:03.6 16:04.1 
RL4 1988.08 1961.28 16:48.3 17:58.5 
RT1 2653.43 2645.32 18:22.4 19:24.3 
RT2 2622.28 2626.85 18:35.9 20:30.1 
RT3 2674.92 2686.89 20:07.0 20:36.9 
RT4 2548.23 2535.68 20:09.7 21:19.8 

      * in minutes:seconds 
 
It is also empirically shown from Table 2 that the 

adaptive versions of PSO algorithm, the APSO-1 algorithm, 
require slightly more computational time than the non-
adaptive one. This additional time is a consequence of 
additional effort to adjust the inertia weight in the APSO-1 
algorithm. 

Observation on the details of each instance run may 
give better understanding of the behavior of both 
algorithms. In figure 2, velocity index over iteration of 
some algorithm runs is drawn. It is clearly seen that the 
velocity index of non-adaptive PSO algorithm is 
continuously decreasing and very fast approaching the 
exploitation phase. On the other hand, the velocity index of 
APSO-1 algorithm is decreased with the lower rate than the 
non-adaptive PSO algorithm. As a result, it is always higher 
than the corresponding value of the non-adaptive PSO 
algorithm in whole iteration steps. Hence, it is implied that 
the APSO-1 algorithm has more potential to explore the 
search space than the non-adaptive PSO algorithm in the 
exploration phase. This higher level of exploration is 
desirable, since it may avoid the searching process being 
trapped into local optima and also lead to better final 
solution.  

However, the velocity index of the APSO-1 algorithm 
is also still slightly higher than the index of non-adaptive 
PSO algorithm in the exploitation phase. It is implied that 
the APSO-1 does not have the same level of exploitation as 
the non-adaptive PSO algorithm. This difference level of 
exploitation might be suspected as the source of 
inconsistency in the APSO-1 algorithm results, in which 
some problem instances of APSO-1 result are worse than 
the non-adaptive PSO result. If this hypothesis was true, the 
desired velocity index ( *ω ) pattern could be slightly 
change, i.e. decreased from maxω  at the first iteration to 

max0.05ω  at the first half of iterations and slowly reduced 
from max0.05ω  to 0 at the second half of iterations, to 
improve the result. Though, more experiments should be 
conducted for this purpose. 

 

APIEMS 2008 Proceedings of the 9th Asia Pasific Industrial Engineering & Management Systems Conference

December 3rd – 5th, 2008      Nusa Dua, Bali – INDONESIA  
2266



 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 200 400 600 800 1000iteration

ve
lo

ci
ty

 in
de

x

APSO-1
PSO

 
Figure 2: Velocity Index Pattern of Typical Runs on Non-

Adaptive PSO and APSO-1 Algorithms 
 
 

5. CONCLUSION AND FURTHER WORKS  
 
A possibility to enable particle swarm optimization 

algorithm to self-adapt its parameter is presented in this 
paper, in which an adaptive version of PSO is proposed 
with capability to self-adapt its inertia weight, one of the 
key PSO parameter. The computational experiment on 
some vehicle routing problem instance shows that the 
proposed adaptive PSO algorithm is able to provide better 
solution than the existing non-adaptive PSO with slightly 
slower computational time. 

Further works is still required to explore more 
mechanisms for adapting other parameters of PSO 
algorithms, such as: acceleration constants, number of 
particles, number of neighbors, and number of iterations. 
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