Paper 43 ETLib User Manual

by The Jin Ai

Submission date: 22-May-2019 09:54AM (UTC+0700)
Submission ID: 1134181433

File name: Paper_43 ETLib_User_Manual.pdf (1.21M)
Word count: 14458

Character count: 75925

70

Object Library
for Evolutionary
Techniques

%Y/
JONR>

AlT

ASIAN INSTITUTE OF TECHNOLOGY

\@\o

USER'S MANUAL

Object Library for Evolutionary
Techniques (ET-Lib)

version 1.0

Su Nguyen
T. J. A

Voratas Kachitvichyanukul

Industrial & Manufacturing Engineering
School of Engineering & Technology

Asian Institute of Technology
THAILAND

April 2010

ACKNOWLEDGEMENT

The researchers working in the projects are supported by: Royal Thai
Government Scholarship Program, the RTG-AIT Joint Research Funding 2008.

Key Contributors

Voratas Kachitvichyanukul
T.dJ. A
Su Nguyen

Content of Public Release 1.0

User’'s Manual, Version 1.0
Dynamic Link Library
Job Shop Scheduling Example
TSP Example,
Multi-objective PSO:
Portfolio Optimization
Beam Design Optimization

ﬁgh Performance Computing Group 2

Asian Institute of Technology]

PREFACE

The first version of the library of Evolutionary Techniques (ET-Lib) was developed in
2008 at the Asian Institute of Technology (AIT), Thailand. The purpose of this library is
to provide the researchers and students who are working on various optimization
problems with a general and effective tool based on various evolutionary techniques.
The first release contains mainly the Particle Swarm Optimization algorithm with
multiple social learning terms (GLNPSO).

Currently, GLNPSO algorithm is completely written in C# as an object-oriented
library. The library includes all the necessary classes and routines which can be used to
implement the PSO algorithm. Users with little programming knowledge can still use
classes provided in this ET-library to solve basic problems. For more complicated
problems, it is recommended that the users are familiar with C# programming language
at elementary level.

This manual is organized into 4 chapters. The first chapter will provide users who are
new to the PSO concept the first introduction to this algorithm. Chapter 2 is used to
explain the structure of the GLNPSO algorithm and a basic example are given to
explain how to solve a simple problem with GLNPSO algorithm. In chapter 3, some
practical applications of GLNPSO are presented with the introduction to such additional
features as re-initial@nn. and multi-stage PSO. Finally, Chapter 4 discusses an
extension of GLNPSO algorithm to deal with multi-objective optimization problems.

ﬁgh Performance Computing Group 3 Asian Institute of Technology]

CHAPTER 1
INTRODUCTION TO PARTICLE SWARM OPTIMIZATION

ﬁ 1. Overview

Particle Swarm Optimization (PSO) is a population based r@pdom search method
that imitates the physical movements of the individuals in the swarm as a searching
mechanism. The first PSO algorithm was proposed by Kennedy and Eberhart in 1995.
The key concept of PSO is to learn from the cognitive knowledge of each particle and the
social knowledge of the swarm to guide particles to better position.

In the PSO algorithm, a solution of a specific problem is represented by an n-
dimensional position of a particle. A swarm of fixed number of particles is generated and
each particle is initialized with a random position in a multidimensional search space.
Each particle flies through the multidimensional search space with a velocity. In each
step of the iteration the velocity of each particle is adjusted based on three components:

e current velocity of the particle which represents the inertia term or
momentum of the particle

¢ the position corresponds to the best solution achieved so far by the particle
normally referred as personal best

e the position corresponds to the best solution achieved so far by all the
particles, i.e., the global best

Once the velocity of each particle is updated, the particles are then moved to the new
positions. The cycle repeats until the stopping criterion is met. The specific expressions
used in the original particle swarm optimization algorithm will be discussed in the next
section.

1.2. The Basic Form of PSO

The notations used to describe the algorithms are given here and followed by a

summary description of the original PSO algorithm.

Notations:

T [teration index: 7 =1...T

/ Particle index, 7/=1...L

h * Dimension index, A=1...H

u Uniform random number in the interval [0.1]

w(7) ¢ Inertia weight in the " iteration

,(r) + Velocity of the /" particle at the 4" dimension in the " iteration
8,(r) * Position of the /" particle at the 4" dimension in the " iteration
7 * Personal best position (pbest) of the /* particle at the 7" dimension
* Global best position (gbest) at the 4" dimension

& ¢ Personal best position acceleration constant

o ¢ Global best position acceleration constant

ﬁgh Performance Computing Group 4 Asian Institute of Technology|

gmax © Maximum position value

G Minimum position value

o, * Vector position of the /" particle, [6,, 6, - 6]

Q, © Vector velocity of the [particle, [@, @, - 4]

¥, Vector personal best position of the I particle, [y, v, -]
P Vector global best position, [ng W - "‘/K”:|

R, The /" set of solution

Z{@)t) * Fitness value of ®,

Algorithm PSO

1. Initialize I particles as a swarm:

th

Set iteration 7 =1. Generate the /” particle with random position ©,(7) in the range

[6""“’ TG] , velocity (), (7)=0 and personal best ¥, =©, for /=1...L.

2. Decode particles into solutions:
For /=1...L, decode ®, (r) to a solution R . (This step is only needed if the particles

are not directly representing the solutions).
3. Evaluate the particles:
For I=1...L, compute the performance measurement of R,, and set this as the
fitness value of ©,(7), represented by Z(®,).
4. Update pbest:
For /=1...L , update ¥, =0, if Z(©,)<Z('¥,).
5. Update gbest:
For i=1...1, update ¥'; ="', i Z (¥,)<Z(¥,).

6. Update the velocity and the position of each /" particle:

w(e)=w(r) + 2= [w() -w(7)] a.n
@y, (7 'H) = "'(7)"”.% (T) +e,u (Wm -6, (r))-i— C'g“('r"gh =5 (7)) (1.2)
Oy (z+1) =6, (7) +a, (z+1) 1.3)

If 9, (z +1)> 6™, then

O (7 +1)= 0™ 1.4
@y (z+1)=0 (1.5)

If 6, (7 +1)<6™" . then
O (z+1)=6"" (1.6)

ﬁgh Performance Computing Group 5 Asian Institute of Technology|

wﬂ:(r"-]):o (1.7

7. If the stopping criterion is met, i.e., 7 =7, stop. Otherwise, r =7 +1 and return to
step 2.

The basic version of PSO algorithm described above contains the inertia term with
pogfijon boundary and linear decreasing weight introduced by Shi and Eberhart (1998)
to explore the solution space in the initial phase and following the cognitive and social
term to exploit the personal best and global best in the final phase. In addition, this

algorithm is applicable for minimization problem.
1.3. Key parameters of PSO

This section discusses possible qualifications and effects offfjach parameter on the
performance of PSO. The parameters analyzed in this section consist of the population
size (L), two acceleration constants (¢, and ¢, and the inertia weight (w). The discussion
is presented below.

Population size ()

This parameter represents the number of particles in the system. It is one important
parameter of PSO, because it affects the fitness value and computation time.
Furthermore, increasing size of population always increases computation time, but
might not improve the fitness value. Generally speaking, too small a population size can
lead to poor convergence while too large a population size can yield good convergence at
the expense of long running time.

Acceleration constants (¢, and ¢;)

The constants ¢, and ¢ are the acceleration constants of the personal best position
and the global best position, respectively. Each acceleration constant controls the
maximum distance that a particle is allowed to move from the current position to each
best position. The new velocity can be viewed as a vector which combines the current
velocity, and the vectors of the best positions. Each best position’s vector consists of the
direction which is pointed from the particle’s current position to the best position, and
the magnitude of the movement can be between 0 to the acceleration constant of the best
position times the distance between the best position and the current position.

Inertia weight (w)

The new velocity is produced from the combination of vectors. One of these vectors is
the current velocity. Inertia weight is a weight to control the magnitude of the current
velocity on updating the new velocity. For w = ¢ it means that this vector has the same
direction of the current velocity, and the magifide which equals to ¢ times the current
velocity’s magnitude. This weight is one of the parameters to control the search behavior
of the swarm.

ﬁgh Performance Computing Group 6 Asian Institute of Technology]

Velocity boundary (V&25) and Position boundary (6=2x)
5

Some PSO algorithms are implemented with bound on velocity. For each dimension,
the magnitude of a velocity cannot be greater than ™2, This parameter is one of
parameters to control the search behavior of the swarm. The smaller value of this
parameter makes the particles in the population less aggressive in the search.

In the PSO particle movement mechanism, it is also common to limit the search space
of particle location, i.e. the position value of particle dimension is bounded in the

interval [9‘““,9"’“1. The use of position boundary &= is to force each particle to move

within the feasible region to avoid solution divergence. Hence, the position value of
certain particle dimension is being set at the minimum or maximum value whenever it
moves bevond the boundary. In addition, the velocity of the corresponding dimension is
reset to zero to avoid further movement beyond the boundary.

More detailed discussions of PSO behaviors in literatures include Ozcan and Mohan
(1999), Carlisle and Dozier (2000, 2001), Beielstein, Parsopoulos, and Vrahatis (2002).

1.4, GLNPSO
Pongchairerks and Kachitvichyanukul (2005, 2009) proposed PSO with m@ple

social structures that were built by combining previously published structures. There
are two additional social structures which are local best (Ibest) and near neighbor best
m)est); this structure was presented in Veeramachaneni et al. (2003). Local best
receives the best fitness value from sub group: each particle can update the velocity
based on the best performance of neighbors irmle population that is related on indices
of particles. Near neighbor best obtains the maximum Fitness Distance Ratio (FDR)
among all other particles.

The GLNPSO algorithm was described below following the notation that was added
from previous algorithm.

Notation

[16

T ¢ Iteration index: r=1...T

/ Particle index, /=1...L

h . Dimension index, h=1...H

u Uniform random number in the interval [0,1]

w(r) : Inertia weight in the 7" iteration

o, (r) © Velocity of the I particle at the 2" dimension in the " iteration
Gy, (r) * Position of the [" particle at the 4" dimension in the 7" iteration
W, : Personal best position (pbest) of the {” particle at the 4" dimension
Vo, ' Global best position (gbest) at the #” dimension

W : Local best position (Ibest) of the " particle at the 4" dimension
Wi © Near neighbor best position (nbest) of the !” particle at the 4"

c, : Personal best position acceleration constant

<, . Global best position acceleration constant

rof . Local best position acceleration constant

ﬁgh Performance Computing Group 7 Asian Institute of Technology|

a . Near neighbor best position acceleration constant

/max : Maximum position value

ﬂ" © Minimum position value

®, Vector position of the I” particle, [0, 6, - 6]

Q Vector velocity of the I” particle, [o, ®, - o]

) Vector personal best position of the I particle, [y, w,, -]
B Vector global best position, [g/g] Weg g/g”]

1 * Vector local best position of the /" particle, [g/,’,‘ who o y/j})}
R, (01 § I" set of solution

Z(®,) * Fitness value of ®,

FDR : Fitness-distance-ratio

Algorithm GLNPSO

1. Initialize L particles as a swarm:

Set iteration r =1. Generate the /" particle with random position Gl(r) in the range

[6m".6™], velocity Q, =0 and personal best ‘¥, =@, for /=1...L.

2. Decode particles into solutions:
For I=1...L, decode O, (r) to a solution R, . (This step is only needed if the particles
are not directly representing the solutions).

3. @valuate the particles:
For 7=1...L, compute the performance measurement of R,, and set this as the

fitness value of ®,, represented by Z(©,).
4. Update pbest:
For 1=1...L, update ¥,=0,, if Z(8,)<Z('¥,).
Update gbest:
For 1=1...L , update ¥, ="V, if Z(¥,)<Z(¥,).

o

=3

Update lbest:
For /=1...1, among all pbest from K neighbors of the {” particle, set the personal

best which obtains the least fitness value to be ¥} .
7. Generate nbest:
For /=1...L,and h=1...H , set v, =y, that maximizing fitness-distance-ratio (FDR
) for 0=1...L. Where FDR is defined as
_Z2(®)-2(%,)

FDR which 7#o (1.8
|6Jb B Wahl
8. Update the velocity and the position of each /" particle:
w(#)=w(T) + = [w(1) (7)) 1.9

ﬁgh Performance Computing Group 8 Asian Institute of Technology|

@y, (T + 1) = w(z) @y, (f) + cu (Wm _9#; (7)) + Cx“(wgn - ‘9;.& (r))

+epu (l;/;;; -0, (r)) +eou (tp; -0, (r)) .10}
Oy (z+1) =6, (7) +a, (z+1) (1.1D
If 6, (7 +1)>6"", then
Oy (7 +1) = O™ (1.12)
@y (7+1)=0 (1.13)
If 6,,(z+1)<0™", then
O (z+1)=6"" 119
o, (z+1)=0 (1.15)
9. If the stopping criterion is met, i.e. 7 =T , stop. Otherwise, 7 =7 +1 and return to step
2.

GLNPSO has been sussfully applied to solve many NP-hard combinatorial
problems. For examples, job shop scheduling problems, vehicle routing problems,
multicomigrglity distribution network design problems, continuous (no-wait) flow shop
problems, multi-mode resource constrained project scheduling problems, etc.

ﬁgh Performance Computing Group 9 Asian Institute of Technology]

CHAPTER 2

STUCTURE OF GLNPSO LIBRARY

Before discussing each component in PSO library, we will demonstrate how GLNPSO
work by a simple example. The source code of the example can be found in ““GLNPSO
basic\Basic Models\PSO basic’. The user can run this example withg¥icrosoft Visual
C# 2005 or the free Microsoft Visual C # 2008 Express Editions which is free to
download at http://www.microsoft.com/express/download/.

2.1. First example

In this example, our objective is to minimize an objective
function f(¥) = ¥,[0.01x;% + 2 = sin(x;) | where ¥ = {xy, .., X, },X; € [—100,100] with Vi.
The graph of this function with n=1 is shown in Figure. 2.1. This is an extensive version
of sphere function which ghcludes some noise to make it more interesting. Here,
GLNPSO library is applied to find the optimal solution x* to minimizef (%). For the ease
of interpretation of the results and the dynamic of PSO algorithm, we start by solving
the problem with n=1.

/ U‘lﬂ o

50 100

T UUUIU U

Figure 2.1: Function with multiple local minimum

For this simple problem, only problem formulation needs to be defined and this part
is written in GEERIPSO.cs. The implementation of GLNPSO on this problem is presented
in Figure 2.2. In order to create a new class of PSO to solve a specific problem, three
important questions needs to be clarified:

e What is the dimension of a particle?
¢ How to evaluate the fitness of a particle?
¢ How can the swarm be initialized?

In case that n=1, the position of a particle is defined as a real number x which ranges
from -100 to 100 and the particle’s dimension is 1. The objective function f(¥) = f(x) is

ﬁgh Performance Computing Group 10 Asian Institute of Technology|

used to measure the fitness of each particle (GLNPSO is designed to minimize the
objective function, in case of maximization we just simply change the sign of the
objective function to convert it to minimization problem). A particle is considered to be
located at better position if its position results in a smaller objective value (in figure 2.2.
the objective evaluation method is defined so that it can@jso handle the more
generalized problem where n>1). The initial swarm is created by randomly generating
the position of each particle in the swarm, which means that each position will follow
the Uniform Distribution with the lower bound of -100 and upper bound of 100.

Class s

{

I

int nI ble dwmax, double dwmin,

g, d

public spPSO0O(int

le dcp, dou

base (nIter, nNB, dwmax, d
{
publ ride ilJl e ul jective (Pa

double obj = 0;
for (int 1 = 0; i < P.Dimension; i++)
obj += 0.001 * Math.Pow(P.Position[i], 2) + 2 *

.8in(P.Positicon[i])

al
re n obj; L
}
public override veoid InitSwarm()
i
for(int i=0; i<sSwarm.Member; 1++)
{
for [(int j = 0; j < sSwarm.pParticle[i].Dimension; J++)
{
sSwarm.pParticle[i] .Position[j] = -100+200*rand.NextDouble(};
sSwarm.pPar le[i] .V i]
sSwarm.pPar ~le[i] .E m.pParticle[i] .Position[j];
sSwarm.pParticle[i]. H
sSwarm.pParticle[i]. 00 ;
i
sSwarm.pParticle[i].ObjectiveP 1.7E308;_ "2 7
} and ve
sS5warm.posBest = 0;

Figure 2.2: Define a new PSO class for single variable example

Figure 2.3 shows the main class in which we define the PSO paramefgs and run the
PSO algorithm with these parameters. In this experiment, only the global best and
personal best is used fo gfjide the swarm like the traditional PSO algorithm. The
acceleraffgh constants for local best and neighbor best are set to 0, andfijerefore the
position of the local best and neighbor best do not influence the movement of particles in
the swarm. The search space is explored by a swarm of size 10 in 200 iterations and
three replications are performed. The final solutions and some statistics are reported in
“MyPSO.xls” at the same folder of the execution file CGLNPSO basic\PSO basic\PSO
basic\bin\Debug).

ﬁgh Performance Computing Group 11 Asian Institute of Technology]

a

class MainClass
{

public static wvoid Main(string[] args)
{
int noPar = 10;
int nolter = 200;
int noNB = 5;
mlble wMax = 0.9;
double wMin = 0.4;
double cF = 2:
double cG = 2;
double cL = 0;
double cN = 0;
string oFile = " xls";
int noRep =
ting time and finish time using DateTime datatype
start, finish;
sing TimeSpan da ype

Wiy tw
WriteLine

tw.

E noPar) ;
tw.WriteLine(nolter) ;
tw.Writeline noNB) ;
tw.WriteLine(wMax) ;
tw.Writeline (wMin) ;
tw.Writeline (cF);
tw.WriteLine(cG) ;
tw.Writeline (cL);
tw.WritelLine(cN) ;
tw.Writeline (le Name ", oFile);

tw.WriteLine ("
for(int i=0; i<noRep; 1it++)

{

Censcle.Writeline ("Replication {0O}", @+1):
tw.Writeline("Replication {0}

// get the time frc ck

start =

// main pro |

|'f myPSO = new (noPar, nolter, noWNB, wMax, wMin, cP, cG, cL, cNJﬂ
myPSO.Run(tw, true);

myPS0.DisplayResult (tw) ; eate PS b ec
// get the finishing time from CPU clock ind pa he PS
finish = 2 Now; DATAmerETs

elapsed = finish - start;

// display the elapsed time in hh:mm:ss 1i

tw.WritelLine("{

the comput

tional

time", elapsed.Duration());

tw.WritelLine("");

1
tw.Close();
]
1

Figure 2.3: Main class for single variable problem
In three replications, PSO needs less than 100 iterations to find the optimal solution.
The average fitness and best fitness of a replication can be found in the output file and
is presented in Figure 2.4 to show how fast PSO can converge to the optimal solution.

ﬁgh Performance Computing Group 12 Asian Institute of Technology|

798 2

698 1| 1.5
o 598 - - 1
2 408 il 4 05 §
i | £ ,
g 398 0 & ——Average Fitness
§ 298 . { 05 & ——BestFitness
< 198 7 -1

98 1 1.5

-2 4 2

0 50 100 150 200 250

Figure 2.4: PSO performance in single variable problem

To help the reader have a better understanding of the dynamics of PSO algorithm, an
animated version of this simple example is created (\GLNPSO basic\Basic
Models\PSO_Visual). The screen shot of this application is shown in Figure 2.5. The
user can choose the PSO parameters directly from the interface as well as select the
function to be optimized. The upper left chart is to plot the function and the final
solution found by PSO. The lower left chart shogffjthe average of objective values for all
the particles in the swarm at each iteration to check the convergence of the algorithm.
In this application, users can perform a simple animation in x-y axis to observe the
movement of the swarm during tpEl searching process. The red circle points indicate
current positions of particles. The personal best position of a gggrticle is represented by
an orange diamond point and finally, the green triangle point is the global best position
found by the swarm. There are two options for animation so that the user can either
choose to let the program automatically simulate all steps in PSO algorithm or run step
by step (forward or backward) to observe the movement behavior carefulmln the step
animation mode, the line connecting the position of a particle and its personal best
position as well as the global best position is drawn to illustrate the direction for the
movement. The user can exploit this feature to test the sensitivity of PSO parameters on
the movement of the swarm. The 3D version of this application is also available at

“\NGLNPSO basich\Basic Models\PSO_Visual - 3D” as shown in Figure 2.6.

ﬁgh Performance Computing Group 13 Asian Institute of Technology]

(= — -
| sl Farml - —)

Final Soluton Animaton

2

]

]

2
1)

4 -
-150 100 50 0 50 100 150
X R
Animation
| P Stap for Animation [~|
: 2 - 5 Animats_Step

Fpatics 5 |5 o9 2 000152 +2* Sa Ani_Speed (me/steg) [

wmin [N d o _m 00 [=] —

wma 09 en 0

G

% local 5 1

| 00-00:00.0030000 = J

o — — —

Figure 2.5: 2D Visual presentation of GLNPSO algorithm

a5l PSO 30 visual —— =

Fanal Sohution Animaton Animation Step 0

a.02

Hieabon 100 | & 2
Hoaices A 12 o 2
- e
RunPS0 r
wnax 039 e 0 5 P ainwie, Slee Soimeley |

Hlocal 5 = 00:00-00.0100000 E Ext I

Figure 2.6: 3D Visual presentation of GLNPSO algorithm

ﬁgh Performance Computing Group 14 Asian Institute of Technology|

2.2. GLNPSO components

In the remainder of this chapter, the structure of GLNPSO provided in ET-library is
discussed in detail. In Figure 2.7, the class view of GLNPSO is presented. Generally,
there are three important classes required for GLNPSO: Particle, Swarm and PSO.

Particle &) Swarm &l PSO &l spPSO 2
Class Class. Class. Class
=+ pso
= Fields = Fields = Fields =
v BestP ? AvgObj 4 g L = Methods
Dimension @ Dispersion # v Dl_splayResuIi
@ localBest @ MaxObj @ ‘@ InitSwarm
Neighbor @ Member & o ¥ Objective
¥ Objective @ MinObj o4 lter v spPsO
¢ ObjectiveP # posBest 47 NB
':f Position ¢ pParticle ¥ nDim m
@ PosMax @ Vellndex %7 nPar Class
¥ PosMin = Methods W rand
@ Velodity w DisplayBest v sSwarm = Methods
= Methods w EvalDispersion S wm‘ax @ Main
@ Particle ¥ EvalStatObj g¥ wmin S
v EvalVellndex = Methods
¥ Move % DisplayResult
¥ Swarm 47 Evaluate
@ UpdateBest JU InitSwarm User’s Model
—_— % Objective
‘@ PSO
@ Run
% SetDimension

Figure 2.7: Class view for GLNPSO in ET-library
2.2.1.Particle class
Particle is the basic class in ET-Lib which includes all the information related to a

particular particle. Here are the definitions of attributes of a particle:

Name Type Description
Position Array of m-dimension position of the particle
real number
Dimension Integer the dimension of particles’ positions
PosMin/PosMax | Array of the lower and upper bounds of position of at each

real number | dimension

Velocity Array of m-dimension velocity of the particle

real number
Objective Real the objective value or the fitness of the particle
BestP Array of m-dimension position of the particle which stores

real number | its personal best experience

ObjectiveP Real the objective value corresponding to BestP

ﬁgh Performance Computing Group 15 Asian Institute of Technology|

localBest Integer the index (or location) of local best member in the
swarm
Neighbor Array of m-dimension position which is identified by
Real g@oparing the relative position and objective and
position of the particle with other members in the
swarm
The constructor public Particle(int nDim) 18 used to create a new particle. The

parameter nDim indicates the Dimension of a particle.

2.2.2.Swarm class

A swarm is consisted of many particles flying in the search space to look for good

position. The swarm class includes all the required routines to govern the movement

behavior of its members (particles). The attributes and methods of this class are listed

below:
Attributes

Name Type Deseription

Member Integer number of particles in the swarm (population size)

pParticle Array of a set of particles in the swarm

Particle

MinObj/MaxObj | Real the minimal and maximal objective value found by
the swarm through searching process

AvegObj Real the average objective values across all particles in
the swarm

postBest Integer the index (or location) of global best member in the
swarm (pParticle[pnstHest] refers to the particle
which found the position resulting in the best
objective value)

Vellndex Real the velocity index to measure how fast the swarm is
moving

Dispersion Real the Dispersion index to measure the dispersion of
particles in the swarm

ﬁgh Performance Computing Group 16

Asian Institute of Technology]

Methods

public Swarm{int nPar, int nDim)

create a new swarm by determine the number
of particles in the swarm (npar)and the
Dimensiomf each particle)

public void DisplayBest ()

show the information of the global best particle
on the screen

public void Move (double
double cp, _;:'-lr-:- cg, double cl,
double[,] rl,

double([,] r3,

W

double cn,
double([,] r2,
double[,] rd)

calculate velocities of particles and move them
to new positions. The parameters passed to this
method include the inertia weight, acceleration

constants and random numbers.

public void UpdateBest (int update information related to personal best,

nbSize) global best, local best and neighbor best after
each flying attempt.

public void EvalStatObj () update statistics related to the objective values
of particles in the swarm.

public void EvalDispersion() evaluate Dispersion index

public void EvalVellndex() evaluate Velocity index

2.2.3.PSO class

All the PSO parameters and routines are stored in this class. Some methods in this

class are problem-oriented and can be overridden when formulating new optimization

problems. In general, it has following attributes and methods:

Attributes:

Name Type Description

Sp/eg/ai/ ey Real personal/global/local/neighbor acceleration constant

[ter Integer number of iterations

NB Integer number of neighbor

nDim Integer dimension of particles in a swarm

nPar Integer Number of particles

Rand random random object used to generate random number

stream

sSwarm Swarm the swarm used in the PSO algorithm

wmax /wmin Real the maximal/minimal inertia weight (normally the
inertia weight in our the default GLNPSO is
linearly reduced at each iteration from wmax to
wmin)

ﬁgh Performance Computing Group 17

Asian Institute of Technology]

Methods

public virtual void write the results of GLNPSO to a predefined
DisplayResult (TP

ot

output file -

public virtual double objective function
jective(tic r)

i Evaluate() Objective (Partic o) is called to evaluate
the objective value of each particle in the
sSwarm

public virtual void InitSwarm() | initialize sSwarm with random particles
public PSO(int nlter, int nNB, create a new PSO object by passing all PSO
double dwmax, double dwmin, parameters

double dcp, double dcg, double

dcl, do le dcn)

public void Run(TextWriter t, perform GLNPSO algorithm

bool debug)

public void SetDimension(int set swarm size and particle’s dimension

par, int dim)

52

The GLNPSO algorithm is implemented in Run gﬁthod. The basic framework of this
algorithm is similar to that of the algorithm introduced in section 1.4. The algorithm
first initialize new swarm with user’s predefined parameters such as number of particle,
and dimension of a particle. After a random swarm is created, their fitness (objective
value) is evaluated and the learning terms are updated. Then, the swarm starts to
evolve until the stopping condition is met. The dispersion index and statistics collections
routines can be called optionally. The C# implementation of this algorithm is presented
in Figure 2.8.

When designing this library, our objective is to minimize the users’ effort to rewrite
the PSO algorithm. To solve an optimization problem with GLNPSO, the users only
need to focus on objective function evaluation procedure (encoding/decoding approach) to
make the program faster and more effective in finding high quality solutions. For easy
problem such as the first example, a simple class defined in Figure 2.2 is all the user
needs to create to use GLNPSO in ET-library. For more complicated problems, some
modifications in GLNPSO routines such as movement strategies, local search, and re-
initialization may be added as required. In the next chapter, we introduce some
practical applications of GLNPSO and also show the flexibility of the design.

ﬁgh Performance Computing Group 18 Asian Institute of Technology]

public void Run(TextWriter t, bool debug)

{

/ U maln 1
double w = wmax;
double decr = (wmax — wmin) / Iter;
sSwarm = new Swarm(nPar, nDim) ;
InitSwarm();
Evaluate();
sSwarm.UpdateBest (NB) ;
i1f (debug)
{
sSwarm.EvalDispersion();
sSwarm.EvalStatObj () ;
1
for (int 1 = 1; 1 < Iter; i++)

{
Generate random number
sSwarm.Move (w, cp, cg, cl, cn,
Evaluate();
sSwarm.UpdateBest (NB) ;
if (debug)

sSwarm.EvalDispersion() ;
3Swarm.EvalStatObij () ;
}

w —-= decr;

}

** the eode In ## ... #%# contain the subroutine which ean be found in the original code

Figure 2.8: C# implementation of GLNPSO algorithm

ﬁgh Performance Computing Group 19 Asian Institute of Technology]

CHAPTER 3

GLNPSO’s APPLICATIONS

a
8.1.Traveling Salesman Problem (TSP)

A The Traveling Salesman Problem (TSP) is a traditional problem which is normally
used as genchmark for many optimization methods. In TSP, a list of locations is given
and the task is to find the tour that minimizes the total distance through all locations
provided that each location can only be visited once.

For instance, the salesman begins his tour at location 0 and need to visit N location
before coming back to the starting location. Our objective is to find the shortest path
T =g L2, ... Iy} for this task given that no location will be revisited (except for location
0). An ex@)le of a TSP’s solution is shown in Figure 3.1. With a set of predetermined
locationsgggN+1 by N+1 distance matrix D is defined and the distance, time, or the cost
to travel from location i to location j is defined by D[i,j]. The mathematical model of this
problem can be simply:

Minimize D[0,l;] + 8= D[lg, lxs1] + D[ly, 0] ,with U is the location index — (3.1)

Source
Location

Figure 3.1: TSP solution 7 = {i3,15, ..., ls}

It is well knowgggthat TSP is in the class of NP-complete problems that the
computational time to find the optimal solution increase exponentially with the number
of locations. For that reason, a lot of heuristic approaches have been proposed for this
problem. In this section, the TSP is solved by using the GLNPSO algorithm. Different
from the example in chapter 2, the particle’s positions of TSP cannot be directly used to
calculate the objective value (fotal distance). Instead, particles must be decoded to get
TSP’ solutions. The encoding/decoding scheme is presented in Figure 3.2.

ﬁgh Performance Computing Group 20 Asian Institute of Technology]

Location 1 2 3 4 5
Particle's position 0.123 0.234 0.04 0.523 0.421
Traveling route 7 3 1 2 5 4

0.04 | 0.123 | 0.234 | 0.421 | 0.523

DI04+) Dby lisa] + Dlls, 0]
Evaluate Objective value k=1

= D[0,3] + D[3,1] + D[1,2] + D[2,5] + D[5.4] + D[4.0]

Figure 3.2 Encoding/Decoding approach for TSP with N=5
In figure 3.2, the position of a particle is an array of real number randomly
distributed from 0 to 1. Each position in the m-dimension position is used to indicate the
priority of a location. The locations with smaller position values will be visited before
those with larger position values. In the decoding method, the traveling is determined
by sorting the particle’s position in the ascending order. When the route m has been
constructed, the total distance of the tour is calculated.

% Forml - -

| i=

Final Solution

B Tours Cidnc 5321688275413 Animation

Animation Step 1 Best Tour's Distanee B7.75

®© -3 © 0c L] x
P50 parmeters Aramaton
RunPS0O
Hiemton 200 £ w 2 Step for Anmation =
tpotdes 50 |5 2 i b [neae_stop
=0 00:00:00,8450000 Ani_Speed (ms/step) -
w0 a0 100 i) (2]
W 0.3 en 0 — Ext
#mnemal
#od 5 E

Figure 3.3 TSP optimizer with GLNPSO library

ﬁgh Performance Computing Group 21 Asian Institute of Technology|

At each iteration, the fiftness (objective value) of each particle in the swarm is
evaluated by this decoding procedure. The user can find the source code of the
application in Figure 3.3 at “\GLNPSO basic\Applications\PSO_Visual_TSP\". The
coordinate of each location is in the file "\GLNPSO
basic\Applications\PSO_Visual _TSP\PSO basic_visual_TSP\bin“\DebugLocations.txt”
and the format of this file is:

Number of locations
For each location: x-coordinate, v-coordinate

a
3.2.Job Shop Scheduling (JSP)

The job shop scheduling problem (JSPBS a combinatorial optimization problem in
which a set of jobs need to be scheduled on a set of machines in order to optimize a
certain criterion followed by the constraints that each job has the precedence and
deterministic time-sggh which are known in advance. Each sequencing job that consists
of n operations will be processed on a setim machines: hence, there are a total of
activities (operations) involved in such a job shop schedulingggoblem. In Table 3.1, an
example of JSP with 4 jobs and 3 machines are given and a feasible solution of this
problem is illustrated in Figure 3.4.

Table 3.1 The 4x3 example of JSP

Job| Machine sequence| Processing Time

1] M1 | M2 | M3 3 2 8
21 M2 | M| M3 5 3 7
I M3 | M| M2 - 1 5
41 M1 | M3 | M2 9 7 1

V| R T

M2

M3

[40] Figure 3.4: Feasible solution for a job shop scheduling problem

Small size instan@gj of the JSP can be solved within reasonable computational time
by exact algorithms. However, when the size of problem is increased, the computational
[@me of the exact approaches grow exponentially. Accordingly, many researchers develop
heuristic techniques [achieve near optimal solution instead. Nevertheless, the
heuristic approaches are problem specific and they might not be applicable to all
situations: thus, meta-heuristics are investigated to improve the quality of the solution

as well as increase the computational speed.

ﬁgh Performance Computing Group 22 Asian Institute of Technology]

3.2.1. JSP's model

In this section, we will create a model of this problem with GLNPSO to minimize the
makespan Chex (maximum completion time of all operations). Following is the

mathematical model of JSP:

Notations in the JSP

Indices-
i : The j” job in the problem, j= {1,‘,,,}1}
k : The " machine in the problem, k = {lm}

IPision variable:

%0 : The start time of job j on machinek .

v, { 1 ifjob j is scheduled before job j* on machinek .

0 Otherwise.
Parameters:
m ! The number of machines.
) ‘ The number of jobs.

P,s - The process time of job j on machinek .
@ * The ready time of job j .
d. : The due date of job j .

M An arbitrary large number.
Objectives:

The objective functions are frequently to minimize any of the performance measures

as the following. Some commonly used objectives in the JSP include the followings:

e Minimize: max {x}.\k +D,4 }

Subject to- (6)

Precedence constraints x,, + p,, < x N kK (3.2)

Conflict constraints X;p+ Py S Xpp + M(l - yj.j‘.k) NI (3.3)
Xppt Ppy < X +My, 4 V. J'k (3.4)

Readiness constraints g zr Y.k (3.5)

Nonnegative constraints x,, > 0 Vi.k (3.6)
Vi binary vy, j .k 3.7

3.2.2. Encoding/Decoding

It is obvious that the solutions for JSP cannot be directly represented as the m-
dimension position as introduced in chapter 2. For that reason, we will use
encoding/decoding method so as to the solutions of this problem can be expressed as
particles’ positions which are evolved through PSO algorithm. Then, the position is
decoded to get the feasible solution to evaluate the objective value. In this example, we

ﬁgh Performance Computing Group 23

Asian Institute of Technology|

use an array of real numbers to represent the priority of each operation that needs to
scheduled. The schematic illustration of this encoding/decoding procedure for JSP in
table 3.1 is shown in Figure 3.5.

Dimension
1 2 3 4 5 6 7 8 9 10 1 12

Particle no. 7 0.23 0.15 [0.34] 0.19] 0.71 | 0.58 [0.97| 0.46]| 0.29 | 0.81] 0.65 | 0.33]

g

Decodedparticleno,f| 1 | 1 | 2 | 1 3 3 | 2 3|2|
!

[0m |01 [0m |0133 [0.11 [0313 |0 023 |03 |01 |042 [0332 |023 |
Job| 1 1 2 - 3 4 3 2 4 3 2
Operation| 1 2 1 3 1 2 2 2 3 3 3
Machine| 1 2 2 3 1 3 3 1 1 2 2 3

M

M2

M3

I ! I 1

Fig@f)3.5: Encoding/Decoding procedure
with the operation-based representation of a particle

First, each solution is enr:ora‘] in a particle’s position as an array of real numbers
which are randomly generated in range [0, 1]. The dimension of each particle equals to
the nurrm of jobs multiplied by the number of machines. In this example as shown in
Table 3.1, there are 4 jobs and 3 machines: thus, the dimension of particle for this
example equals to 12.

At each step in PSO algorithm, particles are decoded to get feasible schedules. The m-
repetitigh of job numbers permutation which was first introduced by Tasgetiren et al.
(2005) is applied along with sorting list rule. Firstly, the continuous numbers ifyide
particle will be sort then the permutation of 3-repetition of 4 jobs will be applied. After
that, the operation-based approach by Cheng et al (1996) is used to represent a
schedule. The advantage of this approach is that any permutation of this representation
always leads to a feasible schedule. Nevertheless, it is possible that some of different
representations could possibly generate the same schedule. The particle as shown

reviously is used, corresponding to the small size of JSP which is already mentioned.
b

igh Performance Computing Group 24 Asian Institute of Technology]

The decoded particle is then transferred to a schedule by taking the first operation
from the list, the second and so on. During the schedule generation, each operation is
allocated to a required machine in the best available processing time without delaying
other scheduled operation. The procedure yields an active schedule. For instance Oz
(Job 1, Operation 2, Machine 2) is allocated to the machine 2 at time 3. It cannot be
scheduled before time 3 because the first operation of Job 1 is being processed.

The source code for JSP with GLNPSO can be found in the manual folder, which
mainly based on PSO algorithm proposed by Pratchayaborirak (2007). The main
different between this structure of this model and that of the example in chapter 2 is the
introduction of some specific classes to store data of JSP and perform decoding
procedure and evaluate objective value (except makespan, several other objective values
can be easily calculated after particles are decoded). The general view of this model is

given in Figure 3.6.

Get JSP's / \

data

—

JSP class
e/

ISP~ GLNPSO

data

Decoding | Position |

%

class Objective value

Dimension

Y

./

Figure 3.6: GLNPSO model for JSP

3.2.3. Reinitialize strategy

During the iterations, the particles are often trapped in a deep local minir@m which
can cause trivial movement of the whole swarm. As a result, the reinitialize strategy is
applied fo diversify the particles over the search space once again. Consequently, the
system could escape from that local trap. This approach can be applied to enhance PSO
as shown below.

Suppose that fje algorithm met the re-initialize criteria which has been set in
advance then the re-initialize algorithm will start when the certain iteration number is
reached and the procedure will be repeated again every fixed number of iteration. To
accomplish the re-initialize strategy, a pre-defined number of particles are randomly
selected for re-initialization. This number is defined by the reinitialized ratio multiply
by the number of particles. In addition, the gbest particle is excluded from the selection.
The personal memories of each selected particle are reinitialized by randomly
regenerating its position, resetting its velocity to zero, and resetting pbest to null.

ﬁgh Performance Computing Group 25 Asian Institute of Technology]

3.2.4. Local search strategy

In general, a local search may apply to a certain group of particles in the swarm to
enhance the exploitation of search space. The local search typically attempts to improve
quality of the solution by searching the better solutions B‘ound its neighbors. In this
study, the neighborhood search adopts the critical block (CB) neighborhood of Yamada
and Nakano (1995). Concept of the search method is to move an operation inside a
critical block to the beginning or the end of that critical block. Figure 3.7 presents the
critical path and the set of neighborhood move according to the CB neighborhood.

Figure 3.7: The CB Neig#jorhood

The local search procedure used in the propose algorithm can be described as the
following.

Suppose the algorithm meet the local search criteria which alredfly set in advance
then the local search algorithm will be activated by the reaching of a certain iteration
number and the local search procedure will repeat every fixed number of iteration.

To perform the local search, firstly, a critical path — the path with the longest length
from the first operation on any machine fo the last operation on any machiffj- is
identified. A single critical path is arbitrarily selected if there is more than one critical
path. Any operation on the critical path is called a critical operation. The critical path is
naturally decomposed into critical blocks. The block is a maximal subsequence of critical
operations that are processed on the same machine. Therefore, two consecutive blocks
require different machines to process those operations.

A moving set of neighborhood is defined inside the block which contains at least thr{g)
operations, any operation between the first and last operation in a critical block is
moved to the beginning or the end of that critical block. Furthermore, a block which
contains two operations, two operations will be ghply swapped.

For each move according to the defined set, if the fitnesggjalue is improved then the
new solution and the new fitness value are updated. The local search procedure ends
when all moves are completed.

The reinitialize and local search strategy are added to the originalgfgorithm in order
to improve the quality of final solutions by making some attempts to escape from the

local optirnal, LocalSearchParticle arm.pParticle[]], ref rand) and

RelnitSwarm()are new methods in PSO class. At the beginning of an iteration, if the
reinitialize or local search condition are met, the swarm will respectively reinitialize or
perform local search on its members instead of performing movement. Following is the
C# implementation of GLNPSO for JSP.

ﬁgh Performance Computing Group 26 Asian Institute of Technology]

public void Run(TextWriter t, bool debug)

{
//PSO main iterati
double w = wmax;
double decr = (wmax - wmin) / Iter;
sSwarm = new S {nPar, nDim);
InitSwarm() ;
Evaluate() ;
sSwarm.UpdateBest (NB) ;
1f (debug)
{
sSwarm.EvalDispersion();
sSwarm.EvalStatObj () ;
1
for (int i = 1; 1 < Iter; i++)
{
bool reinit locals = false; 90 |
if (({i - startLS}) % LSiterval == 0} && (i >= startls))
{
for (int j=0; j<sSwarm.Member; j++)
LocalSearchP icle(sSwarm.pParticle[j], ref rand);
reinit locals = true;
1
if ({(1i - startReinit) % ReInitIterval == 0) && (i >= startReinit))
{
ReInitSwarm();
reinit locals = true;
1
if ('reinit locals) |
Generate random number ul, u2, u3, ud ## and 1 1
sSwarm.Move (w, cp, cg, <l, cn, ul, w2, u3i, ud);
}
Evaluate();
sSwarm.UpdateBest (NB) ;
if {debug)
{
sSwarm.EvalDispersion() ;
sSwarm.EvalStatObij();
1
}
w —-= decr;
1
]

** the code In ## ... ## contain the subroutine which can be found in the original code

Figure 3.8: C# implementation of GLNPSO algorithm for JSP

é2.5. Migration strategy

After a swarm met the stopping criteria, some particles will migrate to the next
swarm, with random number, equal to the number of migrating particles whiclggplready
set in advance as a percentage of migration. The migration strategy can also diversify
the particles over the search space again. Consequently, the solution may be improved
by exploring new area in the search space and exploiting the good flying experience from
migrated particles.

ﬁgh Performance Computing Group 27 Asian Institute of Technology]

Pratchayaborirak (2007) used this concept in his two-stage PSO algorithm. The first

stage of the algorithm consists of k swarms which are serially executed using the same
objective function. When a certain swarm is terminated, a percentage of particles will be
randomly selected to migrate to the next swarm to join with the newly generated
particles. This can help boost the convergence of solution by using information from the
previous swarm. The first stage ends when the fourth swarm is terminated.

In the second stage, equal numbers of particles are randomly selected from the four
previous swarms to form a single swarm and the PSO algorithm is repeated until the
stopping condition is met. The best result yields at the end of the second stage will be
used as the best answer found. The two-stage PSO algorithm is performed in the Main
class as shown in Figure 3.9.

public static void Main(string[] args)

{

Read input from file

JD € ## calculate dimension of particles based on JSP data ##

int noPar = 10;
int nolter = 200;
int noNB = 5;

W ble wMax = 0.9;
double wMin 0.4;
double cP = 2;

double cG ;

’

|
oo NN

N = H
string oFile = "MyPSO.xls";

louble MigrateProp = 0.2;
ool multiSwarm = true; \

int noSwarm = 5;

int startReinit = 150;
int RelnitlIterval = 100;
int startlS = 210;

int LSinterval = 100;

int noRep =
// starting time and finish time using DateTime datatype
start, finish;
sed ime using TimeSpan datatype
Iime 1 elapsed;
opening output file ##
for(int i=0; i<noRep; it+)

{

le.Writeline ("Replicati

Il

tw.Writeline("Replication

ma i)XOgram ...

[1] subSwarm=new
#region Activate sub-swarms
if (multiSwarm)

ﬁgh Performance Computing Group 28 Asian Institute of Technology]

for (int s = 0; s < noSwarm - 1; s++)
{
; Writ s);
subSwarm[s] noNB, wMin, cP, cG, cL,

Dime JD, ReInitIterval);

warm(s -

1t (s != 0)

subSwarm[s] . Rur

subSwarm[s] .sSwarm.pF

sole.WritelLine("Start final swarm");:
globalSwarm = new sy (noPar, nolter, wMin, cP, cG, cL,
cN JD, ReInitlIterval)y
if (multiSwarm)
{
for (int s = 0; = < noSwarm - 1; s++)
globalSwarm.MigrateBest (subSwarm[s] .sSwarm, globalSwarm 1
/ ((double)noSwarm - 1))
1
globalSwarm.Run(tw, true}:
globalSwarm.DisplayResult (tw); |_

display results
}
tw.Close();

}

** the eode In ## ... #%# contain the subroutine which ean be found in the original code
Figure 3.9: C# implementation of two-stage PSO algorithm

In I"igure 3.9, subSwarm[s] .Migrate (s

warm[s = 1] .sSwarm,
subSwarm(s].sSwarm, MigrateProp) is a new method in Swarm class to randomly
migrate a proportion of particles from one swarm to another. On the other hand,
globalSwarm.MigrateBest (subSwarm[s] .sSwarm, globalSwarm.sSwarm, 1 /
((double)noSwarm - 1)) is performed to equally collect top members in the sub-
swarms into a global swarm. The details of these methods are presented in source code.
The coordinate of each location is in the file “\GLNPSO basic\PSO JSP\PSO
m\bin\Debug\JSP.txt” and the format of this file is:
Nul@r of jobs, number of machines
For each job:
For each operation: machine 1D, processing time

ﬁgh Performance Computing Group 29 Asian Institute of Technology]

CHAPTER 4

MULTI-OBJECTIVE OPTIMIZATION WITH PSO

Previous chapters have shown how GLNPSO can be used to solve optimization
problems with single objective. However, many real world applications required
optimization models to handle more than one objective function. As a result, multi-
objective optimization (MO) becomes increasingly attractive to both practitioners and
researchers. So far, there have been a large number of studies focusing on methodologies
to deals simultaneously with more than one objective function. The mathematical model
for a MO problem is given as follow:

minimize f@® =@ L@, . @] .1
subject to:

g@<0i=12,..m (4.2)

(@) =0i=12..1 (4.3)

where ¥ is the vector of decision variables, f;(¥) is a function of X¥ . K is the number of
objective function to be minimzed, g;(X) and h;(¥) are the constraint functions of the
problem.

zhl.Review of methodologies for multi-objective optimization

One of the most infuitive methods to solve multi-objective problem is to combine the
objectives into a single aggregatl objective function. In this method, each objective
function will be assigned a weight based on the preference of the decision makers and all
of these weighted fuifgfions are linearly combined. The only remaining task is to use any
available optimizer to find the solution for the problem with this single aggR@eated
objective function. However, this approach has two major drawbacks. Firstly, a single
solution is obtained based on a set of pre-defined, subjective weights on the objective
functions. Thus the requirement of prior preference of the decision makers may not lead
to a satisfactory result (another approach based on prior preference is goal pmgrnnming
which normally solve MO problem as a series of linear programs). Secondly, the decision
maker’s knowledge about the range of each objective value may be limited. As a result,
even with a preference in mind, the single solution obtained provides no possibility for
tradeoffs of decisions. In order to be more objective, the approach based on a single
aggregative objective function needs to be run multiple times to see the effect of the
weights on the solfifions obtained. Hence it is more preferable to provide means for the
decision maker to find the tradeoff by identifying the non-dominated solutions or Pareto
front, which usually consumes a relatively large amount of computational time. For that
reason, m@&gy methods are developed to search for the Pareto front. In this case, multi-
objective Evolutionary Algorithm (EA) is the most commonly selected solution

technique.

One of the earlier attempts tqfggplve multi-objective optimization problems using

Evolutionary Algorithm (MOEA) is Non-dominated Sorting Genetic Algorithm or NSGA
(Srinivas and Deb, 1995). This method was commonly criticized for its high

ﬁgh Performance Computing Group 30 Asian Institute of Technology]

computational complexity which made it inefficient with a large population size.
Another problem with this method is that its effectiveness depends mostly on the pre-
defined sharing param@gjr. To address the drawbacks of the original NSGA, the new
NSGA-II igpgroposed (Deb et al., 2002) by adopting a new non-dominated sorting
procedure, an elitism structure, and a measur@fpnt of crowdedness. In their paper,
NSGA-II had been demonstrated to outperform other MOEAs such as Pareto-archived
evolutionary strategy (PAES) and strength- Pareto EA (SPEA).

4.2 .Pareto Optimality

For the formulation 4.1-4.3, given two decision vectors¥,y € R?, the vector ¥ is
considered to dominate vector y (denote ¥ < 3), if f;(®) < fi(y)) for Vi = 1,2, ..., K and 3j =
12, .. K|f;(®) < ;3.

As shown Figure 4.1, for the cases that neither ¥ < y nor y <X , Xand ¥ are called
non-dominated solutions or “trade-off” solutions. A non-doginated front IV is defined as
a set of non-dominated solutions if Vx € N, 3y € M|y < ¥. A Pareto Optimal front P is a
non-dominated front which includes all solution ¥ non-dominated by any other y € F,y #

% where F € R? is the feasible region.

£
L) |F--t----------- -—--§
e 8
i8] tesmesrsenns 2 I
@
Non- :. i
dominated front| 1 fi

LG AG)

Figure 4.1: ¥ < ¥ for the case with two objective functions

4.3.Multi-objective optimization with PS(EEB

As discussed earlier, onefgf the approaches for solving problem@gvith multiple
conflicting objective functions is to search for Pareto optimal front, i.e., fo search for the
set of non-dominated solutions. This Pareto optimal front represents the best solution
for the problems with multiple conflicting objective functions. It is quite a different
proposition from searching for a single best point and it is necessary to modify the
original framework of PSO. The key components to be modified include the following:

s Storage of elite group or non-dominated solutions found so far

e Selection of a reference particles (or leaders) to guide the swarm toward
better positions

e Movement strategy, how to use the reference particles as search guidance

ﬁgh Performance Computing Group 31 Asian Institute of Technology|

In the multi-objecggp optimization problems, the flying experience of the swarm
needs to be stored as a set of non-dominated solutions instead of a single solution. In
this case, the Elitist structure as mentioned in NSGA-II is adopted. After each update of
particle position, the objective functions of each particlgfgye evaluated and they must all
be processed by a non-dominated sorting procedure. This sorting procedure identifies
the group of particles in the swarm which are nn'dominated by other particles and put
all of these particles into an archive for the Elite group. Again, the Elite group is
screened to eliminate inferior solutions, i.e., solutionnthat were dominated by those in
the Elite group. As a result, the Elite group in the archive is the best non-dominated
solutions found so far in the searching process of the swarm.

20

When the Elite group is formed, one of the biggest challenges for most EAs ghow to
select the candidates among the Elite group to help guide the evolution of the
population. The most common criterion is that the leader (or guidance) needs to lead the
population to the less crowded areas to obtain a Iffifer spread of the final front. A
successful implementation of this idea is given in NSGA-Il with the introductiqgy of
crowding distance (CD) as a measure of the spread of the non-dominated front. This
approach estimates the density of solutions surrounding a specific solution by
calculating the average distance of two points on either sff} of this point along each of
the objective (see Deb et al., 2002 for more details). The advantage oahis approach is
that it does not require a pre-determined sharing parameter in NSGA. Coello el al., 2002
proposed a PSO algorithm with a geographically-based system to locate crowded
regions. They divided the objective space into a number of hypercubes and then each
member in the Elite archive is assigned to one of these hypercubes. After the archive is
classified, a hypercube with smallest density is considered and one of its members is
randomly selected to be used as the global guidance.

Finally, the movement of particles is very critical to improve the quality of the
Paretogfpnt. Most of the proposed Multi-objective PSO (MOPSO) algorithms use only a
single global guidance fjom the Elife group similar to the traditional PSO movement
strategy. However, the existence of multiple candidates in the archive may open a large
number of choices for movements. In section 4.4, several potential movement strategies
are discussed as taﬂions to fully utilize the Elite archive as guidance for the search.

57

In Figure 4.2, a PSO framework for multi-objective optimization problems is
presented. This framework takes into account all the features that are mentioned above
and the implementation of this framework is described in algorgm Al. The
Non_dominated_Sort (§) uses the sorting algorithm pr@posed in NSGA-II to identify non-
dominated solutions. After each particle is evaluaigf} the set of non-dominated solutions
will be updated and stored in the Elite group. The number of solutions in the Elite group
is usually limited to reduce the computational time for sorting and updating procedures.
When the number of non-dominated solutions exceeds the limit, the particles located in
the crowded areas will be selectively removed, so the Elite group can still result in a
good Pareto front. The two procedures Select_Guidance (€) and Update_velocity(g) are
movement strategy dependent and will be separately discussed in the next section.

ﬁgh Performance Computing Group 32 Asian Institute of Technology]

(Start

3

Initialize parficles withrandom
position and zero velocity

L

Evaluate Obj

ectlive Values

A

4 ™\
: N Determine global

Flite g_lf_l_mf non-dominatedfront

:(Update guidance]

Update velocity and position I

Figure. 4.2: Framework for MOPSO

Al. Algorithm for MOPSO
i

il.

111,

v,

Vi

VIL

Initialize the swarm § and set the velocities of all particle to zero
For each particlei € § with position ©;

Evaluate objective function f,(0,),Vk = 1,2, ..., K

§" « Non_dominated_Sort (§) -S§" is the set of non-dominated particles in §
@‘m archive £ « Non_dominated_Sort (€ US™)

If the stopping criterion is satisfied, end procedure’ otherwise, go to step vi
Update_social _learning _terms

Global guidance g « Select_Guidance (£)

viii. Update_velocity(g) using equation (1. 10)
IX. Update_position by equation (1.11)
X. Return to step i1
ﬁgh Performance Computing Group 33 Asian Institute of Technology]

In this framework, the multiple social learning terms in GLNPSO are used to update
3 new velocity. As a result. the new velocity is influenced by four social terms:
personal best, global best (global guidance), local best and near neighbor best. Thegglobal
guidance is the most important term in this framework and it depends mainly on the
movement strategy adopted by the swarm: therefore it will be discussed separately. The
modifications for other terms are adjusted in this framework to make it work for MO
problems.

In MO problems, thereggge two situations when the personal best need to be
updated. First, when the new position of a particle dominates its personal best
experience, it certainly becomes the personal best. However, if the new position and its
personal best are non-dominated, the issue to face is whether to update to the new value
or not. Keeping the current personal best position helps the particle explore the local
region deeper, which can lead to higher quality solutions. On the other hand, it is also
desirable to move to new position to spread out the non-dominated front. Because each
decision has its own advantages, the algorithm will randomly pick one of them to

become the personal best.

For the near neighbor best, a fitness distance ratio (FDR) which was originally
developed to find the neighbor best are modified to handle multiple objective functions
as shown in equation (4.4).

Ti=1 %l
FDRyo =——7—
M0 1614 — Yol

[£e(0) — fe(Wo)]
e Y =]

In equation (4.4), £ () is the A% objective function and Gid,d are the values at

foralld=1..D,i=1..L
(4.9

dimension d of particle 7 and its neighbor o and) and L are the dimension of a particle
and the number of particles in the swarm respectively (refer to Peram et al., (2003) and
Veeramachaneni et al., (2003) for more details about FDR with single objective). In the
implementation, a very small value £ should be included in the dominators to handle the
cases that a dominator might become zero. The amount of improvement that can be
made when a neighbor /4 is chosen is represented by %A,. By using equation (4.4), the

near neighbor best should be the one that is expected to guide a particle to a position

In order to prevent the particle from being too sensitive to every change of the

that can achieve the most improvement across all objective functions.

swarm, the local best is only updated when the new local particles dominated the
current best one.

4.4 Movement strategies

As mentioned in the ggpvious sections, MO problems require the swarm to store its
searching experience as a set of non-dominated solutions instead of a single best one.
Then, a very key research question is how can a particle effectively use the knowledge of
this Elite group to guide it to a better position? Because the target is to identify tlgffjear
optimal Pareto front, the definition of a better position is more complex than that for the

ﬁgh Performance Computing Group 34 Asian Institute of Technology|

E):es of single objective optimization problems. In literature, the three common criteria
to measure the quality of a non-dominated front Nare:

e The average distance to the Pareto optimal front P
e The distribution of non-dominated solutions in N

e The spread of N in the multi-objective space

Similar to any optimization problem, the gap between the solutions found and the
true optimal solutions should be as small as possible. Moreover, the solutions should
provide a good outline of the Pareto front so that the decision makers can make more
informed decisions. Based on the above criteria, six movement strategies are proposed.
These strategies are especially designed to obtain high quality Pareto front. The
procedures to perform these movements will be included in step vi7r and viir of the
MOPSO framework.

4.4.1. Msl: Pick a global guidance located in the least crowded areas

This strategy aims at diversifying particles in the swarm so that they can put gpre
effort in exploring the less crowded areas, thereby increasing the spread of the non-
dominated front. For that reason, a particle in the Elite group with fewer particles
surrounding it is preferred when selecting the global guidance.

The crowded distance CD estimates the density of solutions located around a specific
solution by calculating the average distance of two poigs on either side of this point
along each of the objectives. A procedure to calculate the crowding distance (CD) for
each member in the Elite group is implemented as given in NSGA II. To make this
paper self-contained, the algorithm to calculate CDs is given in algorithm CD below.

Algorithm CD: Calculate_crowding_distance (€) (from Deb et al., 2002)

L =&
For each i, set £[i]. distance = 0
For each objective m
& = sort(E,m)
E[1].distance = £[L].distance = o
Fori=1to(L—-1)
Elil. distance = E[i].distance + (E[i + 1].m — E[i — 1].m)/(;" — fmin)

1

garticles with higher CDs are located in less crowded area and they are considered
to be good candidates for global guidance in this movement strategy. y, 4 and 0;4 are
dimension d of the global guidance g and particle 7 in the swarm res&ctively.

23

The movement direction of Msl is shown in Figure 4.3 and the pseudo-code for this
movement sgptegy is presented in algorithm A2. In step 1 of algorithm A2, a procedure
to calculate the crowding distance (CD) for each member in the Elite group £ is called.

ﬁgh Performance Computing Group 35 Asian Institute of Technology]

fz

More attractive

Elite group f
1

Figure 4.3: Movement strategy 1 in bi-objective space
A2. Algorithm for Msl

Calculate_crowding_distance (&)

ii. Sort € by decreasing order of crowding distance (CD) values
1. Randomly select a particle g from top t% of &€

iv. Update global term in particle i movement by

cgtt (Wgd — Oia) for all dimension d with u ~ U(0.1)

4.4.2. Ms2: Create the perturbation with Differential Evolution concept

The fact that more than one global non-dominated solution exist has raised tgz)
questions of whether it is better to combine the knowledge of tw@r more members in
the Elite group to guide a particle. In this strategy, the concept of Differential Evolution
(DE). proposed by Price and Storn (1995) for continuous function optimiz@fjon. is
adopted to utilize the flying experience of two individual in the Elite group. The key idea
behind DE is to use v@for differences for perturbing the vector population. In the
original DE algorithm, a new parameter vector is generated by adding t}mveighted
difference between two population members to a third member (all of these vectors are
randomly selected from the population). A fitness selection scheme similar to Genetic
Algorithm (GA) is carried out to produce offspring to form new population.

The inspiration for this strategy is that this PSO has the tendency to converge quite
(53t to some best solutions in the swarm. This is counterproductive since this can reduce
its ability to search for a wider range of solutions in a Pareto front. Therefore, it is more
desirable to have a mechanism to perturb the swarm and move its members to the new
and less crowded areas. Figure 4 demonstrates the moving strategy Ms2 which adopts
the DE concept to create the moving direction for a particle. The algorithm for Ms2 is
presented in A3.

The points in Figure 4.4 show the objective values of each particle in ohjective space:
however, it is important to note that that the vectors also represent the corresponding
positions of particles as well as their movements in positional space (and these vectors
can only be plotted in higher dimension space).

ﬁgh Performance Computing Group 36 Asian Institute of Technology|

N Elite group
bl
\&
Q Current Position
)

T ud

. = New Position
‘-..91:RJ‘R2 yC‘

s f,

>

Figure 4.4: Movement strategy 2 in bi-objective space
A3. Algorithm for Ms2

Calculate_crowding_distance (£)

ii. Sort € by decreasing order of crowding distance (CD) values
i Randomly select a particle R from top t% of €

iv. Randomly select a particle R from bottom b% of €

v. Update global term in particle i movement by

cgu Wpig — Vpoa) for all dimension d with u ~ U(©.1)
4.4.3. Ms3: Explore the unexplored space in the non-dominafgd front
The two strategies discussed above focus mainly on moving particles to lggp crowded
areas and expand the spread of the non-dominated front. Here, strategy Ms3 is aimed at
filling the gap in the non-dominated front and hence improving the distributg) of the
solutions in the front. Figure 4.5 shows how the information in the Elite group is used to
guide a particle to potential unexplored space within the current non-dominated front.

b Elite group
2

Current Position
) EP @

' :x Ef-é'g_
E; T\
P

E
fy

Figure 4.5: Movement strategy 3 in bi-objective space

ﬁgh Performance Computing Group 37 Asian Institute of Technology|

In this strategy, the first step is to identify the potential gap in the Elite group.
When the gap is determined, a pair of vectors is used to represent the gap. Algorithm A4
provides the procedure to identify pairs of unexplored vectors and how to move particle
based on this information.

Ad4. Algorithm for Ms3

i Identify the unexplored areas in €
For each objective functions fi(,)
Sort € in increasing order of objective function fi(7)
Fori=1to[E/-1
Gap = fi Biy1) — fi(01)
IFGap Y% *(Fi"™ — f™):
add pair (ii+1) in unexplored list U
Ii, Randomly select one pair (E1, E2) fromU
ifi. Update global term in particle i movement by

cgu [(Eyg — Biq) + rx(Eyg — Ezq)] forall dimension d with u, r~ U(0,1)

The range of objective function £i(.) in the Elite group is (f;"* — fi™™). By using the
condition Gap > x% *(fi"** — fi™"), it is expected that the final non-dominated front will only
include the gap less than x% of the any objective function range. Reducing the value of x can
improve the distribution of the final front but, at the same time, it may distribute the effort of
swam across the front and slow down the process of searching for better solutions.

32

4.4.4. Ms4: Combinggipn of Ms1 and Ms2

This strategy tries to balance between the exploration and exploitation abilities of
Ms2. Therefore, instead of moving purely to new areas by DE concept, a component
similar to Ms1 is added to the perturbation formula in A3 so that a particle not only
explores the new region but also benefits from the flying experience of the Elite group to
improve the solution quality. Ms4 uses the same algorithm as Ms2 with the following

updating formula:

g [(WRl.d = 81) + Wrra ~ ‘Vﬂz,d)] = Cgu (Z\pm‘d =Py = Wﬂz’d)

4.4.5. Ms5: Explore solution space with mixed particles

Since each of the movement strategies has ifs own advantages which can have
different contributions toward a high quality Pareto front, it would be beneficial to
include more than one search strategy in the algorithm. One gf the straightforward
ways to perform this idea is to use a heterogeneous swarm, i.e., a single swarm with a
mixture of particles with different movement strategies. It is preferable that the
composition of a productive swarm should include groups of particles with the following
characteristics:

e Ones that prefer to explore based on its own experience and with some
influence from its neighbors — Group 1

ﬁgh Performance Computing Group 38 Asian Institute of Technology|

e Ones that prefer to follow the global trend but avoid the crowded areas (Ms1)
— Group 2

e (@nes that like to explore new areas (Ms2) — Group 3

¢ Ones that fill the gaps left by previous movements (Ms3) — Group 4

4

In Ms5, these four groups of particles g)-exist in the same swarm and all of their
flying experience is stored in a common Elite archive. A particle of the first group will
not directly use the global knowledge but will explore the space gradually based on its
own experience and a partial knowledge of its neighbor. For that reason, these particles
do not change their movement abruptly every time the global trend changed. This
feature helps them to better explore the loeal region. The second group, on the other
hand, searches by using the status of the Elite group and moves to the position that has
not been well explored. In the cases that particles in the Elite group have distributed
uniformly, memP@rs in this group will have similar movement behavigy as those in the
first group. The responsibility of particles in group 3 is fo explore the bordgy to increase
the spread of the non-dominated fronts with their perturbation ability. Although the
first three groups have tried to explore the search in many different directions, they may
still leave some gaps unexplored because of their convergence at some segments on the
Pareto front. The task of the last group is to move to fill these gaps so that the final
front can have a better distribution.

4.4.6. Ms6: Adaptive Weight Approach

The sixth movement strategy Ms6 is the only one that does not usﬂle global Elite
group. The swarm follow Ms6 is divided into n + 1 sub-swarms with n is the number
objective functions. The first n sub-swarms will search for the optimal solution
corresponding to each objective functions just like the tradition PSO. The last sub-
swarm will minimize the adaptive weighted function as defined in Gen et al. (2008) by
the following formula:

1

F(x) = ;Wk (fk (x) _ fkmin) where wy = W “4.5)

_ fkmin

4.5.M3PSO library

It is noted that the traditional PSO algorithm needs to be changed to deal with MO
Epblems. Therefore, a new library called M3PSO (Multi-strategy Multi-Learning-Term
Multi-Objective Particle Swarm Optimization) is developed based on the original
framework of GLNPSO and includes the suggested modifications proposed in previous
sections as shown in Figure 4.2 and Algorithm Al. Basically, besides @f#}available
routines in GLNPSO, some additional classes and routines are created to deal with
multi-objective problems. The new and modified components are listed below:

ﬁgh Performance Computing Group 39 Asian Institute of Technology]

Class Name Type Description
number of objective functions to be
NoObj Integer minimized
Arrav B the objective values or the fitness of the
Objective o o
! real number | Particle
Arrav of the objective values corresponding to
ObjectiveP T
) real number | BestP
the crowding distance value which is
Particle | . 1Distance Real used to indicate the crowdedness of the
current position of the particle
r— the indicator of how many iteration in
Trap Inl-e"ger which the value at a specific dimension
number stays unchanged
the type of a particle (for movement
type Integer strategy 5 and 6 as introduced in
) section 4.4)
the index (or location) of global best
member in the swarm
Array of (pParticle[postBest[k]] refers to the
posBest Integer particle which found the position
number resulting in the best objective value of
objective function k)
MinObj/MaxOb;j the minimal and maximal objective
Array of value found by the swarm through
Real number searching process
Asvaraf the average objective values across all
g AvgObj Real nl;mber particles in the swarm
Swarm 4 4
the index of movement strategy used by
movingStrategy Integer the swarm to explore the Pareto front
particleMix[i,0] and particleMix[i, 1] is
o) areax of the accumulative probabilities which
particleMix el nunvlbe_‘f are used indicate which particles in the
swarm use movement strategy i
Indicator of whether the MO problem
constr Bool have constraints or not
public void Set the movement strategy of the
setMovingStrate Method
ﬁgh Performance Computing Group 40 Asian Institute of Technology]

gy (int mS)

swarm

public wvoid

Set the particle mix

setParticleMix(Method
Arra pMix)
public void Set the value of constr
setConstraintMo Method
de (bool ctr)
private static Select a pair of particles used to
wedd indicate the direction to unexplored
icnU plor . .
\;zune\p; e areas as described In movement
rnd,)
. Method strategy 3
USpace, retf
Part i El,
ref 1C
E2)
private static Select a particle located in less crowded
id area (P) and crowded areas (S) with the
AssignGlobalP (F s . .
AssignGl . 1F probability top and tops as described in
rnd,
: movement strategy 1 and 2
E11st . Method
Elist, ref
P, ref
s,
double topP,
doubl
private « Calculate the modified FDR index
FDR Calculate(i
nt n_temp, Method
double FDRBest,
int i, int j)
public void Update learning terms for movement
UpdateBest {int strategy lto 5
nbSize, i Method :
rnd, bool
activeNeighbor)
public void Update learning terms for movement
UpdateBestSingl Method strategy 6
e(int nbSize) :
The number of objective functions to be
nObj Integer minimized
The movement strategy used by the
moveS Integer swarm
PSO The list of Elite solutions found through
ElististP Array List | the search
The list of pairs of particles which used
UnExploreSpace Array List | to indicate the direction to unexplored

areas as described in movement

ﬁgh Performance Computing Group 41

Asian Institute of Technology]

strategy 3

MaxElististMemb Totegee Upper limit of the Elististp

er
The proportion of members in the

parmix Array List | sWarm assigned to follow each
movement strategies
Indicator of whether the MO problem

Constraint Bool have constraints or not
The percentage of members on the top
of the Elite group (in less crowded

TopEPerc Real areas) which can be randomly picked to
become the global guidance in
movement strategy 1 and 2
The percentage of members at the
bottom of the Elite group (in crowded

BotEPerc Baal areas) which can be randomly picked to
become the global guidance in
movement strategy 2
Percentage of the range (corresponding
to each objective function) to identify

GapPerc Real the value which is used as a threshold
to determine the gap in movement
strategy 3.

public wvoid . .

RecruitElited Method Recruit elite member from elite group E

iy E)
void .
e i S Update the elite group to sort out the

updateElististG

roup (A Method dominated solutions

Front)

public wvoid X i

SortEliteP(int Perform non-dominated sorting

nf, bool Method procedure on the elite group

con

oic

vowding D Call the

-rowding_Di .) .

e . Method Crowding_Distance_Calculate_perObj

.) procedure for each objective function

ElististP)

private void

Crowding Distan Calculate the crowding distance

ce_Ca Method

lculate pe
rObj (Ar: t
Method

corresponding to each objective function

ﬁgh Performance Computing Group

42

Asian Institute of Technology]

Evaluate the all objective values of a
Method particle

Objective(l

p)

4.6.A simple example of multi-objective optimization problem

In this section, M3PSO is applied to solve a simple MO problem. For the ease of
illustration, this problem deals with two objective functions but it can be easily ggjdified
to handle more than two objective functions. The problem below is the SCH problem
which is normally used to test the effectiveness of MO algorithm.

Minimize f;(x) = x?

fo(x) = (x — 2)?
Where x € [—10%,10%]

Similar to single objective optimization discussed in chapter 2, we have to determine
the dimension of a particle, the method to evaluate the objective values, and the method
to initialize the swarm. In general, M3PSO are designed so that problems can be easily
formulated without worrying too much about the optimization algorithms. Figure 4.6
shows how a new class is created to solve the problem with M3PSO.

class s

{
public spPS0(int nPar, int nlter, int nNB, double dwmax, double dwmin,
double dcp, double dcg, double decl, double den, int maxE, int
1y L1 pm, double te,dcuble be, double gap)
:base(nIter, nNB, dwmax, dwmin, decp, dcg, dcl, dcn,maxE,moveStr,pm)

moveStr,

if (moveStr==6)
b = . SetParameters (nPar,dimension, nObj+1, constr, te, be,gap) ;

> . SetParameters (nPar, dimension, nObj, constr, te, be, gap):
£ articles {imens
if ms6 is used, and +1 more if there are
raint r (true there are an T
}
public override wvoid DisplayResult (TextWri t)
{
*JriteLine\’".\.' v, MNonDom: ™ + "“t" + "{0}",ElististP.Count);
for (int 1 = 0; 1 < this.ElististP.Count; di++)
{
for (int o = 0; o < ((Pa ElististP(0]).NgFpj: o++)
t.Write (((Parti Jthis.) .Objective[o] .TeString () +"\t") ;
t.WriteLine() ;
1

t.WriteLine("");

ﬁgh Performance Computing Group 43 Asian Institute of Technology]

t.WriteLine ("
t.WriteLine("
1
public override double[] Objective(Fartic)
{
double[] obj=new double(p.NoOkj];
F n.SCH Function(p, obj):
return obj;
1
public override void InitSwarm()
{
for (int i=0; i<sSwarm.Member; 1++)

{

for (int j = 0; j < sSwarm.pParticle[i].Dimension; J++)
{

sSwarm.pParticle
sSwarm.pParticle
sSwarm.pParticle
sSwarm.pParticle[i

= =1000 + 2000 * rand.NextDouble():;
= 0;
sSwarm.pParticle[i].Position([j];
= =1000;

sSwarm.pParticle[i] .Pc ax[j] = 1000;
}
for (int o=0;o<sSwarm.pParticle[i] .NoObj;ot++)
sSwarm.pParticle[i] .ObjectiveP[o] = 1.7E308;
}
sSwarm. posBest=new int[sSwarm.pParticle[0].NoObj];
1
]
class
{
public static void SCH Function(Particle p, double[] x)
{
double var = p.Position([0];
Xx[0] = Math.Pow(var, 2);:
x[1] = Math.Pow(var - 2, 2);
1

Figure 4.6: Formulate SCH problem in C#

The formulation of MO problem is very similar to that of single objective
optimization problem except for the function evaluation method which returns multiple
objective values instead of a single value. The M3PSO's parameters are defined in the
main class as presented in Figure 4.7.

public static woid PSO(int fx,do
aniEnable, out double[] index, o

ible[] PSOparas, int strateqgy, bool
AniS, out ArrayList Average)

Pareto, out ArraylList Ani, out

¢
Animation declaration

//par tting

int nolter = Convert.ToInt32(PSOparas[0]):
int noPar = Convert.ToInt32(PSOparas([l]});
double wMin = PSOparas([2];

double wMax = PSOparas[3];

int noNB = Convert.ToInt32(PSOparas([4]);

double cP = PSOparas|[5];
ible ¢G = PSOparas|[6];
ouble cL = PSOparas[7]:

ﬁgh Performance Computing Group 44 Asian Institute of Technology]

double cN = PSOparas([8];

int maxE = Convert.Tolnt32(PSOparas[9]):

double TopEp = PSOparas[10] / 100;

double BotEp = PSOparas([l1l] / 100;

double GapUnexplore = PSOparas[12] / 100;
int moveStrategy = strategy;

bool multiSwarm = false;

int rSeed = (int)PSOparas([17]
int noRep = (int)PSOparas[18];
// end parameter setting

if (moveStrategy == 6)
{
pMix.Add (0) ; / 100) ;
pMix.Add (1) / 100);
pMix.Add(2) ; / 100) ;
}
if (moveStrategy == 5)
{
pMix.Add (0) ; pMix. / 100);
pMix.Add(1); pMix.A / 100} ;
pMix.Add(2); pMix. £ 100);
pMix.Add (3); pMix.A / 100} ;
}
// starting time and finish time us datatype

start,

) g nish;
// elapsed time

using Ti
imeSpan elapsed;

Write parameter to text ##

for (int i = 0; i < noRep; 1++)

{
rSeed++;
AvgVal[i] = new ArrayLi:
; le.Writeline("Replication {O}", i + 1};
tw.Writeline("Replication {0} o) I
// get the starting F ol W Yool
start = DateTime.Now;
// main program :
M GlobalSwarm = new spPS0O(fx,noPar, nolter, noNB, wMax, wMin, cP,

q

cG ,clL, cN, maxE, moveStrategy, pMix, TopEp, BotEp, GapUnexplore;
GlobalSwarm. SetRSeed (rSeed) ;
GlobalSwarm.Run(tw, true, aniEnable, AwvgVal[i], out sAni, out sAni2);

// get the finishing time from CPU clock
finish = DateTime.Now;

elapsed = finish - start;

£l d lay the elapsed me in hh:imm:ss.milli
Display output

}

** the code in ## ... #% contain the subroutine which can be found in the original code
Figure 4.7: C# implementation of M3PSO algorithm
The more generalized source code of this example, which includes a convenient
interface and a list of test problems, can be found in ““GLNPSO manualN\GLNPSO
basic\PSO_MutiObjective\”. This small application also provides the animation feature

to help the user easily observe the movement behavior of the algorithm in bi-objective
space as shown in the Figure 4.8.

ﬁgh Performance Computing Group 45 Asian Institute of Technology|

T—— SCH 1| Select problem |3

Nondominatied frot Animation_Step400 / N
® : ! : : i 2 aevmmon 500
: - L Select test G
sT " problem" . . e =
Blocal 5
= 1
o B s o 3 et -
*‘[S Determine M3PSO =
d 1
] parameters - i
SR R b - ZEds 100
\&‘“‘-m.__
s i 2 3 H [24 .
L Select experiment
R options
Lot ot T v U a8 BA B Verin et wa Cowa b
3 Animation \ :
T | = [¥] Fadom Exp.
p™ y F ane i e . ;
! control panel i ? + ’ * " : TR
- -; {-1 & Rephcaton
w1 % § Suwp for Arwration, | An_Soted (re/eee) + ¥ Animation
k 0 300 i Fieauit Summary Bl
: T T e e = = | e © | skl AdPescies Bt
e == =

Figure 4.8: Multi-objective optimizer with M3PSO

Figure 4.8 shows the interface built for research purpose. The figure on the upper left
corner presents the final Pareto front found by the M3PSO algorithm. The average
objective value of each objective function through each step is shown in the figure on the
lower left corner. The largest figure in the middle is used for animation. At each
Aimation step, the elite members are represented by triangle point and the current
position of each particle is represented by the circle point. The color of each point is used
to identify the type of a particle (in movement strategy 5 and 6). Table 4.1 shows how
meaning of colors used in animation screen.

Table 4.1: Color set used for animation

Color [Als1 Ms2 Ms3 Ms4 Ms5 Ms6

Yellow % 0 Type O Type 0 Type 0 Type 0 MBpe 0
Gray Na Na Na Na Type 1 Type 1
Blue Na Na Na Na Type 2 Type 2
Red Na Na Na Na Type 3 Na

When movement strategies Msl-Msd are used, all particles only follow single
movement behavior so only one color is used. In movement strategy Ms5, type 0, 1, 2, 3
indicate the particle in group 1, 2, 3, 4 respectively. Meanwhile, type 0 and type 1 in
Ms6 represent the particles in the sub-swarms that minimize single objective function 1
and 2 respectively. In Ms6, type 2 indicates the particles in the sub-swarm assigned to

minimized adaptive weighted function.

a 7.Portfolio optimization with M3PSO algorithm

Portfolio Optimization (PO) is a critical problem in finance in order to find an optimal
way to distribute a given budget on a set of available assets. Although many investment
decisions are normally made on qualitative basis, there are an increasing number of

uantitative approaches adopted.
!

igh Performance Computing Group 46 Asian Institute of Technology|

The most seminal mathematical model was initiated by Markowitz more than 50
years ago and there have been many extensions of his models since then. The classical

mean-variance portfolio selection problem of proposed by Markowitz can be given as:
N N

Minimizing the variance of the portfolio Z Z W W;0y;

=1 /=1
N

Maximizing the expected return of the portfolio z Wil

=1

N
ZWEZ]_

(1] ngistllforvi=l...N

The basic assumption in this model is that asset returns follow multivariate normal
distribution. The decision variable w; is the proportion of the budget which is distributed
to asset 7 Parameter y; and o;; are the expected return of asset 7 and the covariance

subject to:

between asset 1 and ;. Because it is difficult to weigh the two criteria before the
alternatives are known, the popular approach in this case is to search for the whole
efficient frontier. In this section, we will use M3PSO library to solve the portfolio
opf@nization problem.

In this problem the decision variable w; can be modeled as the particle position which
ranging from 0 to 1. However, because the sum of all values of w; must be equal to 1,
positions of particles cannot guarantee to provide feasible solutions. Fortunately, an
infeasible solution can be easily repaired to become a feasible one. To illustrate the
encoding/decoding scheme. we use a simple example with 4 assets. The data for this
problem is provided in Table 4.2. The encoding/decoding scheme for the portfolio
optimization goblem is shown in Figure 4.9.

Table 4.2: Four asset example

Gt Expected Std. Corelation Matrix
- Return Deviation 1 2 3 4
1 0.004798 0.046351 1 0.118368 0.143822 0.252213
2 0.000659 0.030586 1 0.164589 0.099763
é 0.003174 0.030474 1 0.083122
4 0.001377 0.035770 1
1 2 3 4 Sum
Particle’s position ‘ 0.4 I 0.2 | 0.8 | 0.6 | 2
‘Normalization: w=wilSum
1 2 3 4
Decision
vasiablea ‘ 0.2 | 0.1 | 0.4 | 0.3 |
N N
The variance of the portfolio wyw; oy = 0.0004889
The expected return of the portfolio Z wy; = 0.0027082

i=1

Figure 4.9: Encoding/decoding scheme for classical portfolio optimization problem

ﬁgh Performance Computing Group 47 Asian Institute of Technology|

Similar to the TSP problem in chapter 3, we built a separate class to get the input
data, pre-calculate the covariance matrix and calculate the objective values based on
positions of particles at each iteration. The source code and the test problems can be
found at ““\GLNPSO manual\GLNPSO basic\PSO_MutiObjective-Portfolio
Optimization\’. The defaulted name of the input file is “Example.txt” and the format of
this file is give as:
number of assets (N)
for each asset i (i=1,....N):

mean return, standard deviation of return

for all possible pairs of assets:
L, j, correlation between asset i and asset j

Figure 4.10 shows the application to solve portfolio optimization problem based on
M3PSO library.

......... O oo Animation_Stepd0
i B e e D08 e [PREPAIGI

0004 1 wmax a8

Baot ’-’"/
JRTPTT

0002 0003 0004 0005 0006 0007 0008 Q009 0.0 OO = o
% Unexp. Gap
Expacted Retam .

Parformance D01 oo JM “w =
% type pae

§ pad?

Risk Variance
s
-
L
B
F
5

0.000 t t + 7| Radom Exp.
0.000 0.002 0.004 0.008 0.008 0o oMz Rardom seed 1
Expected Return if Rapbcaton 1
Step for Aramation. Ars_Speed ime/slep) 7 dramabion
100 Result Susmmary

o
=i |—|, [et Sen mim =9;npmsmm ReePS0
« |[= -

Figure 4.10: Portfolio optimizer with M3PSO library

4.8.Mu1ti-objeﬁive optimization in Engineering Design

Our objective is to find the dimension of an I-beam as shown in Figure 4.11, which
have to satisfy the geometric and strength constraints and minimize following objective
functionsig)

e (Cross section area of beam

e Static deflection of the beam under a certain force
The mathematical model of this problem by Coello and Christiansen! are given as

follows:

! Coello and Christiansen (1999), MOSES: a multiple objective optimization tool for engineering
design. J Eng Optim 1999; 31(3):337-68.

High Performance Computing Group 48 Asian Institute of Technology|

Subject to:

fi(@) = 2224 + 230y — 2x4)
60000
X3 (1 — 2x4)3 + 2xpx,[425 + 311 (%7 — 2x,)]

(cm)

(%) =

) 180000x, 15000x,
g(x) =16 — 5 — 3 =0
X3 (21 — 2x4)3 + 225 x4 [42f + 3%, (07 — 2x4)] (xp — 2%4)3 %5 + 2x4%5
10<x, <80, 10=<x,<50, 09<x; <5, 09=<x,<5

L =200cm

Figure 4.11' I-Beam design problem

Since the objective functions of this problem are ggry well-defined. we can directly
use the values of particle’s position as those of decision vectorX. Therefore. the
dimension of particle needs is 4 and each dimension will have the upper and lower
bounds corresponding to those defined in the mathematical model. The implementation
of this problem can be found in the group of test problems in section 4.6. The illustrative

example of the Pareto solution for this problem is given Figure 4.12.

72 Mon domanated troat Animation_Sten2?
Iy
.
2 A..
& 15
2t 4 "
wge | 5
i L3
! .
H 1.0
o L
i -
.
Al b
D0 b g ——— i p— 4 R
0 W0 00 M0 0 S0 KO O Mo WO 100
] .
v]
fnmags Dtmcie e
-
Lo el U)
]
a4 aee 5 -
"y . °
o2 LT L OO0 vt B e
‘ ' g 0 W00 200 300 400 500 60D TOD 800 90D 1000
T (R
a4 Sep ks Awpton Ave_Spwed [raiteg)
= o Hommlt Summary
- = e Compiatordd Toe 5t Pareic Sowbara
o 4 e —— 00000 2110000 L
o= lussln]

-1;\;1&&?;2

op Fitn
Thommbis W
% Une Gaw
B0t par type |
b g by 7
ot par. type)

by par g

4 Raton [
Farciom pesd
B Figoicaton

4 anmper

Fanf)

Figure 4.12: Solve I-Beam design problem with M3PSO

ﬁgh Performance Computing Group

49

Asian Institute of Technology|

10.

Bibliography Of Works Utilizing ET-Lib
Kasemset, C. and Kachitvichyanukul, V.
Bi-level multi-objective mathematical model for job-shop scheduling: the application of

Theory of Constraints, International Journal of Production Research, DOI:
10.1080/00207540903176705, November 2009.

Ai, The Jin, and Kachitvichyanukul, V.
warticle Swarm Optimization for Vehicle Routing Problem with Time Windows,

International Journal of Operational Research, Vol. 6, No. 4, pp519-537, 2009

Ai, The Jin, and Kachitvichyanukul, V.

A Particle Swarm Optimization for the Heterogeneous Fleet Vehicle Routing Problem,
International Journal of Logistics and SCM Systems, Vol. 3, No. 1, pp32-39, 2009

Ai, The Jin, and Kachitvichyanukul, V.

A particle swarm optimization for the vehicle routing problem with simultaneous pickup

and delivery, Computers & Operations Research, 36, pp1693-1702, 2009.

Ai, The Jin, and Kachitvichyanukul, V.
Particle Swarm Optimization and Two Solution Representations for Solving the Capacitated

Vehicle Routing Problem, Computers & Industrial Engineering, Volume 56, Issue 1, pp380-
387, 2009.

Ai, The Jin, and Kachitvichyanukul, V.
A Particle Swarm Optimization for the Capacitated Vehicle Routing Problem, International
Journal of Logistic and SCM Systems, Volume 2, Number 1, pp50-55, 2007

2
Kachitvichyanukul, V.?nd Dao Duc Cuong
A Mixed Particle Swarm Optimization Algorithm for Continuous-flow-shop Scheduling
Problem, the 20th International Conference on Production Research, Shanghai, China,
August 2009

Ai, The Jin, and Kachitvichyanukul, V.

A Study on Adaptive Particle Swarm Optimization for Solving Vehicle Routing Problems,
Proceedings of the 9th Asia Pacific Industrial Engineering and Management Systems
Conference (APIEMS 2008), Bali, Indonesia, December 2008.

Ai, The Jin, and Kachitvichyanukul, V.

Adaptive Particle Swarm Optimization Algorithms, Proceedings of the 4th International

Conference on Intelligent Logistics Systems (ILS2008) , Shanghai, China August 2008

Pratchayaborirak, T., and Kachitvichyanukul, V.
A Comparison of GA and PSO Algorithm for Multi-objective Job Shop Scheduling Problem,

Proceedings of the 4th International Conference on Intelligent Logistics
Systems (ILS2008) , Shanghai, China August 2008

ﬁgh Performance Computing Group 50 Asian Institute of Technology]

11. Ai, The Jin, and Kachitvichyanukul, V.
Dispersion and Velocity Indices for Observing Dynamic Behavior of Particle Swarm
Optimization, IEEE Congress on Evolutionary Computation, Singapore, September 2007
12. Ai, The Jin, and Kachitvichyanukul, V.
A Particle Swarm Optimization for the Vehicle Routing Problem with Clustered Customers,

Proceedings of the APIEMS 2007 Conference, Taiwan, December 2007

13. Pratchayaborirak, T., and Kachitvichyanukul, V.
A Two-Stage Particle Swarm Optimization for Multi-Objective Job Shop Scheduling
Problems, Proceedings of the APIEMS 2007 Conference, Taiwan, December 2007

ﬁgh Performance Computing Group 51 Asian Institute of Technology]

Paper 43 ETLib User Manual

ORIGINALITY REPORT

37. 25. 32, 15

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

S. Nguyen, V. Kachitvichyanukul. "Movement
Strategies for Multi-Objective Particle Swarm
Optimization", International Journal of Applied
Metaheuristic Computing, 2010

Publication

4,

www.vpaa.ait.ac.th

Internet Source

4,

S. Nguyen, V. Kachitvichyanukul. "chapter 8
Movement Strategies for Multi-Objective Particle
Swarm Optimization", IGI Global, 2012

Publication

3%

www.iemsjl.org

Internet Source

3%

Tao, . "Random Multiple Objective Rough
Decision Making", Rough Multiple Objective
Decision Making, 2011.

Publication

2

n Thongchai Pratchayaborirak, Voratas
Kachitvichyanukul. "A two-stage PSO algorithm
for job shop scheduling problem”, International

1o

Journal of Management Science and
Engineering Management, 2013

Publication

Jiuping Xu. "Bi-Random Multiple Objective
Decision Making", Lecture Notes in Economics
and Mathematical Systems, 2011

Publication

1o

www.inderscience.com

Internet Source

1o

Jingneng Ni, Jiuping Xu, Mengxiang Zhang.
"Constructed wetland planning-based bi-level
optimization to balance the watershed
ecosystem and economic development: A case
study at the Chaohu Lake watershed, China",
Ecological Engineering, 2016

Publication

1o

The Jin Ai, Voratas Kachitvichyanukul. "A
particle swarm optimization for the vehicle
routing problem with simultaneous pickup and

delivery", Computers & Operations Research,
2009

Publication

1o

Jiuping Xu. "Fuzzy Multiple Objective Decision
Making", Studies in Fuzziness and Soft
Computing, 2011

Publication

1o

www.library.ait.ac.th

Internet Source

1o

"Proceedings of the 18th Online World
Conference on Soft Computing in Industrial
Applications (WSC18)", Springer Nature
America, Inc, 2019

Publication

1o

Jiuping Xu, Liming Yao. "Random-Like Multiple
Objective Decision Making", Springer Nature,
2011

Publication

1o

—_
&)

documents.mx

Internet Source

1o

-
(@)

Ai, T.J.. "A particle swarm optimization for the
vehicle routing problem with simultaneous
pickup and delivery", Computers and Operations
Research, 200905

Publication

1o

—
N

www.citeulike.org

Internet Source

1o

RN
(00)

Submitted to Nazarbayev University
Student Paper

1o

RN
©

www.asdu.ait.ac.th

Internet Source

<1%

2

B

leomsociety.org

Internet Source

<1%

e <1
29 Chawis Boonmee, Mikiharu Arimura, Takumi <1 y
Asada. "Location and allocation optimization for °
integrated decisions on post-disaster waste
supply chain management: On-site and off-site
separation for recyclable materials”,
International Journal of Disaster Risk Reduction,
2018
Publication
Wisittipanich, Warisa, and Voratas <1 o
Kachitvichyanukul. "Mutation strategies toward °
Pareto front for multi-objective differential
evolution algorithm", International Journal of
Operational Research, 2014.
Publication
Nguyen, Su, and Voratas Kachitvichyanukul. <1 o
"An efficient differential evolution algorithm for °
multi-mode resource-constrained project
scheduling problems", International Journal of
Operational Research, 2012.
Publication
Kanchana Sethanan, Woraya Neungmatcha. <1 o

"Multi-objective particle swarm optimization for
mechanical harvester route planning of

sugarcane field operations", European Journal
of Operational Research, 2016

Publication

www.set.ait.ac.th

Internet Source <1 %

Sooksaksun, Natanaree. "Pareto-Based Multi- <1 o
Objective Optimization for Two-Block Class- °
Based Storage Warehouse Design", Industrial
Engineering and Management Systems, 2012.
Publication

Chengkuan Zeng, Jiafu Tang, Zhi-Ping Fan. <1 o
"Auction-based cooperation mechanism for cell °
part scheduling with transportation capacity
constraint”, International Journal of Production
Research, 2018
Publication
WWW.CS.uoi.qr

Internet Source g <1 %
ime.ait.ac.th

Internet Source <1 %
www.vafaeijahan.com

Internet Source J <1 %
link.lib.umanitoba.ca

Internet Source <1 %
Submitted to Universiti Teknologi Malaysia

Student Paper g y <1 %

www.igi-global.com <1 o,

Internet Source

35 altibase.net <1 %

Internet Source

Jiuping Xu, Zigiang Zeng. "Fuzzy-Like Multiple <1 y
Objective Multistage Decision Making", Springer °
Nature, 2014

Publication

B
(@)

Submitted to University of Birmingham
Student Paper y g < 1 %
Proceedings of the Tenth International <1 o

Conference on Management Science and
Engineering Management", Springer Science
and Business Media LLC, 2017

Publication

epdf.tips
IntErnet SoErce <1 %
www.orstw.org.tw
Internet Source g <1 %
Submitted to National Taipei University of <1 o
Technology
Student Paper

49 Xu, Jiuping, and Xiaoling Song. "Suggestions for <1 o
Temporary Construction Facilities’ Layout °
Problems in Large-Scale Construction Projects”,

Journal of Construction Engineering and
Management, 2014.

Publication

Voratas Kachitvichyanukul. "A two-stage genetic 1
. A . < 1%

algorithm for multi-objective job shop scheduling
problems", Journal of Intelligent Manufacturing,
07/26/2009
Publication

Zhou, Ji, Bojie Fu, Guangyao Gao, Yihe LU, and <1 o
Shuai Wang. "Effect of restoration vegetation on °
the stochasticity of soil erosion in a semi-arid
environment”, Hydrology and Earth System
Sciences Discussions, 2016.
Publication
www.tandfonline.com

Internet Source <1 %
Lecture Notes in Computer Science, 2015.

Publication p <1 %

Habin Lee, Nursen Aydin, Youngseok Choi, <1 o
Saowanit Lekhavat, Zahir Irani. "A decision °
support system for vessel speed decision in
maritime logistics using weather archive big
data", Computers & Operations Research, 2018
Publication
www.dIxedu.com

48 Internet Source < 1 %

49 wiki.mf.grsu.by <1 %

Internet Source

file.allitebooks.com
50 Internet Source < 1 %

A. TAMILARASI. "TUNINGS OF PARAMETERS
AND PHEROMONE UPDATE STRATEGY IN
ANT COLONY OPTIMIZATION", Journal of
Advanced Manufacturing Systems, 2010

Publication

<1%

E
—

Jiuping Xu, Zongmin Li, Zhimiao Tao. "Random-
Like Bi-level Decision Making", Springer Nature,
2016

Publication

<1%

Prommee, Witoon, and Weerakorn Ongsakul.

o . . <l%
"Multi-objective optimal placement of protective
devices on microgrid using improved binary
multi-objective PSO : OPTIMAL PLACEMENT
OF PROTECTIVE DEVICES ON MG BY PSO",
International Transactions on Electrical Energy
Systems, 2014.

Publication

54 Submitted to City University of Hong Kong <1 o

Student Paper

Warisa Wisittipanich, Piya Hengmeechai. "Truck

55 o . . . <I1%
scheduling in multi-door cross docking terminal

by modified particle swarm optimization”,

Computers & Industrial Engineering, 2017

Publication

Wang, Yun, Yi Zhang, Zheng Liu, and Fang Jun <1 y
Hu. "The Optimization Design of I-Beam Based °
on Multi-Objective Cellular Genetic Algorithm",

Applied Mechanics and Materials, 2013.
Publication
Lecture Notes in Computer Science, 2007.

Publication p <1 %

Guohui Zhang. "Hybrid variable neighborhood <1 o
search for multi objective flexible job shop °
scheduling problem", Proceedings of the 2012
IEEE 16th International Conference on
Computer Supported Cooperative Work in
Design (CSCWD), 2012
Publication

Wisittipanich, Warisa, and Voratas <1 o
Kachitvichyanukul. "An Efficient PSO Algorithm °
for Finding Pareto-Frontier in Multi-Objective
Job Shop Scheduling Problems", Industrial
Engineering and Management Systems, 2013.

Publication
E Swarm, Evolutionary, and Memetic <1 o

Computing", Springer Science and Business
Media LLC, 2015

Publication

scholarbank.nus.edu.sg

E
—

Internet Source

<1 %
docplayer.or
Intern«gSouyrce g <1 %
Submitted to University of Warwick
Student Paper y <1 %
Xiao-Juan Wang, Chao-Yong Zhang, Liang <1 o
Gao, Pei-Gen Li. "A Survey and Future Trend of °
Study on Multi-Objective Scheduling”, 2008
Fourth International Conference on Natural
Computation, 2008
Publication
PISL.J’[I?on.gchalrerlfs. Pa.rtlcle Swarm | <1 o
Optimization algorithm with multiple social
learning structures", International Journal of
Operational Research, 2009
Publication
Submitted to University of Ulster
E Student Paper y <1 %
core.ac.uk
Internet Source <1 %
You Li, Zhibin Jiang, Wenyou Jia. "A heuristic
@ J ¢ <1 %

algorithm for minimizing total absolute deviation
from distinct due dates on a single machine",
2013 IEEE International Conference on

Automation Science and Engineering (CASE),
2013

Publication

Submitted to Cardiff Universit
E Student Paper y <1 %
exploredoc.com
Interrr?et Source <1 %
WWwWw.cis.upenn.edu
Internet Source p <1 %
Wisittipanich, Warisa, and Piya Hengmeechai. <1 o
"A Multi-Objective Differential Evolution for Just- °
In-Time Door Assignment and Truck Scheduling
in Multi-door Cross Docking Problems”,
Industrial Engineering and Management
Systems, 2015.
Publication
Submitted to University of Hong Kon
Student Paper y g g <1 %
Pisut Pongchairerks. "A two-level Particle <1 y
Swarm Optimisation algorithm on Job-Shop °
Scheduling Problems", International Journal of
Operational Research, 2009
Publication
Submitted to University of Stellenbosch, South <1 o
(0]

Africa
Student Paper

cac1990.blogspot.com
Internet Source J <1 %
Zhen Yaobao, Hu Ping, Yang Shu. "An <1 o
Improved Particle Swarm Optimization for the °
Automobile Spare Part Warehouse Location
Problem", Mathematical Problems in
Engineering, 2013
Publication
www.lvcem.com
Internet Source <1 %
Submitted to Lincoln Universit
Student Paper y <1 %
E Jiuping Xu, Xiaoyang Zhou. "Fuzzy-Like Multiple <1 o
Objective Decision Making", Springer Nature, °
2011
Publication
Submitted to Universidad Auténoma de Nuevo <1
, %
Ledn
Student Paper
Kasemset, Chompoonoot. "Application of <1 o
Adaptive Particle Swarm Optimization to Bi-level °
Job-Shop Scheduling Problem", Industrial
Engineering and Management Systems, 2014.
Publication
Submitted to M.M. International School, Mullana <1
Student Paper %

Submitted to AUT Universit

Student Paper y <1 %
rasdaman.eecs.jacobs-university.de

Internet Source J y <1 %
ethesis.nitrkl.ac.in

E Internet Source <1 %
Submitted to University of Bedfordshire

Student Paper y <1 %

B. Ait Brik, S. Ghanmi, N. Bouhaddi, S. Cogan. <1 o
"Robust Design in Structural Mechanics", °
International Journal for Computational Methods
in Engineering Science and Mechanics, 2006
Publication

E Submitted to National University of Singapore <1 .
Student Paper /0
Submitted to Stourbridge College

E Student Paper g g <1 %
www.slideshare.net

Internet Source <1 %

Submitted to Higher Education Commission <1 o
Pakistan 0
Student Paper
link.springer.com

Internet Spourceg <1 %

Submitted to Queen Mary and Westfield College

Student Paper

<1%

Boonmee, Atiwat, and Kanchana Sethanan. "A
GLNPSO for multi-level capacitated lot-sizing
and scheduling problem in the poultry industry”,
European Journal of Operational Research,
2016.

Publication

<1%

Lecture Notes in Computer Science, 2005.

Publication

<1%

B
N

J. Sanchez-Garcia, D.G. Reina, S.L. Toral. "A
distributed PSO-based exploration algorithm for
a UAV network assisting a disaster scenario”,
Future Generation Computer Systems, 2019

Publication

<1%

Voratas Kachitvichyanukul, Pandhapon
Sombuntham, Siwaporn Kunnapapdeelert. "Two
solution representations for solving multi-depot
vehicle routing problem with multiple pickup and
delivery requests via PSO", Computers &
Industrial Engineering, 2015

Publication

<1%

G. Y. Lian, K. L. Huang, J. H. Chen, F. Q. Gao.
"Training algorithm for radial basis function
neural network based on quantum-behaved
particle swarm optimization", International

<1%

Journal of Computer Mathematics, 2010

Publication

Submitted to Middle East Technical University

Student Paper

<1%

Atiwat Boonmee, Kanchana Sethanan. "A
GLNPSO for multi-level capacitated lot-sizing
and scheduling problem in the poultry industry”,
European Journal of Operational Research,
2016

Publication

<1%

=
(@)
N

"Evolutionary Multi-Criterion Optimization",
Springer Nature, 2003

Publication

<1%

—
=
(O8]

docplayer.net

Internet Source

<1%

—
H
=

Submitted to University of Surrey

Student Paper

<1%

=
(@)
(@)

Tsou, C.S.. "Evolutionary Pareto optimizers for
continuous review stochastic inventory
systems", European Journal of Operational
Research, 20090601

Publication

<1%

106

Submitted to University of York

Student Paper

<1%

CARLOS A. COELLO COELLO, ALAN D.
CHRISTIANSEN. "TWO NEW GA-BASED

<1%

METHODS FOR MULTIOBJECTIVE
OPTIMIZATION?", Civil Engineering and
Environmental Systems, 1998

Publication

Proceedings of the Institute of Industrial
Engineers Asian Conference 2013, 2013.

Publication

<1%

Submitted to llona IT

Student Paper

<1%

Chompoonoot Kasemset. "A PSO-based
procedure for a bi-level multi-objective TOC-
based job-shop scheduling problem”,
International Journal of Operational Research,
2012

Publication

<1%

International Series in Operations Research &
Management Science, 1999.

Publication

<1%

Exclude quotes Off Exclude matches Off

Exclude bibliography On

	Paper 43 ETLib User Manual
	by The Jin Ai

	Paper 43 ETLib User Manual
	ORIGINALITY REPORT
	PRIMARY SOURCES

