CHAPTER V

CONCLUSION AND RECCOMENDATION

5.1 Conclusion

Based on comparison of analysis output from time history analysis between base isolation structure with fixed base structure, Base Isolation Structure achieved a total of 70.9% of increase in total displacement in the structure. Most of displacement occur in the base, that have displaced 21.63 cm from initial point. As the result, the inter story drift of the structure is decrease by average of 70.4 %. The displacement makes the natural period of the structure increased to 2.34 s from 1.007 s. This lead to decrease of acceleration in top-story by 70.3% and decrease of story shear force by average 68.4 %. From the analysis data, it can be concluded that the use of base isolation system will have significant impact on response of the structure.

5.2 Recommendations

As Yogyakarta is one of the most earthquake prone regions in the Indonesia, special attention towards improving the resistance of structures toward earthquake should be done. By implementing Base Isolation System, the effect of ground motion on the building can be significantly reduced with little or no damaged on the building. This can significantly reduce the cost of repair and maintenance.

However, the use of base isolator system is not yet popular in Indonesia. This is mainly because the technology is still new and expensive in Indonesia. More studies regarding base isolation economic performance compared to normal structure is needed to assess the feasibility of base isolation system on a structure. If the economic benefit of base isolation in earthquake prone area can be proven, the use of base isolation can be viable choice of solution for Indonesian Civil Engineers.

REFERENCES

- ASCE 7-2016, 2016, Minimum Design Loads for Buildings and Other Structures,
 American Society of Civil Engineers, Virginia.
- Arfiadi, Y., 2000, Optimal Passive and Active Control Mechanisms for Seismically Excited Buildings, University of Wollongong, Wollongong.
- Aravinthan, K., Venkatesh Babu, D.L., Prince, A.G., 2016, Need for Efficient Hybrid Base Isolation Technology from Current Practice, International journal of Applied Engineering Research, Volume 11, Number 1.
- Buchanan, A.H., Bull, D., Dhakal, R., MacRae, G., Palermo, A., Pamanin, S., 2011,

 Base isolation and Damage-Resistant Technology for Improved Seismic

 Performance of Building, University of Canterbury, Christchurch, New Zealand.
- Chopra, A.K., 2001, Dynamic of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall, Upper Saddle River, NJ, United States
- Constantinou, M.C., Kalpakadis, I., Filiatrault, A. and Ecker Lay, R.A., 2011, LRFD-Base Analysis and Design Procedure for Bridge isolators and Seismic Isolators, University at Buffalo, New York.
- Constantinou, M.C., Tsopelas, P., Kasalanati, A., Wolff, E.D., 2007, *Property Modification Factor for Seismic Isolators*, University at Buffalo, New York.
- Hussain, S.M., Alhamaydeh, M.H., Aly, N.E., 2012, *Jakarta's First Seismic-Isolated Building A 25 Story Tower*, 15th WCEE Conference, Lisboa.
- Ismail, F.A., 2012. Pengaruh Penggunaan Seismic Base Isolation System Terhadap Response Struktur Gedung Hotel Ibis Padang, Jurnal Rekayasa Teknik Sipil, Volume 8, Number 1.
- SNI 1726-2012, 2012, Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan Non Gedung, Badan Standardisasi Nasional, Jakarta.

- PEER Ground Motion Database, *NGA-2 web-tools*, accessed on 10th August 2016. http://ngawest2.berkeley.edu/spectras/new?sourceDb flag=1
- Puskim- Kementerian PU, *Aplikasi Design Spectra*, accessed on 10th August 2016. http://puskim.pu.go.id/Aplikasi/desain spektra indonesia 2011/
- Skinner, R.I., Robinson, W.H., McVerry, G.H., 1993, An Introduction to Seismic Isolation, John Wiley & Sons Ltd., England.
- McVitty, W.J., Constantinou, M.C., 2015, Property Modification Factor for Seismic Isolators: design guidance for Building, University at Buffalo, New York.
- Naeim, F., Kelly, J.M.,1999, *Design of Seismic Isolated Structures: from Theory to Practice*, John Wiley & Sons Inc., United States.
- Yamamoto, M., 2013, Reduction in Seismic Response of Seismically Isolated Buildings—Analysis from Observed Records of 2011 Great East Japan Earthquake, Takenaka Corporation, Chiba, Japan.
- Zanaica, L., 2007, Design of Storey Isolation System in multi storey building, Takenaka Corporation, University of patras, France.

APPENDIXES

Appendix A: Building ETABS Model

Fig.1. Typical Building Plan

Fig.2. Building Isolator Configuration

Fig.3. Typical Building Section

Fig.4. 3D Model of the Building

Appendix B: Isolator Properties

LL-Series (Total Rabber Thickness 160mm) Code Designation Compound Shear Modulus (N/mm²) G4 G0.40 0.385 Characteristics 600 650 700 750 Outer Diameter (mm) 120 130 140 110 120 130 140 150 120 130 140 150 160 150 160 170 2749 2732 2714 2695 2673 3223 3205 3186 3164 3142 3735 3716 3672 3647 4285 4264 4241 4217 4191 3695 (× 10°mm Thickness of One Rubber Layer 41 37 34 34 Total Rubber 162 163 167 165 Thickness irst Shape Factor(-38.0 36.9 35.7 38.7 Second Shape Factor 3.70 3.99 4.20 4.55 eter of Flange (mm) 900 950 1000 1100 Thickness of Flange 22/2R 22/28 22/28 22/2R Diameter of Bolt Cents 775 825 875 950 Diameter (Number) of ø33 x 12 ø33 x 12 #33 x12 #33 ×12 Fixing balts Supposed Bolt (-) M30 M30 мар M30 3.1 3.1 3.1 3.1 3420 330.4 324.9 323.2 Height (mm) 6.0 6.0 6.1 6.6 6.6 6.7 7.2 7.3 7.3 8.4 8.4 Total Weight (KN) (41.0) (48.4) y=0 σ, (53.7)(66.5) (0.00,41.0) (0.00,48.4)(0.00,53.7)(0.00,60.0) (Yo. 00) (γ_1, σ_1) (0.50,60.0) (3.70, 4.10)(3.99, 4.84)(4.00,7.69) (4.00,13.9) 2680 3200 (× 10²kN/m) 13.0 42.0 ominal Long Term 10.5 +1.5 al Long Term n Load (kN) 2530 2510 2500 2480 2460 3380 3370 3340 3320 3300 4260 4240 4210 4180 4160 5570 5540 5510 5480 5450 Column Load (kN) Allowable Tensile Stress (y=100%) (N/mm² 1.0 10 nitial Stiffness (× 10³kN/m) 8.86 8.89 8.92 8.95 8.98 10.4 10.4 10.4 10.4 10.5 11.7 11.8 11.8 11.8 11.9 13.6 13.6 13.7 13.7 13.8 ost Yield Stiffness 0.682 0.686 | 0.688 | 0.691 0.798 0.801 0.803 0.806 0.903 0.905 0.908 0.910 0.913 1.05 1.05 1.05 1.06 $y = 100\%)(\times 10^3 \text{kN/m})$ Characteristic 141 63 76 90 106 123 76 90 106 123 141 90 106 123 160 106 123 141 160 181 Equivalent shear stiffness(× 10³kN/m) 1.07 1.15 1.24 1.34 1.45 1.26 1.35 1.45 1.56 1.67 1.44 1.54 1.64 1.76 1.87 1.69 1.79 1.91 2.03 Equivalent Damping 0.219 | 0.244 | 0.266 | 0.285 | 0.302 | 0.223 | 0.246 | 0.266 | 0.284 | 0.300 | 0.227 | 0.247 | 0.266 | 0.283 | 0.298 | 0.229 | 0.248 | 0.266 | 0.282 | 0.282 |

Fig.5. LRB Properties

NS-Series (S₂ = 5type)

Code						
Designation	Compound	Shear Modulus (N/mm²) 0.392				
G4	G0.40	0.392				

- 4	Characteristics		NS08034	NS05584	NS07064	NS07594	NS08094	NSCESG4	NS09094	NS095G4	NS100G4	NS110G4	N512034	NS13064	NS140G4	NJ15094
	Outer Diamete	er (mm)	600	650	700	750	800	850	900	950	1000	1100	1200	1300	1400	1500
	Inner Diameter (mm)		15	15	15	15	20	20	20	20	25	25	25	30	30	40
	Effective Plan	e Area O*mm²)	2826	3317	3847	4416	5023	5671	6359	7085	7849	9498	11305	13266	15387	17659
	Thickness of (Rubber Layer	-	4.0	4.4	4.7	5.0	5.4	5.7	6.0	6.4	6.7	7.4	8.0	8.7	9.3	8.5
	Number of Rut Layers	ober (-)	30	30	30	30	30	30	30	30	30	30	30	30	30	35
	Total Rubber Thickness (mm)		120	132	141	150	162	171	180	192	201	222	240	261	279	298
	First Shape Factor(-)		36.6	36.1	36.4	36.8	36.1	36.4	36.7	36.3	36.4	36.3	36.7	36.5	36.8	42.9
Photos	Second Shape Factor		5.00	4.92	4.96	5.00	4.94	4.97	5.00	4.95	4.98	4.95	5.00	4.98	5.02	5.04
Dimensions	Diameter of FI	ange (mm)	900	950	1000	1100	1150	1200	1250	1300	1400	1500	1600	1700	1800	1900
	Thickness of Flange		22/28	22/28	22/28	22/28	24/32	24/32	28/36	28/36	28/36	30/38	32/40	32/40	37/45	50/100
	Diameter of Bolt Center (mm)		775	825	875	950	1000	1050	1100	1150	1250	1350	1450	1550	1650	1700
	Diameter (Number) of Fixing bolts (mm)		ø33×12	¢33×12	ø33×12	ø33×12	φ33×12	\$33×12	ø33×12	ø33×12	ø39×12	¢39×12	ø39×12	¢39×12	ø42×12	φ42×12
	Supposed Bolt (-)		M30	M36	M36	M36	M36	M39	M39							
	Thickness of One Reinforcing Steel Plate (mm)		3.1	3.1	3.1	3.1	4.4	4.4	4.4	4.4	4,4	4.4	4.4	4.4	5.8	5.8
	Height (mm)		265.9	277.9	286.9	295.9	353.6	362.6	379.6	391.6	400.6	425.6	447.6	468.6	537.2	694.7
	Total Weight (KN)		4.8	5.6	6.4	7.5	10.5	11.7	13.8	15.3	17.3	21.3	25.8	30.1	41.6	69.2
j	Critical Stress (N/mm²)	y=0 σ _s ,	65	63	64	65	63	64	65	64	64	64	65	65	65	70
	Ultimate	(γ ₀ , σ ₀)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)	(0,60)
	Compressive Stress	(γ ₁ , σ ₁)	(0.5,60)	(0.3,60)	(0.4,60)	(0.5,60)	(0.3,60)	(0.4,60)	(0.5,60)	(0.4,60)	(0.4,60)	(0.4,60)	(0.5,60)	(0.5,60)	(0.5,60)	(0.9,60)
omoreasian	(N/mm²)	(γ_a, σ_a)	(4.0,25)	(4.0,24)	(4.0,25)	(4.0,26)	(4.0,24)	(4.0,25)	(4.0,25)	(4.0,24)	(40,25)	(4.0,24)	(4.0,26)	(4.0,25)	(4.0,26)	(4.0,28)
Properties	Compressive Stiffness (× 10°kN/m) 228		2280	2420	2640	2850	2990	3200	3420	3560	3770	4130	4570	4920	5350	6070
	The second secon		15.0+0.0	15.0 0.0	15.0*0.0	15.0*0.0	15.0,50	15.0 0.0	15.0+0.0	15.0+0.0	15.0*0.0	15.0 0.0	15.0*0.0	15.0+0.0	15.0 5.0	15.0*0.0
	Nominal Long Column Load	Term (kN)	4240	4970	5770	6620	7540	8510	9540	10600	11800	14200	17000	19900	23100	26500
	Allowable Tensile (y=100%)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1,0	1.0	1.0	1.0
Shear Properties	Shear Stiffness (x (critical stress: y	10 ³ k/w/m)	0.923	0.985	1.07	1.15	1.22	1.30	1.38	1.45	1.53	1.68	1.85	1.99	2.16	2.33

Fig.6. NRB Properties

Appendix C: Fixed building output

Fig.7. Displacement on Section AG

ĺ	<u>iu</u>	DISPLAC	EMENTS AND	DRIFTS AT	POINT OBJECT	92	×
Γ	File						
ı		STORY	DISP-X	DISP-Y	DRIFT-X	DRIFT-Y	
		STORY7	0.000000	0.000000	0.000000	0.000000	
		STORY6	0.000000	0.000000	0.000000	0.000000	
		STORY5	0.024019	0.155744	0.000145	0.005357	
		STORY4	0.023436	0.134183	0.000803	0.007297	
		STORY3	0.020203	0.104813	0.001550	0.009655	
		STORY2	0.013962	0.065952	0.002034	0.009922	
		STORY1	0.005775	0.026014	0.001435	0.006463	
Ĺ							

Fig.8. Maximum Displacement and Story Drift Ratio

Fig.9. Story shears

Fig. 10. Story acceleration on joint 97 at 4th floor

Appendix D: Base Isolator building output

Fig.11. Displacement on Section A

Fig.12. Maximum Displacement at Base

M DISPLAC	EMENTS AND	DRIFTS AT	POINT OBJECT	67	×
File					
STORY	DISP-X	DISP-Y	DRIFT-X	DRIFT-Y	
STORY7	0.000000	0.000000	0.000000	0.000000	
STORY6	0.000000	0.000000	0.000000	0.000000	
STORY5	-0.120179	0.266101	0.000670	0.001482	
STORY4	-0.117484	0.260134	0.001278	0.002264	
STORY3	-0.112339	0.251019	0.001802	0.003307	
STORY2	-0.105087	0.237708	0.002375	0.004984	
STORY1	-0.095527	0.217649	0.005823	0.015318	

Fig.13. Maximum Displacement and Story Drift Ratio

				Story Shears								
Story	Load	Loc	P	VX	VY	Т	MX	MY	J.			
STORY5	HIST2 MAX	Тор	0.00	2592.49	3342.90	78142.440	320.454	489.755	1-			
STORY5	HIST2 MAX	Bottom	0.00	2592.49	3342.90	78142.440	12682.578	10924.518	1			
STORY5	HIST2 MIN	Тор	0.00	-2803.71	-3071.34	-95860.315	-335.232	-532.905	1			
STORY5	HIST2 MIN	Bottom	0.00	-2803.71	-3071.34	-95860.315	-13790.402	-11816.050				
STORY4	HIST2 MAX	Тор	0.00	5950.33	7129.70	120740.810	12682.578	10924.518	1			
STORY4	HIST2 MAX	Bottom	0.00	5950.33	7129.70	120740.810	32983.055	33139.675	1			
STORY4	HIST2 MIN	Тор	0.00	-6251.42	-5190.19	-164027.177	-13790.402	-11816.050				
STORY4	HIST2 MIN	Bottom	0.00	-6251.42	-5190.19	-164027.177	-42487.434	-35848.815				
STORY3	HIST2 MAX	Тор	0.00	8966.86	7815.47	201920.274	32983.055	33139.675	1			
STORY3	HIST2 MAX	Bottom	0.00	8966.86	7815.47	201920.274	57656.102	67645.385	1			
STORY3	HIST2 MIN	Тор	0.00	-8927.36	-6908.43	-152698.619	-42487.434	-35848.815				
STORY3	HIST2 MIN	Bottom	0.00	-8927.36	-6908.43	-152698.619	-73944.709	-69647.013				
STORY2	HIST2 MAX	Тор	0.00	10181.30	8314.88	227196.655	57656.102	67645.385	1			
STORY2	HIST2 MAX	Bottom	0.00	10181.30	8314.88	227196.655	92422.675	107459.179	1			
STORY2	HIST2 MIN	Тор	0.00	-11219.63	-8637.66	-169173.360	-73944.709	-69647.013	1			
STORY2	HIST2 MIN	Bottom	0.00	-11219.63	-8637.66	-169173.360	-101216.427	-114806.019	1			
STORY1	HIST2 MAX	Тор	0.00	10029.17	8596.90	167385.128	92422.675	107459.179				
STORY1	HIST2 MAX	Bottom	0.00	10029.17	8596.90	167385.128	139191.525	141443.941				
STORY1	HIST2 MIN	Тор	0.00	-13590.71	-11619.59	-187093.133	-101216.427	-114806.019				
STORY1	HIST2 MIN	Bottom	0.00	-13590.71	-11619.59	-187093.133	-124610.681	-169508.643	Ī,			

Fig.14. Story shears

Fig.15. Story acceleration on joint 97 at 4th floor