BAB III

LANDASAN TEORI

3.1.Kendaraan Rencana

Menurut Dirjen Bina Marga (1997), kendaraan rencana adalah yang dimensi dan radius putarnya digunakan sebagai acuan dalam perencanaan geometric jalan. Kendaraan rencana dikelompokan kedalam 3 kategori, yaitu:

- 1. kendaraan kecil, diwakili oleh mobil penumpang,
- 2. kendaraan sedang, diwakili oleh truk dan bus,
- 3. kendaraan besar, diwakili oleh truk-semi-trailer.

Dimensi dasar untuk masing-masing kategori kendaraan rencana ditunjukan dalam Tabel 3.1

Tabel 3.1. Dimensi Kendaraan Kencana

Kategori Kendaraan				Tonjo	olan (cm)		dius ıtar	Radius Tonjolan
Rencana	T	L	P	Depan	Belakang	Min	Max	(cm)
Kendaraan Kecil	130	210	580	90	150	420	730	780
Kendaraan Sedang	410	260	1210	210	240	740	1280	1410
Kendaraan Besar	410	260	2100	120	90	290	1400	1370

Sumber : Direktorat Jendral Bina Marga(1997)

3.2.Kecepatan Rencana

Kecepatan rencana (V_R) pada suatu ruas jalan adalah kecepatan yang dipilih sebagai dasar perencanaan geometrik jalan yang memungkinkan kendaraan bergerak dengan aman dan nyaman pada kondisi cuaca yang cerah, lalu lintas lengang, dan pengaruh samping jalan tidak berarti (Bina Marga, 1997).

Tabel 3.2. Kecepatan Rencana (V_R) sesuai Klasifikasi Fungsi dan Medan Jalan

	- Gui								
Fungsi	Kecepatan Rencana (VR) Km/Jam								
0	Datar	Bukit	Pegunungan						
Arteri	70 - 120	60 – 80	40 - 70						
Kolektor	60 - 90	50 - 60	30 - 50						
Lokal	40 - 70	30 - 50	20 - 30						

Sumber: Direktorat Jendral Bina Marga(1997)

3.3. Volume Lalu Lintas Rencana

Volume lalu lintas harian rencana (VLHR) adalah perkiraan volume lalu lintas harian pada akhir tahun rencana lalu lintas dinyatakan dalam SMP/hari (Bina Marga, 1997).

Tabel 3.3. Faktor Konversi Terhadap SMP

Jenis Kendaraan	Faktor Konversi
Kenadaraan tidak Bermotor	0.5
Sepeda Motor	0.5
Mobil Penumpang	1.0
Mini Bus	2.0
Truk Ringan	2.5
Bus	3.0
Truk Berat /trailer	3.0

Sumber: Suryadharma (1999)

Volume jam rencana (VJR) adalah perkiraan volume lalu lintas pada jam sibuk tahun rencana lalu lintas, dinyatakan dalam SMP/jam dan di hitung dengan rumus:

$$VJR = VLRH x \frac{K}{F}$$
 (3-1)

Keterangan :K = faktor volume lalu lintas jam sibuk (disebut faktor K)

F = faktor variasi tingkat lalu lintas perseperempat jam dalam satu jam (disebut faktor F)

Tabel 3.4. Nilai Faktor K dan Faktor F

VLHR	Faktor K (%)	Faktor F (%)
>50.000	4-6	0,9-1
30.000-50.000	6-8	0,8-1
10.000-30.000	6-8	0,8-1
5.000-10.000	8-10	0,6-0,8
1.000-5.000	10-12	0,6-0,8
< 1.000	12-16	< 0,6

Sumber: Direktorat Jendral Bina Marga(1997)

3.4.Metode Ekstrapolasi Garis Kecenderungan

Metode ekstrapolasi garis kecenderungan adalah salah satu metode yang sering digunakan dalam peramalan lalu lintas dimasa mendatang. Metode ini didasarkan pada konsep *time series*, yaitu suatu pengujian pada pola data historis kegiatan dan menganggap bahwa faktor-faktor yang menentukan variasi lalu lintas pada masa lalu menunjukan hubungan yang serupa pada masa yang akan

datang serta analisis dilakukan dengan memperhatikan pola kecenderungan data yang ada. Ada empat model garis pada metode ini adalah sebagai berikut:

1. Ekstrapolasi linier

Ekstrapolasi linier berpedoman bahwa jumlah pangkat dua dari jarak antara titik-titik dengan garis regresi harus sekecil mungkin. Garis linier menunjukan dua variabel dengan persamaan $Y = a \pm b(x)$, sehingga koefisien a dan b dapat dihitung dengan rumus:

$$a = \frac{(\Sigma y X \Sigma x^2) - (\Sigma x X \Sigma y x)}{(n X \Sigma x^2) - (\Sigma x)^2}$$
(3-2)

$$b = \frac{(n X \Sigma y x) - (\Sigma x X \Sigma y)}{(n X \Sigma x^2) - (\Sigma x)^2}$$
(3-3)

Keterangan: y = jumlah volume kendaraan

x = tahun pengamatan

n = jumlah tahun pengamatan

Kuat tidaknya hubungan diukur dengan nilai koefisien korelasi (r) dengan rumus:

$$r = \frac{n\sum XY - \sum X \cdot \sum Y}{\sqrt{(n\sum X^2 - (\sum X)^2 \cdot (n\sum Y^2 - (\sum Y)^2))}}$$
(3-4)

jika nilai r=1 maka sifat hubungan adalah sempurna dan positif, sedangkan jika r=(-1) maka sifat hubungannya adalah sempurna dan negatif. Jika r=0 maka tidak ada hubungan. Jika $r\neq 1$ maka sifat-sifat lain yang mempengaruhi hubungan tersebut. Pengaruh tersebut dinyatakan dengan koefisisen penentu dengan rumus: $Kp=r^2$ dengan r adalah koefisisen korelasi.

2. Ekstrapolasi eksponensial

Peramalan dilakukan dengan rumus sebagai berikut.

$$Y = A\ell^{BX} \tag{3-6}$$

$$ln Y = ln A + Bx ln\ell;$$
(3-7)

$$ln Y = ln A + BX$$
(3-8)

$$\ln A = \frac{\Sigma lnY - B\Sigma X}{n} \tag{3-9}$$

$$b = \frac{n(\Sigma X \ln Y) - (\Sigma X)(\Sigma \ln Y)}{n\Sigma x^2 - (\Sigma X)^2}$$
(3-10)

keterangan: Y = jumlah kendaraan,

X = tahun pengamatan.

Nilai koefisien korelasi dihitung dengan rumus:

$$r = \frac{n\Sigma X lnY - \Sigma X.\Sigma lnY}{\sqrt{[n\Sigma X^2 - (\Sigma X)^2 (n\Sigma (lnY)^2 - (\Sigma lnY)^2)]}}$$
(3-11)

3. Ekstrapolasi modifikasi eksponensial

Metode ini menggunakan rumus sebagai berikut. Y adalah nilai data yang diramal, X adalah tahun pengamatan, t adalah interval waktu, P_1 adalah nilai data pada tahun ke X_{p1} , P_2 adalah nilai data pada tahun ke X_{p2} , P_3 adalah nilai data pada tahun ke X_{p3} dan P_4 adalah nilai data pada tahun ke X_{p4} .

$$Y = AX^B \tag{3-12}$$

$$\operatorname{Ln} Y = \ln A + B \ln X \tag{3-13}$$

$$\operatorname{Ln} A = \frac{\Sigma \ln Y - B\Sigma \ln X}{n} \tag{3-14}$$

$$B = \frac{n\Sigma \ln X \ln Y - \Sigma \ln X \Sigma \ln Y}{N \Sigma (\ln X)^2 - (\Sigma \ln X)^2}$$
(3-15)

keterangan: Y = nilai data yang diramal,

X = tahun pengamatan,

t = interval waktu,

 P_1 = nilai data pada tahun ke X_{p1} ,

 P_2 = nilai data pada tahun ke X_{p2} ,

 P_3 = nilai data pada tahun ke X_{p3} ,

 P_4 = nilai data pada tahun ke X_{p4} .

Koefisien korelasi dapat dicari dengan analogi berikut.

$$Y = a + b \ln X \tag{3-16}$$

$$\operatorname{Ln} Y = \ln A + B \ln X, \tag{3-17}$$

$$r = \frac{n\Sigma lnX lnY - \Sigma lnX\Sigma lnY}{\sqrt{\{[n\Sigma (lnX)^2 - (\Sigma lnX)^2][n\Sigma (lnY)^2 - (\Sigma lnY)^2)]\}}}$$
(3-18)

keterangan: Y = jumlah kendaraan,

X = tahun pengamatan,

n = jumlah tahun pengamatan.

4. Ekstrapolasi geometrik

Persamaan ini menggunakan formula sebagai berikut.

$$Y = k + AB^{x} \tag{3-19}$$

$$\operatorname{Ln}(Y-k) = \ln A + X \ln B \tag{3-20}$$

$$B = \frac{P3 - P2}{P2 - P1} \tag{3-21}$$

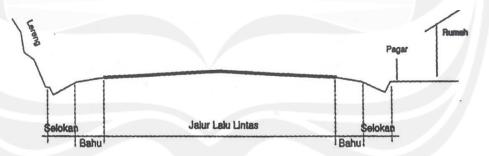
$$P_2 = k + AB^{XP2} (3-22)$$

$$P_1 = k + AB^{XPI} \tag{3-23}$$

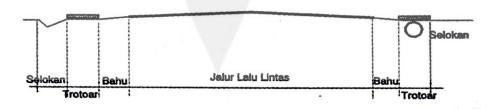
$$P_2 - P_1 = A(B^{XP2} - B^{XPI}) (3-24)$$

$$A = \frac{P2 - P1}{(BXP2 - BXP1)} \tag{3-25}$$

Nilai koefisien korelasi dianalogikan dari linier regresi:


$$Y = A + BX \tag{3-26}$$

$$\operatorname{Ln}(Y-k) = \ln a + X \ln b \tag{3-27}$$


$$r = \frac{n\Sigma(Xln(Y-k)) - \Sigma X \Sigma ln(Y-k)}{\sqrt{\{[n\Sigma X^2 - (\Sigma X)^2 (n\Sigma(ln(Y-k))^2 - (\Sigma ln(Y-k))^2)]\}}}$$
(3-28)

3.5.Lebar Jalan

Komposisi penampang melintang jalan terdiri atas jalur lalu lintas, median dan jalur tepian, bahu jalan, trotoar, selokan dan lereng (Bina Marga, 1997).

Gambar 3.1. Penampang Melintang Jalan Tipikal

Gambar 3.2. Penampang Jalan Tipikal Dengan Trotoar

1. Jalur lalu lintas

Jalur lalu lintas terdiri dari beberapa lajur dan dapat terdiri atas beberapa tipe, yaitu:

- a. 1 jalur-2 lajur-2 arah (2/2 TB),
- b. 1 jalur-2 lajur-1 arah (2/1 TB),
- c. 2 jalur-4 lajur-2 arah (4/2 B),
- d. 2 jalur-n lajur- 2 arah (n/2 B).

Keterangan: TB = tidak terbagi

B = terbagi

n = jumlah lajur

Lebar jalur sangat ditentukan oleh jumlah dan lebar lajur peruntukannya. Lebar jalur minimum adalah 4,5 meter yang memungkinkan dua kendaraan kecil saling berpapasan. Papasan kendaraan besar yang terjadi sewaktu-waktu dapat menggunakan bahu jalan (Bina Marga, 1997). Tabel 3.1 menunjukan lebar jalur dan bahu jalan sesuai VLHR-nya.

Tabel 3.5. Lebar Jalur dan Bahu Jalan Sesuai VLHR-nya

		Al	RTERI			KOLEKTOR				LOKAL			
VLHR	Ideal		Minimum		Ide	Ideal		Minimum		deal	Minimum		
(smp/hari)	Lebar Jalur (m)	Lebar Bahu (m)	Lebar Jalur (m)	Lebai Bahu (m)									
<3.000	6,0	1,5	4,5	1,0	6,0	1,5	4,5	1,0	6,0	1,0	4,5	1,0	
3.000- 10.000	7,0	2,0	6,0	1,5	7,0	1,5	6,0	1,5	7,0	1,5	6,0	1,0	
10.001- 25.000	7,0	2,0	7,0	2,0	7,0	2,0	**)	**)	-	-	-	-	
>25.000	2n×3,5*)	2,5	2×7,0*)	20	2n×3,5*)	2,0	**)	**)	-	-			

Keterangan

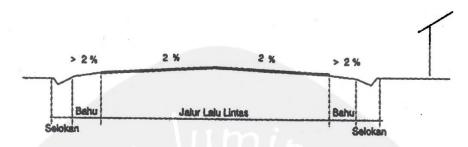
**)= Mengacu pada persyaratan ideal
*) = 2 jalur terbagi, masing – masing n × 3, 5m, di mana n= Jumlah lajur per jalur
- = Tidak ditentukan

Sumber: Direktorat Jendral Bina Marga(1997)

Tabel 3.6.Tabel Pelebaran Perkerasan Jalan Pada Tikungan

R	Kecepatan Rencana, Va (km/jam)														
(m)	50		60		70		80		90		100		110		120
	1	2	1	2	1	2	1	2	1	2	1	2	1	2	2
1500	0.3	0.0	0.4	0.0	0.4	0.0	0.4	0.0	0.4	0.0	0.5	0.0	0.6	0.0	0.1
1000	0.4	0.0	0.4	0.0	0.4	0.1	0.5	0.1	0.5	0.1	0.5	0.1	0.6	0.2	0.2
750	0.6	0.0	0.6	0.0	0.7	0.1	0.7	0.1	0.7	0.1	0.8	0.2	0.8	0.3	0.3
500	8.0	0.2	0.9	0.3	0.9	0.3	1.0	0.4	1.0	0.4	1.1	0.5	1.0	0.5	
400	0.9	0.3	0.9	0.3	1.0	0.4	1.0	0.4	1.1	0.5	1.1	0.5			
300	0.9	0.3	1.0	0.4	1.0	0.4	1.1	0.5		0.5					
250	1.0	0.4	1.1	0.5	1.1	0.5	1.2	0.6							
200	1.2	0.6	1.3	0.7	1.3	0.8	1.4								
150	1.3	0.7	1.4	0.8	Ē										
140	1.3	0.7	1.4	0.8											
130	1.3	0.7	1.4	0.8											
120	1.3	0.7	1.4	0.8											
110	1.3	0.7					- 1	Keter	onac						
100	1.4	0.8							-		4-1-7	(D) -	200		
90	1.4	8.0										(B) =			
80	1.6	1.0						Kol	om 2	, un	tuk ((B) =	3,50) m	
70	1.7	1.0									~ *				

Sumber: Direktorat Jendral Bina Marga(1997)


Lebar lajur tergantung pada kecepatan dan kendaraan rencana serta fungsi dan kelas jalan. Pada alinyemen lurus, lajur lalu lintas memerlukan kemiringan normal untuk kelancaran drainase, yaitu:

- a. 2-3% untuk perkerasan aspal dan perkerasan beton,
- b. 4-5% untuk perkerasan kerikil.

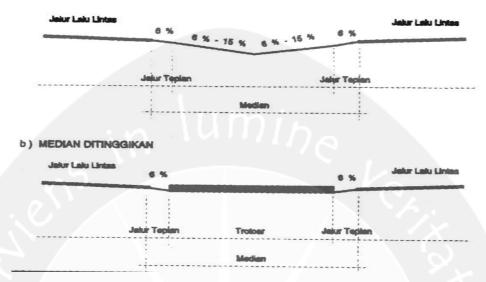
Tabel 3.7. Lebar Lajur Jalan Ideal

Fungsi Jalan	Kelas Jalan	Lebar Lajur Ideal (m)
	I	3,75
Arteri	II, III A	3,50
Kolektor	III A, III B	3,00
Lokal	III C	3,00

Sumber : Direktorat Jendral Bina Marga(1997)

Gambar 3.3. Kemiringan Melintang Jalan Normal

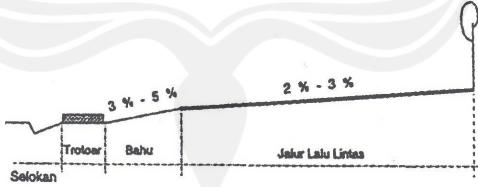
2. Median Jalan


Menurut Dirjen Bina Marga (1997), jalan 2 arah dengan 4 jalur perlu dilengkapi dengan median jalan yang terdiri atas jalur tepian selebar 0,25-0,5 meter. Median jalan dapat dibedakan menjadi 2 bentuk, yaitu median direndahkan dan median ditinggikan.

Tabel 3.8. Lebar Minimum Median Jalan

Bentuk Median	Lebar Minimum (m)			
Median ditinggikan	2,0			
Median direndahakan	7,0			

Sumber: Direktorat Jendral Bina Marga(1997)


a) MEDIAN DIRENDAHKAN

Gambar 3.4. Median Direndahkan dan Median Ditinggikan

3. Bahu Jalan

Menurut Dirjen Bina Marga (1997), bahu jalan adalah bagian jalan yang terletak di tepi jalur lalu lintas dan harus diperkeras. Kemiringan bahu jalan normal antara 3-5 %.Lebar bahu dapat dilihat pada tabel 3.5.

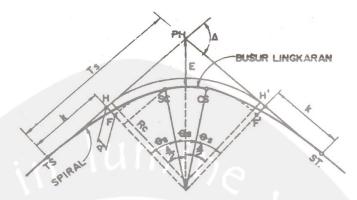
Gambar 3.5. Kemiringan Bahu Jalan

3.6.Alinyemen Horizontal

Perancangan alinyemen horizontal pada jalan lingkar utara Kota Sragen, penulis menggunakan metode Bina Marga karena metode ini merupakan metode yang sesuai untuk jalan-jalan di Indonesia.

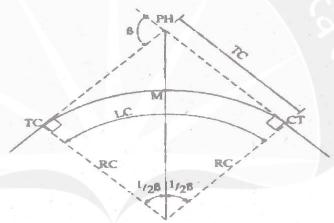
Menurut Sukirman (1999), alinyemen horizontal adalah proyeksi sumbu jalan pada bidang horizontal dan biasa dikenal dengan istilah "situasi jalan" atau "trase jalan". Alinyemen horizontal terdiri atas bagian lurus dan bagian lengkung jalan (disebut juga tikungan). Panjang bagian lurus jalan ditetapkan sebagai berikut:

Tabel 3.9. Panjang Bagian Lurus Maksimum

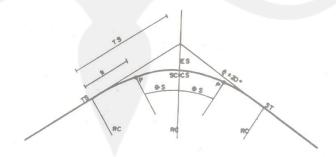

Fungsi	Panjang Bagian Lurus Maksimum							
	Datar	Perbukitan	Pegunungan					
Arteri	3.000	2.500	2.000					
Kolektor	2.000	1.750	1.500					

Sumber: Direktorat Jendral Bina Marga(1997)

1. Tikungan


a. Spiral-Circle-Spiral (SCS)

Merupakan lengkung peralihan dari bagian lurus (tangen) berubah menjadi bentuk lingkaran (*circle*).


Gambar 3.6. Bentuk Spiral-Circle-Spiral

b. Full Circle (FC)

Gambar 3.7. Bentuk FullCircle

c. Spiral-Spiral (SS)

Gambar 3.8. Bentuk Spiral-Spiral

2. Superelevasi

Menurut Dirjen Bina Marga (1997), superelevasi adalah suatu kemiringan melintang pada tikungan yang berfungsi mengimbangi gaya sentrifugal F yang diterima kendaraan saat berjalan melalui tikungan pada kecepatan V_R . Nilai superelevasi maksimum ditetapkan 10%.

3. Jari-jari tikungan

Jari-jari tikungan (R_{min}) ditetapkan sebagai berikut:

$$R_{min} = \frac{V_R^2}{127 (e \max + f \max)}$$
 (3-29)

Atau
$$D \ maks = \frac{181913,53 \ (emaks + fmaks)}{V_R^2}$$
 (3-30)

 $keterangan: R_{min} = jari-jari\ tikungan\ minimum\ (m)$

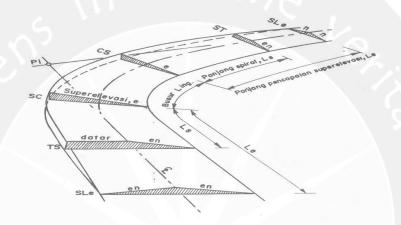
D maks = derajat lengkung maksimum (°)

V = kecepatan rencana (km/jam)

e_{max}= superelevasi maksimum (%)

f = koefisien gesek, untuk perkerasan aspal = 0,14-0,24

Tabel 3.10. Panjang Jari-Jari Minimum (dibulatkan)


I diber erizor I dinjun	8 0 411	OCCL		CALLE (CAL	NO CALCULA	10011		
V _R (km/jam)	120	100	80	60	50	40	30	20
Jari-Jari Minimum	600	370	210	110	80	50	30	15

Sumber : Direktorat Jendral Bina Marga(1997)

4. Lengkung peralihan

Menurut Dirjen Bina Marga (1997), lengkung peralihan adalah lengkung yang disisipkan diantara bagian lurus jalan dan bagian lengkung jalan berjari-jari

tetap R. Lengkung peralihan berfungsi mengantisipasi perubahan alinemen jalan dari bentuk lurus (R tak terhingga) sampai bagian lengkung jalan berjarijari tetap sehingga gaya sentrifugal yang bekerja pada kendaraan saat berjalan pada tikungan berubah secara berangsur-angsur, baik ketika mendekati tikungan maupun saat meninggalkan tikungan (Bina Marga, 1997).

Gambar 3.9.Perubahan Kemiringan Melintang

Lengkung peralihan berbentuk spiral. Panjang lengkung peralihan (Ls) ditetapkan pertimbangan bahwa :

- a. lama waktu perjalanan pada lengkung peralihan dibatasi untuk menghindari $\mbox{kesan perubahan alinemen yang mendadak , ditetapkan 3 detik (pada kecepatan <math>V_R$), }
- b. gaya sentrifugal yang bekerja pada kendaraan dapat diantisipasi berangsurangsur pada lengkung peralihan dengan aman,
- c. tingkat perubahan kelandaian melintang jalan (r_e) dari bentuk kelandaian normal ke kelandaian superelevasi penuh tidak boleh melampaui $r_{e\text{-max}}$ yang ditetapkan sebagai berikut:

- 1) untuk VR ≤ 70 km/jam, $r_{e\text{-max}} {= 0.035}$ m/m/detik,
- 2) untuk $VR \ge 80$ km/jam, $r_{e-max} = 0.025$ m/m/detik.

Ls ditentukan menggunakan 3 rumus dibawah ini dan diambil nilai terbesar:

a. berdasarkan waktu tempuh maksimum di lengkung peralihan

$$Ls = \frac{V_R}{3.6}T\tag{3-31}$$

keterangan: T = waktu tempuh pada lengkung peralihan, ditetapkan 3 detik,

 V_R = kecepatan rencana (km/jam).

b. berdasarkan antisipasi gaya sentrifugal

$$Ls = 0.002 \frac{V_R^3}{R C} - 2,272 \frac{V_R e}{C}$$
 (3-32)

c. berdasarkan tingkat pencapaian perubahan kelandaian

$$Ls = \frac{(e_m - e_n) \, V_R}{3.6 \, r_e} \tag{3-33}$$

keterangan: V_R=kecepatan rencana (km/jam)

em = superelevasi maksimum

en = superelevasi normal

re= tingkat perubahan kemiringan melintang jalan (m/m/detik).

untuk tujuan praktis Ls dapat ditetapkan menggunakan tabel berikut:

Tabel 3.11. Panjang Peralihan (Ls) dan Superelevasi yang dibutuhkan (e maks = 10%)

D	R	V = 50 k	m/jam	V = 60 km	n/jam	V = 70 kr	n/jam	V = 80 k	m/jam	V = 90 k	m/jan
(0)	(m)	e	Ls	e	Ls	e	Ls	e	Ls	e	Ls
0,250	5730	LN	45	LN	50	LN	60	LN	70	LN	75
0,500	2865	LN	45	LN	50	LP	60	LP	70	LP	75
0,750	1910	LN	45	LP	50	LP	60	0,020	70	0,025	75
1,000	1432	LP	45	LP	50	0,021	60	0,027	70	0,033	75
1,250	1146	LP	45	LP	50	0,025	60	0,033	.70	0,040	75
1,500	955	LP	45	0,023	50	0,030	60	0,038	.70	0,047	75
1,750	819	LP	45	0,026	50	0,035	60	0,044	70	0,054	75
2,000	(716	LP	45	(0,029)	30	0,039	60	0,049	70	0,060	75
2,500	573	0,026	45	0,036 .	50	0,047 1	60	0,059	70	0,072	75
3,000	477	0,030	45	0,042	50	0,055	60	0,068	70	0,081	75
3,500	409	0,035	45	0,048 -	50	0,062	60	0,076	70	0,089	75
4,000	358	0,039	45	0,054	50	0,068	60	0,082	70	0,095	75
4,500	318	0,043	45	0,059	50	0,074	60	0,088	70	0,099	75
5,000	286	0,048	45	0,064	50	0,079	60	0,093	70	0,100	75
6,000	239	0,055	45	0,073	50	.0,088	60	0,098	70	Dmaks =	5.12
7,000	205	0,062	45	0,080	50	0,094	60	Dmaks =	6.32		
8,000	179	0,068	45	0,086	50	0,098	60			-	
9,000	159	0,074	45	0,091	60	0,099	60				
10,000	143	0,079	45	0,095	60	Dmaks =	9.12	1			
11,000	130	0,083	45	0,098	60			-			
12,000	119	0,087	45	0,100	60		5:	SPINGL			
13,000	110	0,091	50	Dmaks =	12.79			,			
14,000	102	0,093	50								
15,000	95	0,096	50								
16,000	90	0,097	50								
17,000	84	0,099	60								
18,000	80	0,099	60								
19,000	75	Dmaks	= 18.85	1							

Sumber: Direktorat Jendral Bina Marga(1997)

Tabel 3.12.Besaran p* dan k*

	0s	. p*	k*	0s	p*	k*
	0,5	0,0007315	0,4999987	20,5	0,0309385	0,4977965
	1,0	0,0014631	0,4999949	21,0	0,0317409	0,4976842
_	1,5	0,0021948	0,4999886	21,5	0,0325466	0,4975688
	2,0	0,0029268	0,4999797	22,0	0,0333559	0,4974504
	2,5	0,0036591	0,4999682	22,5	0,0341687	0,4973288
	3,0	0,0043919	0,4999542	23,0	0,0349852	0,4972042
	3,5	0,0051251	0,4999377	23,5	0,0358055	0,4970764
	4,0	0,0058589	0,4999186	24,0	0,0366296	0,4969454
	4,5	0,0065934	0,4998970	24,5	0,0374576	0,4968112
	5,0	0,0073286	0,4998727	25,0	0,0382895	0,4966738
	5,5	0,0080647	0,4998459	25,5	0,0391255	0,4965331
	6,0	0,0088016	0,4998166	26,0	0,0399657	0,4963891
	6,5	0,0095396	0,4997846	26,5	0,0408101	0,4962418
	7,0	0,0102786	0,4997501	27,0	0,0416587	0,4960912
	7,5	0,0110188	0,4997130	27,5	0,0425117	0,4959372
	8,0	0,0117602	0,4996732	28,0	0,0433692	0,4957798
	8,5	0,0125030	0,4996309	28,5	0,0442312	0,4956189
	9,0	0,0132471	0,4995859	29,0	0,0450978	0,4954546
	9,5	0,0139928	0,4995383	29,5	0,0459690	0,4952868
	10,0	0,0147400	0,4994880	30,0	0,0468450	0,4951154
	10,5	0,0154888	0,4994351	30,5	0,0477258	0,4949405
	11,0	0,0162394	0,4993795	31,0	0,0486115	0,4947620
	11,5	0,0169919	0,4993213	31,5,	0,0495022	0,4945798
	12,0	0,0177462	0,4992603	32,0	0,0503979	0,4943939
	12,5	0,0185025	0,4991966	32,5	0,0512988	0,4942044
	13,0	0,0192608	0,4991303	33,0	0,0522048	0,4940111
	13,5	0,0200213	0,4990611	33,5	0,0531162	0,4938140
	14,0	0,0207840	0,4989893	34,0	0,0540328	0,4936131
	14,5	0,0215490	0,4989146	34,5	0,0549549	0,4934084
	15,0	0,0223165	0,4988372	35,0	0,0558825	0,4931997
	15,5	0,0230863	0,4987570	35,5	0,0568156	0,4929872
	16,0	0,0238588	0,4986739	36,0	0,0577544	0,4927706
	16,5	0,0246338	0,4985880	36,5	0,0586989	0,4925501
	17,0	0,0254116	0,4984993	37,0	0,0596492	0,4923254
	17,5	0,0261921	0,4984077	37,5	0,0606053	0,4920967
	18,0	0,0269756	0,4983132	38,0	0,0615673	0,4918639
	18,5	0,0277619	0,4982158	38,5	0,0625354	0,4916269
	19,0	0,0285513	0,4981154	39,0	0,0635095	0,4913857
	19,5	0,0293438	0,4980121	39,5	0,0644897	0,4911402
	20,0	0,0301396	0,4979058	40,0	0,0654762	0,4908904

Ls = 1m dan 0s tertentu, dengan mempergunakan persamaan (18) diperoleh Rc p* dan k* diperoleh dengan mempergunakan persamaan (20) dan (21), untuk Ls = 1 m dan 0s tertentu, dan Rc dari perhitungan.

 $p = p^*.Ls$

 $k \neq k^*.Ls$

Sumber: Direktorat Jendral Bina Marga(1997)

3.7. Simpang Bersinyal (traffic signal)

Menurut MKJI, parameter kinerja simpang ditentukan oleh kondisi arus lalu lintas pada simpang, waktu siklus (c), kapasitas (C), derajat kejenuhan (DS), tundaan (D) dan panjang antrian (QL).

3.7.1. Kondisi arus lalu lintas pada simpang

Kondisi lalu lintas pada simpang yang diperhatikan adalah jumlah kendaraan yang berbelok (ke kanan dan ke kiri), kondisi simpang, lingkungan dan geometrik yang akan digunakan untuk menghitung rasio kendaraan yang berbelok, arus jenuh dasar, dan nilai arus jenuh.

rasiokendaraan belok kiri (
$$P_{LT}$$
) = $\frac{LT (smp \ per \ jam)}{Total (smp \ per \ jam)}$ (3-34)

rasio kendaraan belok kanan
$$(P_{RT}) = \frac{RT (smp \ per \ jam)}{Total (smp \ per \ jam)}$$
 (3-35)

keterangan : LT = kendaran belok kiri(smp/jam)

RT = kendaraan belok kanan (smp/jam)

Arus jenuh dasar
$$(S_0) = 600 \times We$$
 (3-36)

Nilai arus jenuh (S) dihitung dengan rumus:

$$S = S_0 x F_{CS} x F_{SF} x F_G x F_P x F_{RT} x F_{LT}$$
 (3-37)

keterangan: We = lebar efektif

 S_0 = arus dasar jenuh

 F_{CS} = faktor penyesuaian ukuran kota

 F_{SF} = faktor penyesuaian tipe lingkungan

 F_G = faktor penyesuaian kelandaian

Fp = faktor penyesuaian pengaruh parkir

 F_{RT} = faktor penyesuaian belok kanan

 F_{LT} = faktor penyesuaian belok kiri

Tabel 3.13. Faktor Penyesuaian Ukuran Kota (F_{CS})

Jumlah Penduduk Kota	Faktor Penyesuaian Ukuran Kota
(Juta Jiwa)	(F_{CS})
> 3,0	1,05
1,0-3,0	1,00
0.5 - 1.0	0,94
0,1-0,5	0,83
< 0,1	0,82

Sumber: Manual Kapasitas Jalan Indonesia (1997)

3.7.2. Waktu siklus dan waktu hijau

Waktu siklus sebelum penyesuaian (c_{ua})

$$Cua = (1,5 \times LTI + 5) / (1 - IFR)$$
 (3-38)

Waktu hijau
$$(g) = (c_{ua} - LTI) x PR$$
 (3-39)

Rasio hijau
$$(GR) = g/c$$
 (3-40)

 $keterangan: c_{ua} = waktu \; siklus \; sebelum \; penyesuaian \; sinyal \; (detik)$

LTI = waktu hilang total per siklus

IFR = rasio arus simpang \sum (FR_{CRIT})

 $PR = rasiao \; fase \; FR_{CRIT} \! / \! \sum \; (FR_{CRIT})$

3.7.3. Kapasitas dan derajat kejenuhan

Kapasitas
$$(C) = S x g/c$$
 (3-41)

Derajat kejenuhan
$$(DS) = Q/C$$
 (3-42)

keterangan : C = kapasitas (smp/jam)

S = nilai arus jenuh yang disesuaikan

Q = arus lalu lintas (smp/jam)

g = waktu hijau (detik)

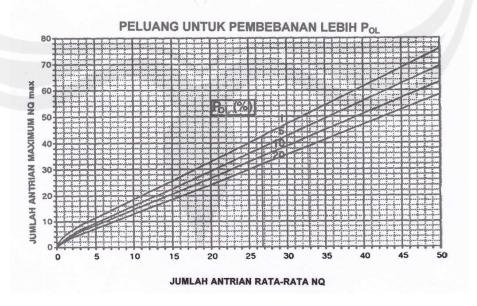
c = waktu siklus yang disesuaikan (detik)

3.7.4. Panjang antrian dan tundaan

$$NQ_{1} = 0.25 \times C \times [(Ds-1) + \sqrt{(DS-1)^{2} + \frac{8 \times (DS-0.5)}{C}}]$$
 (3-43)

$$NQ_2 = c x \frac{NQ1 \times 3600}{1 - GR \times DS} \times \frac{Q}{3600}$$
 (3-44)

$$NQtotal = NQ_1 + NQ_2 \tag{3-45}$$


Panjang antrian (QL) dihitung dengan rumus:

$$QL = \frac{NQ \max 20}{W \max k} \tag{3-46}$$

keterangan : QL = panjang antrian

NQ = jumlah smp

W_{masuk} = lebar masuk

Gambar 3.10.Grafik Jumlah Antrian (NQmax)

Angka henti (NS) =
$$0.9 x \frac{NQ}{Q x c} x 3600$$
 (3-47)

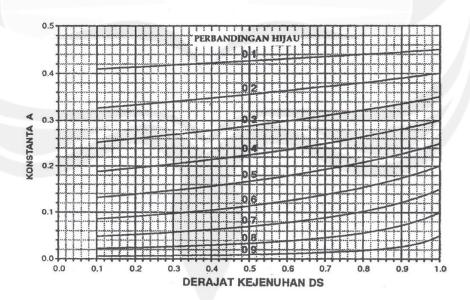
Jumlah kendaraan terhenti
$$(N_{SV}) = Q \times NS$$
 (3-48)

 $keterangan: N_{SV} = jumlah kendaraan terhenti (smp/jam)$

NQ = jumlah kendaraan antri

Tundaan rerata (
$$DT$$
) = $c \times A + \frac{NQ1 \times 3600}{C}$ (3-49)

Tundaan Geometrik
$$(DG) = (1-P_{SV}) \times P_{LT} \times 6 \times (P_{SV} \times 4)$$
 (3-50)


keterangan: DT = tundaan kendaraan rerata

A = konstanta berdasarkan gambar 3.11

 NQ_1 = jumlah smp yang tersisa dari fase hijau

 $P_{SV}=rasio\ kendaraan\ terhenti\ pada\ pendekat$

 P_{LT} = rasio kendaraan berbelok pada pendekat

Gambar 3.11.Grafik Penetapan Tundaan Rerata (DT)