BAB II

TINJAUAN PUSTAKA DAN DASAR TEORI

2.1 Tinjauan Pustaka

Bab ini akan membahas review analisis-analisis yang sejenis dengan Identifikasi masalah Teknologi Infomasi dan Sistem Informasi, perbandingan hasil analaisis yang telah di lakukan dengan penelitian yang mau dilakukan dengan menggunakan COBIT framework.

Pada penelitian yang dilakukan oleh (Erlangga, et al., 2016) yang melakukan penilitian di Kementrian Luar Negeri / The Ministry of Foreign Affairs (MOFA) dan mendapat hasil penelitian adalah Tata kelola dan pengelolaan TI merupakan area yang terus berkembang karena meningkatnya jumlah peraturan yang memerlukan kepatuhan, dan kebutuhan untuk menurunkan risiko dan menghindari tindakan yang terkait dengan ketidakpatuhan. Tujuan Pengendalian Informasi Teknologi terkait (COBIT) adalah kerangka kerja untuk tata kelola dan pengelolaan TI yang dikembangkan oleh ISACA, yang berevolusi menjadi versi COBIT 5 yang dirilis pada tahun 2012.

Menurut (Krisanthi, et al., 2014) melakukan penelitian tentang Identifikasi masalah tata kelola dengan COBIT 4.1 hasil "Remedial strategies are given to overcome the maturity gap based on COBIT 4.1 and ITIL V3 for procurement governance applications at the university. Process for improvement strategy according

to ITIL is based on the mapping is being done by one-way mapping from COBIT towards ITIL and is irreversible. "

Artinya: "strategi perbaikan yang diberikan untuk mengatasi kesenjangan berdasarkan COBIT 4.1 dan ITIL V3 untuk aplikasi pemerintahan pengadaan di universitas. Proses untuk strategi peningkatan sesuai dengan ITIL didasarkan pada pemetaan yang dilakukan oleh pemetaan satu arah dari COBIT terhadap ITIL dan tidak dapat diubah."

Menurut (Barkah & Dianingrum, 2015) dari jurnal yang berjudul "Evaluasi Penarapan Sistem Informasi dan Teknologi Informasi menggunakan COBIT Framework DI STMIK AMIKOM Purwokerto". Tujuan penelitian ini adalah sejauh mana STMIK AMIKOM Purwokerto telah menerapkan tata kelola sistem informasi dan teknologi informasi. Tujuan lain dari penelitian ini yaitu bagaimana tingkat kematangan penerapan tata kelola sistem informasi dan teknologi informasi serta rekomendasi yang cocok untuk meningkatkan tata kelola sistem informasi dan teknologi informasi di STMIK AMIKOM Purwokerto. Hasil penelitian ini menunjukkan skor tingkat kematangan penerapan tata kelola SI/TI di STMIK AMIKOM Purwokerto yang dipoleh yaitu 3 dan berada pada level Defined Proccess.

Lain halnya dengan (Monica, et al., 2015) yang melakukan audit Awal Sistem Informasi pada PT. X Berdasarkan Standar Control Objectives for Information

and Related Technology (COBIT 4.1). Menurut mereka PT. X merupakan perusahaan yang bergerak dalam bidang konstruksi besi dan baja yang terletak di wilayah Surabaya. Dalam melaksanakan audit sistem informasi diterapkan metodologi audit sistem informasi yang sesuai dengan metodologi yang diajukan oleh IT Assurance Guide: Using COBIT. Pada dasarnya dalam metodologi audit, dilakukan metodologi pengumpulan data, yang meliputi observasi dan wawancara dilakukan dengan pihak terkait.

Menurut analisis (Rozas & Effendy, 2012) ditemukan RACI chart menyebutkan CIO, CEO, IT Risk Manager, dan posisi-posisi lain yang terdapat dalam suatu perusahaan/organisasi, namun tidak terdapat end-user di dalamnya. Padahal sebagaimana diketahui end user merupakan pengguna dari sebuah sistem informasi yang jumlahnya lebih banyak dari posisi yang disebutkan dalam RACI chart. Untuk itu penelitian ini berupaya mengukur efektifitas hasil audit TI dari sudut pandang end user. Objek yang digunakan adalah hasil audit TI yang sudah pernah dilakukan sebelumnya di Universitas Narotama Surabaya pada tahun 2011.

Penelitian yang lakukan oleh (Setiawan & Mustofa, 2013), yang melakukan penelitian "Metode Identifikasi masalah Tata Kelola Teknologi Informasi di Instasi Pemerintahan". Demi menciptakan nilai tambah dan meminimalkan risiko Teknologi Informasi (TI) dibutuhkan manajemen pengelolaan semua sumber daya TI yang efisien dan efektif, antara lain melalui IT

Governance (Tata Kelola TI). Berdasarkan tujuannya, Identifikasi masalah Tata kelola TI memiliki tujuan yang berbeda dengan tiga jenis Identifikasi masalah berdasarkan UU No. 15 tahun 2004, karena Identifikasi masalah ini bertujuan khusus untuk memeriksa pengelolaan seluruh sumber daya TI (termasuk di dalamnya manajemen organisasi dan pimpinan), apakah dapat mendukung dan sejalan dengan strategi bisnis. Dibandingkan audit di sektor privat, audit di sektor publik dalam hal ini di instansi pemerintah, memerlukan perhatian khusus, karena karakteristik manajemen sektor publik berkaitan erat dengan kebijakan dan pertimbangan politik serta ketentuan perundang-undangan. Penelitian ini mengusulkan sebuah metode audit tata kelola TI di instansi pemerintah. Metode yang dihasilkan dapat dijadikan sebagai salah satu acuan audit pemerintah dalam mengevaluasi risiko yang terkait dengan Tata Kelola ΤI di instansi pemerintah.

2.1.1 Penelitian terdahulu

Tabel 2.1 Penelitian terdahulu

Penelitian terdahulu NUMIA				
Tabel 2.1 Penel: Nama Peneliti	Obyek Penelitian	Subyek Penelitian	Metode Penelitian	Hasil Penelitian
(Alit, et al., 2015)	Universitas Pembangunan Nasional "Veteran" Jawa Timur	Tata Kelola Infrastruktur Teknologi Informasi	COBIT Framework 4.1 dan IT Balanced Scorecard	Perbaikan Tata Kelola Infrastruktur Teknologi Informasi
Agung Raditya(Putra, 2015)	Keplaa Unit, Manajer TI, Pegaawai Puskom, Staf IT fakultas, Dosen	Evaluasi kelola Teknologi Informasi Akademik di Universitas Pendidikan Ganesha	COBIT Framework 5	Hasil penelitian merumuskan rekomendasi yang mungkin diberikan sebagai perbaikan tata kelola TI dalam layanan sistem informasi akademik di

		1		
		lumit		Universitas
		10.777	/e	Pendidikan
	~5 ·		Lo	Ganesha
Erlan Erlangga,	Kemenentrian	Evaluasi tata	COBIT	Rekomendasi
Yudo Giri	luar negeri	kelola	framework 5	perbaikan tata
Sucahyo,		Teknologi		kelola teknologi
Muhammad Kafsu		informasi dan	λ	informasi dan
Hammi(Erlangga,		prioritas		prioritas
et al., 2016)		perbaikan		perbaikan proses.
		proses		
Setia Wardani,	Fakultas ABC	Audit Tata	COBIT	Hasil penelitian
Mita		Kelola	Framework	merumuskan
Puspitasari		Teknologi	4.1	rekomendasi yang
(Wardani &		Informasi		mungkin diberikan
Puspitasari,				sebagai perbaikan
2014)				tata kelola TI

2.2 Dasar Teori

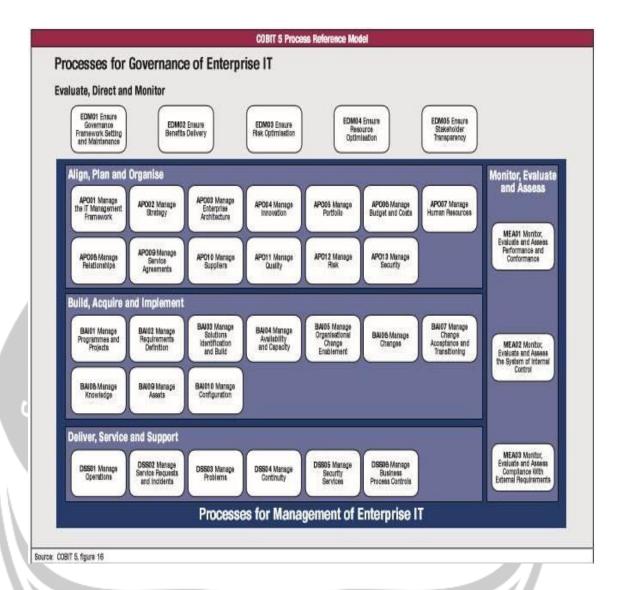
2.2.1 Tata Kelola Teknologi Informasi

Definisi lain mengenai IT governance lebih terkenal adalah:

governance is the responsibility executives the board of and directors, consists of the leadership, organisational structures and processes that ensure that enterprise's ITsustains and extends the organisation's strategies and objectives. " (IT Governance Institute, 2007)

Dari pengertian di atas dapat dilihat bahwa tata kelola teknologi informasi adalah tanggung jawab dewan direksi dan manajeman eksekutif. Ini merupakan bagian tak terpisahkan dari tata kelola institusi dari terdiri dari struktur kepemimpinan dan organisasi dan proses yang memastikan bahwa organisasi teknologi informasi menopang dan memperluas strategi dan tujuan organisasi.

Pentingnya manfaat IT Governance tidak muncul secara tiba-tiba. Hal ini terjadi karena sebuah hal yang serius (critical) dalam operasional suatu organisasi. Penerapan TI di dalam organisasiakan dapat dilakukan dengan baik apabila ditunjang dengan suatu IT Governance dari mulai perencanaan sampai implementasinya. Definisi IT Governance menurut (Information Technology Governance Institute) ITGI adalah:


"Suatu bagian terintegrasi dari kepengurusan perusahaan serta mencakup kepemimpinan dan struktur serta proses organisasi yang memastikan bahwa TI perusahaan mempertahankan dan memperluas strategi bisnis dan tujuan organisasi." (IT Governance Institute, 2007)

2.2.2 Definisi COBIT

Menurut (Wardani & Puspitasari, 2014) COBIT (Control Objective for Information and Related Technology) adalah suatu metodologi yang memberikan kerangka dasar dalam menciptakan sebuah Teknologi Informasi yang sesuai dengan kebutuhan organisasi. Sekumpulan dokumentasi best practices untuk IT governance yang dapat membantu auditor, manajemen dan pengguna untuk menjembatani antara resiko bisnis, kebutuhan kontrol permasalahan teknis. COBIT adalah suatu framework untuk membangun suatu IT Governance. Dengan mengacu pada framework COBIT, suatu organisasi diharapkan mampu menerapkan IT governance dalam pencapaian tujuannya IT governance mengintegrasikan cara optimal dari proses perencanaan dan pengorganisasian, dukungan pengimplementasian, serta proses pemantauan kinerja Teknologi Informasi. COBIT merupakan kerangka kerja yang menyediakan solusi untuk tata kelola teknologi informasi melalui domain, proses, tujuan, kegiatan, model kematangan dan struktur yang logis dan teratur. Kerangka ini optimalisasi dapat membantu investasi berkaitan dengan teknologi informasi, menjamin penyampaian layanan dan memberikan alat ukur atau standar yang efektif untuk kepentingan manajemen dalam mengambil keputusan dalam organisasi. Target pengguna dari framework COBIT adalah organisasi

atau perusahaan dari berbagai latar belakang dan para profesional external assurance. manajerial target pengguna COBIT adalah manajer, pengguna dan profesional TI serta pengawas dan pengendali profesional. COBIT disusun oleh Information Systems Audit and Control Foundation (ISACA) pada tahun 1996. Edisi kedua dari COBIT diterbitkan pada tahun 1998.Pada tahun 2000 COBIT 3.0 oleh ITGI dirilis (Information Technology Governance Institute), COBIT 4.0 pada tahun 2005 dan COBIT 4.1 dirilis pada tahun 2007. Rilis terakhir COBIT 5 pada Juni tahun 2012.

COBIT Framework secara keseluruhan, hubungan antara Business Objectives, IT Governance, Information, IT Resource dengan 4 domain dan 34 high level control objectives dideskripsikan dalam gambar berikut.

Gambar 2.1. COBIT Framework (ISACA, 2012)

- COBIT 5, membagi proses tata kelola dan manajemen TI suatu perusahaan atau organisasi menjadi dua area proses utama, yaitu:
 - Tata Kelola, memuat lima proses tata kelola, dimana akan ditentukan prakrikpraktik dalam setiap proses evaluate, direct, and monitor(EDM).

- 2) Manajemen, memuat empat domain, sejajar dengan area tanggung jawab dari plan, build, and monitor (PBRM), dan menyediakan ruang lingkup TI yang menyeluruh (end-to-end). Domain ini merupakan evolusi dari domain dan struktur proses dalam COBIT 4.1, yaitu:
- A. Align, Plan, and Organize (APO), domain ini meliputi penyelarasan, perencanan, dan pengaturan agar TI dapat berkontribusi untuk mencapai tujuan bisnis,
- B. Build Acquire, and Implement (BAI),
 domain ini meliputi membangun,
 memperoleh, dan mengimplementasikan
 sistem yang mendukung proses bisnis,
- C. Delivery, Service and Support (DSS), meliputi mengirimkan, layanan, dan dukungan atau memberi pelayanan yang actual bagi bisnis, termasuk manajemen data dan proteksi informasi dalam berhubungan dengan proses bisnis,
- D. Monitoring, Evaluation and Assess (MEA), domain ini terdiri dari pengawasan, evaluasi dan penilian manajemen tentang pengendalian proses-proses, oleh lembaga monitoring independen yang berasal dari dalam dan luar organisasi atau lembaga alternatif lainnya.

COBIT 5 mendefinisikan 37 control practices proses utama, dan 209 control activites

secara detail mengenai proses tata kelola dan Control practices memberikan manajemen. seperangkat kebutuhan yang harus disadari manajemen untuk pengendalian efektif dari masing-masing domain namun tidak Sedangkan Control activities menyediakan petunjuk mengenai mengapa control untuk mengimplementasikan bernilai bagaimana mengimplementasikannya. Dokumen COBIT 5 control activities menyediakan petunjuk yang lebih detail yang dibutuhkan oleh pengguna sebagai referensi yang mudah dipahami dalam operasional TI serta membantu mereka dalam penyesuaian dan perancangan control yang spesifik sesuai dalam situasi dan kebutuhan perusahaan. (ISACA, 2012). Penjelasan domain proses EDM pada COBIT 5 tertera pada tabel 2.1 berikut:

Tabel 2.2 Proses domain evaluate, direct, and monitoring (EDM) COBIT 5

KODE	Practice
PROSES	
EDM01	Memastikan pengaturan kerangka
	tata kelola dan pemeliharaan
EDM02	Memastikan manfaat pengiriman
EDM03	Memastikan optimalisasi resiko
EDM04	Memastikan pengoptimalan sumber
	daya
EDM05	Memastikan transparasi
	stakeholder

Penjelasan domain proses APO pada COBIT 5 tertera pada tabel 2.3 berikut:

Tabel 2.3 Proses domain align, plan, and organize (APO) COBIT 5.

KODE	PRACTICE
PROSES	
AP001	Mengelola kerangka kerja
1	manajeman TI
AP002	Menetapkan rencana stategis TI
AP003	Menetapkan arsitektur sistem
	informasi perusahaan
APO04	Mengembangkan inovasi teknologi
APO05	Mengatur portfolio TI
APO06	Mengatur anggaran dan biaya
	investasi TI
AP007	Mengolala sumber daya manusia
APO08	Menetapkan hubungan dan
	kerjasama organisasi
APO09	Menetapkan kesepakatan layanan
APO10	Mengelola pemasok
APO11	Mengatur kualitas
APO12	Menilai dan mengatur resiko TI
AP013	Mengatur keamanan

Penjelasan domain proses BAI pada COBIT 5 tertera pada tabel 2.4 berikut:

Tabel 2.4 Proses domain build, acquire and implement (BAI) COBIT 5

KODE		PRACTIC	E	
PROSES				
BAI01	Mengelola		dan	proyek
	organisasi			

KODE	PRACTICE
PROSES	
BAI02	Mengelola kebutuhan
BAI03	Membangun solusi identifikasi
BAI04	Mengelola ketersediaan dan
	kapasitas sumber daya
BAI05	Mengelola pemberdayaan dan
~ 11	perubahan organisasi
BAI06	Mengelola perubahan
BAI07	Mengelola transisi teknologi
	baru
BAI08	Mengelola pengetahuan
BAI09	Mengelola Aset Perusahaan
BAI10	Memberi Konfigurasi

Penjelasan domain proses DSS pada COBIT 5 tertera pada tabel 2.5 berikut:

Tabel 2.5 Proses domain delivery, service, and support (DSS) COBIT 5

KODE	PRACTICE
PROSES	
DSS01	Mengelola operasi
DSS02	Mengelola bantuan layanan dan
	insiden
DSS03	Mengelola masalah
DSS04	Mengelola kelangsungan layanan
DSS05	Memastikan keamanan sistem
DSS06	Mengelola dan mengontrol
	proses bisnis

Penjelasan domain proses DSS pada COBIT 5 tertera pada tabel 2.6 berikut:

Tabel 2.6 Proses Monitor, Evaluate, and
Assess (MEA) COBIT 5

KODE		PRACTICE	
PROSES			
MEA01	Monitor,	evaluasi,	dan
(U)	penilaian	kinerja	dan
	kesesuaian	V_{α}	
MEA02	Monitor,	evaluasi,	dan
	penilaian	penge	endalian
	internal si	stem	>
MEA03	Monitor,	evaluasi,	dan
	penilaian	kesesuaian	dengan
	kebutuhan e	ksternal	

2.2.3 ISO/IEC 15504

ISO/IEC 15504, atau dikenal juga dengan SPICE (Software Process Improvement and Capability Determination) adalah suatu "kerangka kerja untuk penilian proses" yang dikembangkan bersama oleh ISO (International Organization for dan (Internasional Standardization) IEC Electrotechnical Commission). ISO/IEC 15504 awalnya diturunkan dari standar siklus hidup ISO 12207 dan digunakan sebaai dasar pembuatan Capability Maturity Model (CMM). (Putra, 2015) Tingkat kapabiltas suatu proses pada model ISO/IEC 15504 memiliki nilai dari 0 (incomplete), 1 (performed), 2 (managed), 3 (established), 4 (predictable), hingga 5 (optimizing), menurut

(ISACA, 2012) mengenai penjelasan model tingkat kapabilitas ada pada ISO/IEC 15540 dapat dilihat pada tabel 2.7 berikut:

Tabel 2.7. Penjelasan Tingkat Kapabilitas ISO/IEC 15504

Tingkat	Penjelasan		
Kematangan			
Level	Proses pada level ini tidak		
0 (Incomplete)	dilaksanakan atau gagal untuk		
~5	mencapai tujuannya		
Level 1	Pada level ini menentukan apakah		
(Performed)	suatu proses mencapai tujuannya		
Level 2	Performa pada level ini di kelola		
(Managed)	yang mencakup perencanaan, monitor,		
	dan penyesuaian. <i>Work Products</i> -nya		
	dijalankan, dikontrol, dikelola		
	dengan tepat.		
Level 3	Proses yang telah dibangun kemudian		
(Established)	diimplementasikan menggunakan		
	proses yang telah didefinisikan		
	yang mampu mencapai hasil dari		
	proses		
Level 4	Proses yang telah dibangun kemudian		
(predictable)	dioperasikan dengan batasan-batasan		
	agar mampu meraih harapan dari		
	proses tersebut		
Level 5	Proses yang terprediksi secara		
(Optimizing)	terus menerus ditingkatkan memenuhi		
	tujuan bisnis saat ini dalam tujuan		
	proyek		

2.2.4 Sistem Informasi

Sistem informasi (information system) secara teknis dapat didefinisikan sebagai sekumpulan komponen yang saling berhubungan, mengumpulkan (atau mendapatkan), memproses, menyimpan, mendistribusikan informasi untuk menunjang pengambilan keputusan dan pengawasan dalam suatu organisasi (Laudon & Laudon, 2012). Penerapan sistem informasi dan teknologi informasi (IS / IT) yang baik dalam organisasi dibangun dari berbagai unit yang terlibat dalam organisasi, sehingga akan menghasilkan kemudahan untuk mengakses data atau informasi di dalam organisasi (Wijaya & Setyohadi, 2017).

informasi dapat diklasifikasikan Sistem sebagai sistem fisik karena mempunyai komponen sebagai sistem buatan manusia karena dirancang oleh analisis atau pemakai sistem, sebagai sistem pasti karena hasil dari sistem ini yang berupa informasi merupakan hasil yang sudah dirancang dan sudah ditentukan sesuai dengan pemakainya, sebagai sistem yang terbuka karena sistem ini berhubungan dengan lingkungan luarnya. Dari penjelasan teori diatas dapat didefinisikan bahwa sistem informasi merupakan suatu sistem yang terintegrasi yang mampu menyimpan, mengambil, mengubah, mengolah dan mengkomunikasikan informasi kemudian yang disediakan kepada untuk menunjang pengguna pengambilan keputusan dan pengawasan dalam suatu organisasi.