

PROCEEDINGS

- Socos

so

6[™] INTERNATIONAL CONFERENCE ON OPERATIONS AND SUPPLY CHAIN MANAGEMENT (OSCM)

"Making the world more comfortable, sustainable, and socially responsible: the role of operations and supply chain management."

Sanur Paradise Plaza Hotel, Bali 10-12 December 2014

Organized by:

Industrial Engineering Departement Faculty of Industrial Technology Sepuluh Nopember Institute of Technology

LSCM

Organized by: Laboratory of Logistics and Supply Chain Management, Industrial Engineering Department, Institut Teknologi Sepuluh Nopember (ITS) Surabaya - Indonesia

Supported by: International Management Institute (IMI), India Healthcare Supply Chain Excellence Centre, Mahidol University, Thailand Malaysia Institute for Supply Chain Innovation (MISI), Malaysia National Taiwan University of Science and Technology (NTUST), Taiwan Victoria University, Australia

ISSN: 2407-2273 @2014

Edited by: I Nyoman Pujawan Iwan Vanany Imam Baihaqi

@copyright Department of Industrial Engineering, Institut Teknologi Sepuluh Nopember (ITS)

CONTENT

TITLE	PAGE
Welcome Speech From Conference Chair	viii
Welcome Messege From Rector of ITS Surabaya	ix
Conference Comitee	Х
Conference Sponsor	xi
Sponsor Profile	xii
Industrial Engineering ITS	XV
OSCM Journal	xvi
Keynote Speakers	xvii
Workshop for Doctoral and Emerging Scholars	xviii
List of Participants	xix
Full Paper	
Toward A Conceptualization of Sustainable Supply Chain Integration	1-9
A Literature Review on the Closed Loop Supply Chain and its Impact on the Forward Bullwhip	10.01
Effect	10-21
Initial Green Supply Chain Management Mapping for Dairy Industry on SMEs Level Does Internet of Things Moderate the Impact of Green Supply Chain Integration on Green Supply	22-35
Chain Agility?	36-44
Determinants of Sustainability in Supply Chains	45-55
Construction of Green Supply Chain for Organic Products	56-72
Estimate the Path Coefficient Linking Between Co-Production on Sustainable Innovation	
Performance	73-84
The Impact of Environment Degradation on the Sidoarjo Shrimp Industry Supply Chain	85-102
Simulated Annealing for Green Vehicle Routing Problem	103-111
Commodity Production, Consumption, and Distribution with Coordination of Soft Factors and Hard Factors	112-127
Multi-Objective Optimization of Energy Consumption in Hot-Rolled Steel Supply Chain in	112 127
Thailand	128-142
A Robust Machine Layout Under Demand Uncertainty	143-155
An Integrated Production-Inventory Model for Food Products Using a Shelf-Life Based Price	150 104
Function	156-164
Improving Performance of Supply Chain in Port by Six Sigma Methodology Approach The Impact of Power Distance and Individualism on Total Quality Management: an Empirical	165-177
Research on Indonesian Manufacturing Firms	178-189
Coordination Mechanism of Container Flow for Import Process: A Conceptual Model	190-202
Alleviating Traffic Congestion Around Our Cities; How Can Supply Chains Address the Issue?	203-211
The Global Logistics Network Design Problem with Rules of Origin	212-223
The Growth of Third Party Logistics Industry: A Literature Study and Research Agenda	224-234
Assessing Logistic Strategy for Service Quality at Selected Agglomerated Stores in Thane City	
<u>And Suburban Mumbai in India</u>	235-248

Workforce Ageing in the Australian Transport and Logistics Industry: Reality or Myth? Agribusiness Performance Measurement System : Supply Chain and Enabling Environement	249-257
Performance	258-273
Production System in Food Industry: A Literature Study	274-285
Designing an Integrated Food Supply Chain with Cross-Docking: A Social Network Approach	286-295
Development and Implementation of a Fruits Electronics Traceability System in Fresh Fruits	207 202
Supply Chain	296-303
Actors Interaction on Price Transmission in Rice Supply Chain A Synchronization Algorithm of Seeding and Planting Scheduling with Sales Planning for	304-316
Contract Farming Of Fresh Vegetable Supply Chain	317-329
Can an Underachiever Become Competitive? the Case of the Romanian Food Industry	330-344
Soft Agent Based Modeling for Agri-Food Supply Chain Coordination	345-356
Analysing Risks in Milk Supply Chain: A Preliminary Finding	357-369
Local Food Production, Customer Preferences and Logistical Consequences	370-381
Retailers Clustering to Minimise Profit Gap Among Distributor Centres Using Genetic Algorithm	382-389
Routing Order Pickers in a Warehouse Using Heterogeneous Picker Tools and Split Picking.	390397
Oil Field Crew Scheduling Using Mathematical Modelling	398-413
Challenges of the Zimbabwean Natpharm Based, Public-Sector Humanitarian Logistics and	
Supply Chain of HIV and AIDS Commodities.	414-426
A Model for Equity in Humanitarian Relief Supply Chain	427-437
<u>A Macro and Micro-Level Evaluation of Stakeholders' Collaboration Strategies for Sustainable</u> <u>City Logistics Operations</u>	438-452
Prosim – A Production Simulation Full Paper	453-463
Understanding the Agribusiness Cluster Development Using System Thinking: A Case Study of	
Red Chili in West Java	464-476
An Application of Supply Chain Operation Reference (SCOR) and Analytical Hierarchy Process	
(AHP) Models In A Supermarket	477-483
Assembly Line Research: A Review of Key Issues and Methods	484-499
Supply Chain Synergies in Post-Merger Environments: The Case of The UK Food Industry	500-511
The Applicability of Life Cycle Assessment of Bio-Fuels in South Africa	512-519
The Application of Green Supply Chain Management: Case Study in Electronic Waste Informal	500 501
Sectors in Surabaya City, East of Java-Indonesia Model Development to Determine the Establishment Location of New Modern Markets that	520-531
Model Development to Determine the Establishment Elocation of New Model Markets that Minimize the Erosion of Traditional Markets' Existence	532-546
Designing Early Warning System and Spread Handling of Dengue Demorrhagic Fever (DBD)	002010
Using System Dynamics Approach and Knowledge Sharing	547-557
Comparison Between Fixed Order Quantity and Periodic Review Replenishment for Distributing	
Liquid Product Under Compatibility Constraints	548-557
Logistics System Development on Supply Chain Management of Vegetable Product for Structured Market - A Case Study at Maker Mulue Packing House, Dase Marge Maker	
<u>Structured Market : A Case Study at Mekar Mulya Packing House, Desa Marga Mekar,</u> Pangalengan, West Java	558-569
The Effect of Random Yield of Product Returns to the Pricing Decisions for Short Life-Cycle	550 507
Products in a Closed-Loop Supply Chain	570-583
Modeling Value at Risk (VAR) Policies for Two Parallel Flights Owned by the Same Airline	584-593

Research on Manufacturer's Aftermarket Service Competition Strategy Outside the Warranty	
Period	594-603
Analysis of Optimality and Development of Priority Dispatching Method to Minimize Total Tardiness for Unrelated Parallel Machines Scheduling	604-617
A Heuristic Algorithm for Vehicle Routing Problem with Outsourcing Options	618-625
An Approach to Improve Routing Decisions in Queuing Networks	626-636
Modelling Revenue Sharing Contract of Fresh Vegetables Between Urban Farming Cooperation	
And Retailers	637-646
Production and Transportation System Flexibility Modelling	647-660
Model of Crop Production Planning Considering Crop Rotation	661-666
A Lower Bound Analysis for The Flowhop Scheduling Problem With Minimization of Makespan	667-678
Development of Particle Swarm Optimization Algorithm to Optimize Dispersion Batch on	
Production Process	679-691
Simulation Model to Optimize the Supply Chain Configuration for Mitigating Risks With	
<u>Common Parts</u> Research on Manufacturer's Price and Service Strategy Under Gray-Market Considering	692-701
Government Supervision	702-712
On-Line Vehicle Routing Problem with Heterogeneous Vehicles, Time Windows, and Road	102-112
Network Constraints	713-729
Shift Scheduling Model Designed to Level Workloads of Employees	730-739
Modified Particle Swarm Optimization for Solving Multi-Objective Limited-Wait Hybrid Flow	100 109
Shop Scheduling Problem	740-750
Organisational Challenges in Integrating Customer Collaboration Processes and Practises in	
Supply Chain	751-760
Collaborative Production Distribution Network Model for Australian SMMEs: Research	
Challenges For Their Competitiveness	761-772
Supply Chain Collaboration for Ensuring Retail Product Availability at Glaxosmithkline	773-784
Supplier-Customer Collaboration in Embedded Systems Engineering Processes – Principles and	705 704
Case Study	785-794
Framework for Collaboration Among Port Stakeholders: Literature Review and Case Study	795-807
A Case Study on Process Mining Implementation in Modelling Supply Chain Business Process: A	808-819
Lesson Learnt	
Information System Challenges in Managing Asset Integrity of Petroleum Production Facilities	820-832
Mobile-App Development for Biodiesel Tracking System and Supply Chain Monitoring	833-847
Raspberry Pi and Sensor Networking for African Health Supply Chains	848-860
Rethinking the Use of Vehicle Telematics Data: Using Multi Adaptive Regression Splines Model	0.61.0.60
For Predicting the Seaports' Service Rate	861-868
Developing Inventory Management In The Hospital	869-880
Integration Of Real-Time Demand Information and Spare Parts Distribution Planning for the	001 004
Optimization of Spare Parts Supply in After-Sales Service Networks Inventory Model for Food Products Considering Investment in Preservation Technology to	881-894
Reduce the Quality Loss	895-901
Increasing the Warehouse Productivity Through Process Improvement	902-912
The Bullwhip Effect in Retail Supply Chains: an Analysis of Stock Ordering Policy And ICT	702-912
Logistics Systems	913-926

Product-Service Module Mix Optimization for Product-Service System with Multi-Segment	927-938
<u>A Product and Service Design Method</u> Analysing New Product Development Process in Company X Using Lean Product Development	939-945
Approach	946955
Claims, Complaints and Innovation as Alternative Product Attributes in QFD-Kano's Model	050 000
Categorization Problem Prevention Method For Product Designs Based On Predictive Technical Evaluation: A	956-966
Study of Bolt-Loosening Mechanisms in Automobiles	967-973
Creating a Vehicle Proportion, Form, And Color Matching Model	974-984
<u>The Development of Usability Measurement Model Considering Cognitive and Affective Aspects</u> And Cultural Dimension as Moderation: A Research Framework	985-995
Improving The Quality of Smartfren Mobile Broadband Service by Using QFD (Quality Function	
Deployment)	996-1005
Process Re-Engineering of Inflight Service Cart Door Assembly	1006-1013
The Potential for Bio-Ethanol Production in the Kwa-Zulu Natal Province, South Africa	1014-1021
<u>Managing Risk in Supply Networks: A Conceptual Investigation</u> <u>Managing Risk in Supply Chain: A Framework for Supply Chain Risk Mitigation Decision-</u>	1022-1027
Making	1028-1038
Modelling and Managing Supply Chain Risks: A Case Study in an Indonesian Manufacturing	1020 1050
<u>Company</u>	1039-1050
<u>The Supply Chain Uncertainty And Risk Measurement Development</u> <u>A Study on Knowledge-Rich Critical Elements within Sri Lankan Manufacturing Supply</u>	1051-1059
Networks	1060-1071
The Relationship Between Knowledge Management Process Capabilities and Supply Chain	1072 1085
Relations Quality A Framework for Management of Aircraft Engineering Knowledge	1072-1085 1086-1095
Big Data Analytics in Supply Chain Management: Trends and Related Research	1086-1093
Factors Affecting the Use of First Level of Hospital Information Technology in Surabaya	1108-1118
An Integrated Modeling of Human, Machine, and Environmental Aspects in Supply Chain	1100 1110
Planning and Operations Using Fuzzy Logic	1119-1128
<u>Human Error Before and After the Implementation of Mechanized Sorting System in a</u> <u>Distribution Center</u>	1129-1141
Human Factors Affecting Material Handling in a Warehouse	1142-1149
Workforce Scheduling Model Considering Ergonomic Factors	1150-1160
Crude Oil Supply Chain Optimization at PT Pertamina Indonesia	1161-1172
A Process-Based Model for Product Returns Services in an E-Tailing Environment	1173-1186
Relocation of Car Manufacturers: Wise Solution or Costly Setback ?	1187-1199
Mapping the Sources of Export Competitive Advantage in Wood Furniture Value Chain	1200-`1212
Improvements in Movement of Empty Containers the Case of the Port of Gothenburg	1213-1224
Lean Knowledge Transfer - A Case Studies Analysis	1225-1233
The Dynamic Supplier Selection Problem (DSSP): Review and Research Opportunities	1234-1244
Purchasing Management and Reducing the Use Of Express Delivery in Offshore Petroleum Logistics	1245-1257
<u>Logistics</u> Purchasing Social Responsibility in Malaysia: Activities in Labour and Health & Safety	1243-1237
	1230-1270

Rearranging Criteria for Supplier Selection: A Study on a Newly Acquired Manufacturing	
Company	1271-1281
Sourcing Strategy for Maintenance Support Services in Petroleum Production Facilities	1282-1291
A Purposed Conceptual Framework of Contact Centre Service Excellence Based on Content	
Analysis	1291-1303
Research Design for Industrial Service Studies	1304-1315
A New Framework of Value Chain Thinking for Business Development	1316-1327
System Dynamics Approach for Eco-Tourism Policy: An Indonesian Case in Malang Regency	1328-1339
SMEs Competitiveness Analysis in the Global Environment Using an Integrated Swot-Porter's	
Five Forces Model: Case Study of Australian Manufacturing SMEs	1340-1352
Location Problem in a Supply Chain Network with Inbound and Outbound Product Flows	1353-1363
Genetic Algorithm for Solving a Helicopter Routing Problem	1364-1377
Bullwhip Effect Reduction in Build to Order Supply Chain Using Kanban System	1378-1386
Key Factors of Emergency Relief Logistics Practice in Indonesian Local Board for Disaster	
Management	1387-1397
Qualitative Impact Assessment of Disruptions (Political) on The Textile Supply Chain	
Performance	1398-1412
Disaster Management: Logistic Planning of Medicines to Mitigate Flood Impact	1413-1425

WELCOME SPEECH FROM CONFERENCE CHAIR

Welcome to the sixth International Conference on Operations and Supply Chain Management. As you all know, this year conference brings a very important theme "Making the world more comfortable, sustainable, and socially responsible: the role of operations and supply chain management ". It is this theme that motivates us to work and contribute to the world. Operations and Supply Chain Management has always been aimed toward better processes, better working environments, more efficient use of resources, more respect toward human life as well as the environment.

This conference is the continuation of the five earlier conferences which were held in Bali (2005), Bangkok (2007), Malaysia (2009), Maldives (2011), and India (2013). This year we are able to attract submissions of more than 200

abstracts from about 35 countries. We did the review in two stages: abstract submission and full paper submission. The number of papers scheduled for presentation is 124 which represent authors from 28 countries. In addition, we also have three keynote speaker sessions and one workshop for young academics and doctoral students. Also, this is the first time we run a forum for PhD program director / coordinator. We are very proud with the quality of submissions and the internationalization of the conference. It is also our aim to enhance the OSCM Forum with the formation of Board Members. The Board Members will set the direction of the forum, give suggestions for organization of future conferences, and supporting the publication of the associated journal "Operations and Supply Chain Management" which is now in its 7th year. It is also our first time giving awards to best reviewers and best papers. Without neglecting the roles of other reviewers and other authors, our aim is to give appreciation to excellent works and contribution of the conference participants.

Finally, I would like to thank all parties that have contributed to this conference. First of all, I would like to thank the three keynote speakers: Professor René B.M. de Koster from Rotterdam School of Management, Erasmus University, The Netherlands; Professor Mahender Singh, the CEO/Rector of Malaysia Institute for Supply Chain Innovation (MISI); and Walter Kuijpers from Deloitte Consulting's SE Asia. My sincere thanks also goes to Professor Suresh Sethi from University of Texas at Dallas, USA and Professor Yossi Aviv from Olin Business School, Washington University, USA who both will give talks in the workshop for doctoral students and emerging scholars. I would also like to thank the supports and participation of the supporting organizations and sponsors. The support from our institution (Institut Teknologi Sepuluh Nopember) is also instrumental to the success of this conference. Finally, to all committee members I would like to thank for the hard work, without which this conference would never be a success. To all participants, have a nice conference and we look forward to your continuing support to OSCM.

Bali, December 2014

Professor Nyoman Pujawan, Ph.D, CSCP Conference Chair

WELCOME MESSAGE FROM RECTOR OF ITS SURABAYA

On behalf of the Institut Teknologi Sepuluh Nopember (ITS), I welcome the participants to this year Operations and Supply Chain Management (OSCM) Conference. I am truly proud that the Laboratory of Logistics and Supply Chain Management in the Department of Industrial Engineering has managed to organize such a prestigious conference, attracting delegates from various countries. Being Lab-Based Education, this conference is one of the strategies to achieve our vision as a world class research university.

This year conference theme: "making the world more comfortable, sustainable, and socially responsible: the role of operations and supply chain management" is very timely. This conveys a strong message that all of our activities to improve the companies' performance must also consider the quality our environment and

social development as well. I believe, with such diverse and large participation, this conference will serve as an effective platform for academics, practitioners, and students to learn, share, and exchange their expertise and insights, especially on how the operations and supply chain management could contribute to maintain the sustainability of our planet.

I congratulate and thank Prof. Nyoman Pujawan, the conference chair and his team from the Department of Industrial Engineering, who have worked tirelessly to make this OSCM 2014 conference possible.

I sincerely hope that this conference will facilitate the establishment of international joint research programs and become a forum for the exchange of research ideas. I wish the conference a grand success.

Surabaya, December 2014

Professor Dr. Triyogi Yuwono Rector of ITS

CONFERENCE COMITEE

Organizing Committee:

l

International Committee:

- G.V.R.K.Acharyulu, University of Hyderabad, India
- The Jin Ai, University of Atmajaya, Jogjakarta, Indonesia
- Hasan Akpolat, University of Technology, Sydney, Australia
- Benita Beamon, University of Washington, USA
- Andi Cakravastia, Bandung Institute of Technology, Indonesia
- Paul Childerhouse, Massey University, New Zealand
- Ajay Das, Baruch College, The City University of New York, USA
- René De Koster, Erasmus University, The Netherlands
- Per Engelseth, Molde University College, Norway
- Javad Feizabadi, Malaysia Institute for Supply Chain Innovation, Malaysia
- Dimitris Folinas, Alexadrion Technological Educational Institute of Thessaloniki, Greece
- M. Abdul Hoque, University of Brunei Darussalam
- Takashi Irohara, Sophia University, Japan
- Sakun Boon-Itt, Thammasat University, Thailand
- Sanjay Jharkharia, Indian Institute of Management Kozhikode, India
- Ferry Jie, RMIT University, Australia
- Kap Hwan Kim, Pusan National University, Korea
- Reza Lashkari, University of Windsor, Canada
- M. Marimin, Bogor Agricultural University, Indonesia
- Bimaraya Metri, International Management Institute New Delhi, India
- Rajesh Piplani, Nanyang Technological University, Singapore
- Daniel Prajogo, Monash University, Australia
- T. Ramayah, Universiti Sains Malaysia
- Ahmad Rusdiansyah, Sepuluh Nopember Institute of Technology (ITS), Indonesia
- Sunanda Sangwan, Shantau University Business School, China
- Budi Santosa, Sepuluh Nopember Institute of Technology (ITS), Indonesia
- Ruhul Amin Sarker, University of New South Wales, Australia
- Anders Segerstedt, Luleå University of Technology, Sweden
- Togar Simatupang, Bandung Institute of Technology, Indonesia
- Himanshu Shee, Victoria University, Australia
- Harm-Jan Steenhuis, Eastern Washington University, USA
- Katsuhiko Takahashi, Hiroshima University, Japan
- Armagan Tarim, Hacettepe University, Turkey
- Benny Tjahjono, Cranfield University, UK
- Kun-Jeng Wang, National Taiwan University of Science and Technology, Taiwan
- Hui Ming Wee, Chung Yuan Christian University, Taiwan
- Gede Agus Widyadana, Petra Christian University, Indonesia
- Joel Wisner, University of Nevada, Las Vegas, USA
- Hartanto Wong, Aarhus University, Denmark
- Sha'ri Mohd Yusof, Universiti Teknologi Malaysia
- Yahaya Yusuf, University of Central Lancashire, UK

CONFERENCE SPONSOR

PT. Semen Indonesia (Persero)Tbk.

SKK Migas

Chevron Indonesia

Total E&P Indonesie

SPONSOR PROFILE

Chevron Indonesia

Chevron is one of the world's leading integrated energy companies. Our success is driven by our people and their commitment to get results the right way—by operating responsibly, executing with excellence, applying innovative technologies and capturing new opportunities for profitable growth. We are involved in virtually every facet of the energy industry. We explore for, produce and transport crude oil and

natural gas; refine, market and distribute transportation fuels and lubricants; manufacture and sell petrochemical products; generate power and produce geothermal energy; provide renewable energy and energy efficiency solutions; and develop the energy resources of the future, including research into advanced biofuels.

Company Roots: We trace our beginnings to an 1879 oil discovery at Pico Canyon, north of Los Angeles, which led to the formation of the Pacific Coast Oil Co. That company later became Standard Oil Co. of California and, subsequently, Chevron. We took on the name Chevron when we acquired Gulf Oil Corporation in 1984, which nearly doubled our worldwide proved crude oil and natural gas reserves. Our merger with Gulf was then the largest in U.S. history.Another major branch of the family tree is The Texas Fuel Company, formed in Beaumont, Texas, in 1901. It later became known as The Texas Company and, eventually, Texaco. In 2001, our two companies merged. The acquisition of Unocal Corporation in 2005 strengthened Chevron's position as an energy industry leader, increasing our crude oil and natural gas assets around the world.

Global Scope: Our diverse and highly skilled global workforce consists of approximately 64,500 employees, including more than 3,200 service station employees.

In 2013, Chevron's average net production was nearly 2.6 million oil-equivalent barrels per day. About 75 percent of that production occurred outside the United States. Chevron had a global refining capacity of 1.96 million barrels of oil per day at the end of 2013.

Our marketing network supports retail outlets on five continents.

Technology and Emerging Energy : We focus on technologies that improve our ability to find, develop and produce crude oil and natural gas from conventional and unconventional resources.We also invest in the development of emerging energy technologies, such as finding better ways to make nonfood-based biofuels, piloting advanced solar technology for our operations and expanding our renewable energy resources.

Environment and Safety: As a company and as individuals, we take great pride in contributing to the communities where we live and work. We also care about the environment and are proud of the many ways in which our employees work to safeguard it. Our persistent efforts to improve on our safe work environment continue to pay off. In 2013, we achieved world-class performance in the days-away-fromwork metric for both Upstream and Downstream operations.

Our Work: We recognize that the world needs all the energy we can develop, in every potential form. That's why our employees work to responsibly develop the affordable, reliable energy the world needs.

PT. Semen Indonesia (Persero) Tbk.

The Company inaugurated in Gresik on December 7 Agustus1957 by the first President with an installed capacity of 250,000 tonnes of cement per year, and installed capacity in 2013 reach 30 million tons/year. On July 8, 1991 the Company's shares listed on the Jakarta Stock Exchange and Surabaya Stock Exchange (now Indonesia Stock Exchange) and is the first state-owned companies to go public by selling 40 million shares to the public. The composition of the shareholders at the time: State of RI 73% and 27% people.In September 1995, the Company made a Rights Issue I (Right Issue I), which alter the composition of share ownership to the

State of RI 65% and 35% people. On June 15 September 1995 by PT Semen Gresik consolidate with PT Semen Padang and PT Semen Tonasa. Total installed capacity of the Company at the time of 8.5 million tons of cement per year. On September 17, 1998, the State of RI off its stake in the Company by 14% through an open offer, which was won by CEMEX S. A. de C. V., a global cement company based in Mexico. Shareholding composition changed to Republic of Indonesia 51%, the 35%, 14% and Cemex. Then on 30 September 1999 shareholding changed to: The Government of the Republic of Indonesia 51.0%, 23.4% and the 25.5% Cemex.On July 27, 2006, there was the sale of shares of Cemex Asia Holdings Ltd. to Blue Valley Holdings PTE Ltd. so the shareholding composition changed to 51.0% RI State Blue Valley Holdings PTE Ltd.. 24.9%, 24.0%, and the community. In late March 2010, Blue Valley Holdings PTELtd, sold all of its shares through a private placement, so the composition of the shareholders of the Company changed to 51.0% Government 48.9% and the public.Dated December 18, 2012 was a historic moment when the Company signed a final transaction acquisition of 70 percent stake in Thang Long Cement, the leading cement companies of Vietnam has a production capacity of 2.3 million tons / year. Acquisition of Thang Long Cement Company is also to make the Company's status as the first state-owned multi-national corporation. Has established its position as the largest cement producer in Southeast Asia with a capacity up to the year 2013 amounted to 30 million tonnes per year.

- Complete the construction of a cement factory unit
- The acquisition of Thang Long Cement Joint stock Company (TLCC), in Viet Nam.
- Became Strategic Holding Company and changed its name to PT Cement Indonesia (Persero) Tbk.

Transformation of the Company as an effort to improve the performance, after the application of Functional Holding through synergy of their respective companies' competence both in operational and marketing field. Improve the quality of management of the Company's organization and conduct more intensive communication with stakeholders in each operating company.

Total E&P Indonesie

Energy is vital to economic development and improved standards of living. Wherever it is available, energy is helping to drive progress, but sustainability requires changes in the way that it is used and managed. This conviction shapes everything we do. With operations

in more than 130 countries, we are a top-tier international oil company and a world-class natural gas operator, refiner, petrochemical producer, and fuel and lubricant retailer. Our 100,000 employees leverage their globally acknowledged expertise so that together they can discover, produce, refine and distribute oil and gas to provide products and services for customers worldwide. We are also developing energies that can partner oil and gas — today, solar energy and tomorrow, biomass. As a responsible corporate citizen, we focus on ensuring that our operations consistently deliver economic, social and environmental benefits.

A Market Leader in Our Areas of Expertise

Exploration & Production is responsible for our oil and natural gas exploration, development and production activities in more than 50 countries.**Gas& Power** unlocks the value of our natural gas assets. Its capabilities span the liquefied natural gas chain, from liquefaction to shipping and regasification, as well as natural gas marketing. **Refining & Chemicals** is a major production hub, with expertise covering refining, petrochemicals and specialty chemicals. We rank as one of the world's ten largest integrated producers. **Trading & Shipping** sells our crude oil production, supplies our refineries with feedstock, charters the vessels required for those activities and is involved in derivatives trading. We are a leading global trader of oil and petroleum products.**Marketing & Services** designs and markets a broad array of refined products, including automotive fuel and specialty products such as LPG, heating and heavy fuel oil, asphalt, lubricants and special fluids. It also provides services to consumers and to the transportation, housing and manufacturing industries. We are a leading marketer in Western Europe⁴ and the top marketer in Africa.⁴

New Energies is helping us to prepare the energy future by developing our expertise in two core renewable energies, solar and biomass

INDUSTRIAL ENGINEERING ITS

Department of Industrial Engineering (IE-ITS) as one of the biggest departments in ITS stand as study program in 1985. IE-ITS has been successful in its efforts to develop its education programs, this is reflected in the accreditation gained since 1999 to the present (A). Number of alumni is more than 1000 people spread across various sectors of national and international industry, and the number of new students is about 200 people per year, supported by qualified teaching staff and have high competence and qualifications in their respective fields. IT-ITS to be one of the best industrial engineering department in Indonesia has more than 30 faculty members with diverse areas of expertise such as ergonomics, system manufacturing, sustainable manufacturing, optimization, simulation, data mining, logistics, supply chain, quality management and performance measurement makes the Department of Industrial Engineering (IE-ITS) as the primary barometer of "Industrial Engineering" in Indonesia. ITS open undergraduate (S1) and graduate (S2 and S3) programs. The programs are also open to international students delivered in English. Some college participants both undergraduate and graduate are from various countries such as Iraq, Zimbabwe, Papua New Guinea, Thailand and Myanmar.

Vision

IE-ITS aims to be an institution of higher education in Industrial Engineering with excellent international reputation and capable of supporting sustainable national development.

Mission

- To implement educational programs and research activities in the field of Industrial Engineering with international reputation.
- To provide services relevant to the needs of industry and communities to support sustainable national development.
- To build a cooperation network for development of educational and research activities to empower human resources and all resources owned.
- To conduct research and development in the field of science and Industrial Engineering with quality and contribution to the advancement of science and technology.

Purposes

- To produce qualified graduates of Industrial Engineering relevant to the needs of industry and community and develop activities of designing, engineering, improvement, and installation.
- To produce research and development in scientific fields of Industrial Engineering with quality and contribution to the advancement of science and technology.
- To apply the concepts, methods and techniques of research results within the professional scope of Industrial Engineering.

Program Education Objectives

- 1. To be able to formulate problem in industrial system, either micro, mezzo or macro level, to propose alternative solutions
- 2. To comprehend and innovatively perform theoretical improvement in Industrial Engineering discipline by focusing on system approach to design, improve and install an integrated system
- 3. To be able to manage research and development activities in industrial engineering discipline based on academic norms fairly and responsibly and to be able to communicate ideas and research results effectively both in Bahasa Indonesia and English in order to achieve national and international recognition.
- 4. To poses professional attitude and conduct as an individual and/or a team member in working environment
- 5. To be able manage his/herself and to behave professionally in working environment
- 6. To be able to cooperate in team proportionally in accordance to working demand.
- 7. To be able to communicate ideas systematically, both oral and written in Bahasa Indonesia or English.
- 8. To have sensitivity to environmental and sustainability issues and to accommodate those issues in performing analysis, design, dan decision making.
- 9. To be able to be creative and innovative in some aspects of living, especially to those with relation to his/her profession.

OSCM JOURNAL

Published since 2008

Operations and Supply Chain Management: An International Journal (OSCM) publishes high quality refereed articles in the field of operations and supply chain management. The journal invites original contributions that present modeling, empirical, review, and conceptual works. To enable maximum dissemination, the articles are freely accessible through the internet to anybody and a limited printed version will be available at cost.

Listing / Indexing

This journal is listed / indexed in:

- Cabells Journal Directory.
- Journal list of Finnish Universities
- Australian Business Deans Council (ABDC) Journal list
- The Norwegian Publication Database "Publiseringskanaler"
- Google scholars
- Index Copernixus

Submission of Manuscripts

All manuscript should be submitted to the journal editor electronically in an MS word file to the Editor-in-Chief at: <u>oscm.editor@gmail.com</u>.

KEYNOTE SPEAKER

Keynote Speech I: **Professor Dr. René B.M. de Koster, Rotterdam School of Management, Erasmus** University, The Netherlands. "The impact of behavior on operational performance".

Dr. René B.M. de Koster is professor of Logistics and Operations Management at Rotterdam School of Management, Erasmus University since 1995. Before that, he worked as a consultant. His research interests are warehousing, container terminal, retail, and behavioural operations. He is author/editor of 8 books and over 130 papers in books and journals like Production and Operations Management, Journal of Operations Management, Transportation Science, IIE Transactions, European Journal of Operational Research. He is in the editorial boards of journals like OR, JOM, TS (SI editor), IJOPM (SI editor) and other academic journals, member of several international research advisory boards (ELA: European Logistics Association, <u>BVL</u>, AIRL, University of Pisa, chairman of <u>Stichting Logistica</u>, <u>Smartport</u>, and founder of the Material Handling Forum. His research has won several awards, like the IIE Transactions best paper award (2009), JOM best paper finalist (2007), AoM best paper finalist

(2013), ERIM impact award (2013).

Keynote Speech II: Walter Kuijpers, Deloitte Consulting's SE Asia "Journey to supply chain reengineering – opportunities and challenges"

Walter is a Senior Manager at Deloitte Consulting South East Asia responsible for Supply Chain Management within the Strategy & Operations service line. He earned his BSc. Engineering Degree in Analytical Chemistry from the Dutch Hanzehogeschool in Groningen (Netherlands) followed by a Post-Academic Degree in Distribution Logistics. He has over 15 years' experience with a balanced mix of consulting and industry experience in Supply Chain Management covering Inventory Management, Collaborative Planning & Forecasting, Logistics Operations, and Sales & Distribution. He has worked across Consumer Business, Hi-Tech, Telecommunications and Energy & Resources industries in supply chain project delivery, sales and P&L roles across Europe, Australia, Japan,India, China and South East Asia.

Keynote speech III: Professor Dr. Mahender Singh, CEO/Rector of Malaysia Institute for Supply Chain Innovation (MISI)

Dr. Mahender Singh is the CEO/Rector of the newly launched Malaysia Institute for Supply Chain Innovation (MISI) since its inception in March 2011. MISI is a joint initiative between the Massachusetts Institute of Technology, USA (MIT) and the Government of Malaysia – www.misi.edu.my. He also holds the position of the Executive Director of the MIT Global SCALE Network in Asia at the Center for Transportation and Logistics at MIT, where he has been working for the past 10 years. Dr. Singh has over 18 years of experience in the field of supply chain management. Before returning to academia in 2003, he worked with a leading consulting firm to implement innovative global supply chain planning solution for Fortune 50 companies. He has spent considerable time in various countries working on supply chain challenges. Dr. Singh's research and teaching is focused on operations and supply chain management, with particular interest in exploring the

underlying structure of complex supply chains. His current research efforts span the domain of supply chain strategy, risk management and healthcare supply chains. His research has been published in leading academic journals such as Management Science and IIE Transactions, as well as Sloan Management Review and Supply Chain Management Review. Dr. Singh has an Undergraduate degree with Honors in Physics. He earned his Masters degree in Logistics from MIT and received his Ph.D. in Management Science from the University of Tennessee, Knoxville. In addition, he has a Masters degree in Statistics and is a certified Cost Accountant.

WORKSHOP FOR DOCTORAL AND EMERGING SCHOLARS

Speaker I: Professor Dr. Suresh Sethi, University of Texas at Dallas, USA

Suresh P. Sethi is Eugene McDermott Professor of Operations Management and Director of the Center for Intelligent Supply Networks at The University of Texas at Dallas. He has written 7 books and published nearly 400 research papers in the fields of manufacturing and operations management, finance and economics, marketing, and optimization theory. He teaches a course on optimal control theory/applications and organizes a seminar series on operations management topics. He initiated and developed the doctoral programs in operations management at both University of Texas at Dallas and University of Toronto. He serves on the editorial boards of several journals including Production and Operations Management and SIAM Journal on Control and Optimization. He was named a Fellow of The Royal Society of Canada in 1994. Two conferences were organized and two books edited in his honor in 2005-6. Other honors include: IEEE Fellow (2001), INFORMS Fellow (2003), AAAS Fellow (2003), POMS Fellow (2005),

IITB Distinguished Alum (2008), SIAM Fellow (2009), POMS President (2012).

Speaker II: Professor Dr. Yossi Aviv, Olin Business School, Washington University, USA

Professor Aviv,Dan Broida Professor of Operations & Manufacturing Management, develops and applies operations research models and methods to study problems related to supply chain management and revenue management. His current research focuses on strategic inventory positioning in distribution networks, collaborative forecasting, and dynamic pricing. He holds several editorial positions, and serves as a Department Editor (Area of Operations Management) for Management Science, the flagship journal in his field. Aviv has consulted in the defense and electronics industries. At the Olin School of Business, he has been teaching courses on quantitative decision modeling, operations management, and supply chain management, at the undergraduate, MBA, PMBA, EMBA, and Ph.D. levels.

LIST OF PARTISIPANT

Name

Institution

Name	Institution	Country
Achmad Room Fitrianto	The State Islamic Univeristy of Sunan Ampel	Indonesia
Adewole Akanni	Gillette UK Ltd	United Kingdom
Adi Budipriyanto	Sepuluh Nopember Institute of Technology	Indonesia
Agustina Eunike	Brawijaya University	Indonesia
Ahmad Abareshi	RMIT University	Australia
Ahmad Jafarnejad	University of Tehran	Iran
Ahmad Rusdiansyah	Sepuluh Nopember Institute of Technology	Indonesia
Alan Chee Wee Tay	School of Business, SIM University	Singapore
Alan Teik Cheng Lim	School of Science and Technology, SIM University	Singapore
Alassane Ballé Ndiaye	Université Libre de Bruxelles	Belgium
Alexis Nsamzinshuti	Université Libre de Bruxelles	Belgium
Amak Mohamad Yaqoub	Airlangga University	Indonesia
Amal S. Kumarage	University of Moratuwa	Sri Lanka
Andhy Hermawan	Monash University	Australia
Andi Cakravastia	Bandung Institute of Technology	Indonesia
Andre R Daud	Padjajaran University	Indonesia
Andreas C. Soteriou	University of Cyprus	Cyprus
Andries Stam	Erasmus University	Netherlands
Andrzej Rzeczycki	University of Szczecin	Poland
Anggriani Profita	Mulawarman University	Indonesia
Anna-Mara Schön	University of Applied Sciences Fulda	Germany
Anny Maryani	Sepuluh Nopember Institute of Technology	Indonesia
Antti Salminen	Lappeenranta University of Technology	Finland
Anup Pradhan	University of Johannesburg	South Africa
Asep Ridwan	Universitat Duisburg-Essen	Germany
Attila Turi	Politehnica University from Timisoara	Romania
Bartholomeus Tandigala	Indonesian Local Board for Disaster Management in Central Sulawesi Province	Indonesia
Basuki Widodo	Sepuluh Nopember Institute of Technology	Indonesia
Benny Tjahjono	School of Management, Cranfield University	United Kingdom
Bernd Noche	Duisburg-Essen University	Germany
Bin Dan	Chongqing University	China
Blanka Tundys	University of Szczecin	Poland
Blen Delelegne	Narvik University College	Norway
Bruno de Sousa Alves	Federal University of Santa Carina	Brazil
Budi Santosa	Sepuluh Nopember Institute of Technology	Indonesia
Budisantoso Wirjodirdjo	Sepuluh Nopember Institute of Technology	Indonesia
Bustanul Arifin	Sepuluh Nopember Institute of Technology	Indonesia
Candra Bachtiyar	National Taiwan University of Science and	Taiwan
	Technology	

Carles Sitompul	Parahyangan Catholic University	Indonesia
Carlos Ernani Fries	Federal University of Santa Carina	Brazil
Charles Mbohwa	University of Johannesburg	South Africa
Charoenchai	King Mongkut's University of Technology Thonburi	Thailand
Khompatraporn	King Mongkut s Oniversity of Teenhology Monour	Thunand
Chi-Leung Chu	National Chiayi University	Taiwan
Christakis Charalambous	University of Cyprus	Cyprus
Dalvio Ferrari Tubino	Federal University of Santa Carina	Brazil
Danang Setiawan	Sepuluh Nopember Institute of Technology	Indonesia
Dewanti Anggrahini	Sepuluh Nopember Institute of Technology	Indonesia
Dewie Saktia Ardiantono	Sepuluh Nopember Institute of Technology	Indonesia
Didik Wahjudi	Petra Christian University	Indonesia
Dina Natalia Prayogo	University of Surabaya	Indonesia
Dino Rimantho	Pancasila University	Indonesia
Dmitry Krass	Canada University of Toronto	Canada
Dr. Nadeem Ehsan	CASE	Pakistan
Duangpun Kritchanchai	Mahidol University	Thailand
Dwi Agustina	Nanyang Technological University	Singapore
Dwi Purnomo	Padjajaran University	Indonesia
Dyah Santhi Dewi	Sepuluh Nopember Institute of Technology	Indonesia
Eddy Renaldi	Padjajaran University	Indonesia
Effi Latiffianti	Sepuluh Nopember Institute of Technology	Indonesia
Eko Liquiddanu	University of Sebelas Maret	Indonesia
Eko Nurmianto	Sepuluh Nopember Institute of Technology	Indonesia
Elimawaty Rombe	Tadulako University	Indonesia
Ellisha Nasruddin	Universiti Sains Malaysia	Malaysia
Endang Retno Wedowati	Wijaya Kusuma Surabaya University	Indonesia
Eric van Heck	Erasmus University	Netherlands
Erna Mulyati	Sepuluh Nopember Institute of Technology	Indonesia
Erwin Widodo	Sepuluh Nopember Institute of Technology	Indonesia
Eugene-Eu-Chun Lee	Universiti Sains Malaysia	Malaysia
Farzad Bahrami	University of Tehran	Iran
Farzeen Jaswal	University of Greenwich	United Kingdom
Febrianus D. Wibisono	Bandung Institute of Technology	Indonesia
Femi Yulianti	Bandung Institute of Technology	Indonesia
Ferry Jie	RMIT University	Australia
Fikhi Adrian	Bandung Institute of Technology	Indonesia
Fiqihesa Putamawa	Sepuluh Nopember Institute of Technology	Indonesia
Friska Hanna Tarida	Sepuluh Nopember Institute of Technology	Indonesia
Gama Harta Nugraha Nur	STIMIK ESQ	Indonesia
Rahayu	-	
Geevaneswary	Universiti Sains Malaysia	Malaysia
Saththasivam George C. Hadjinicola	University of Cyprus	Cyprus
Scorge C. margimeona	emiliary of Cyprus	CJPIUS

Gilles Goncalves	Univ Lille Nord de France	France
Glauco G. M. P. da Silva	Federal University of Santa Carina	Brazil
Govardhan Rao Banna	School of Business, SIM University	Singapore
Gul Pervez	Concordia University	Canada
Gusti Fauza	University of South Australia, Sebelas Maret University	Australia/Indonesia
Guy Maltais	Université de Sherbrooke	Canada
Haiyue Zhang	Chongqing University	China
Hanim Maria Astuti	Institut Teknologi Sepuluh Nopember	Indonesia
Hari Prasetyo	Universitas Muhammadiyah Surakarta	Indonesia
Hasan Akpolat	University of Technology Sydney	Australia
Heidi Piili	Lappeenranta University of Technology	Finland
Heru Prastawa	Sepuluh Nopember Institute of Technology	Indonesia
Himanshu K. Shee	Victoria University	Australia
I Ketut Gunarta	Sepuluh Nopember Institute of Technology	Indonesia
I Nyoman Pujawan	Sepuluh Nopember Institute of Technology	Indonesia
Ibnu Hisyam	Sepuluh Nopember Institute of Technology	Indonesia
Ignatio Madanhire	University of Johannesburg	South Africa
Ika Sari Wahyuni-TD	International Islamic University Malaysia	Malaysia
Imam Baihaqi	Sepuluh Nopember Institute of Technology	Indonesia
Ioannis Manikas	University of Greenwich	United Kingdom
Ishardita Pambudi Tama	Brawijaya University	Indonesia
Ivan Varela Rozados	Cranfield University	United Kingdom
Iwan Vanany	Sepuluh Nopember Institute of Technology	Indonesia
Javad Fezabadi	Malaysia Institute for Supply Chain Innovation (MISI)	Malaysia
Jianfu Wang	Canada University of Toronto	Canada
Joakim Widstrand	Chalmers University of Technology	Sweden
Joey-Soo-Yee Phuah	Universiti Sains Malaysia	Malaysia
Johannes B. Mapokgole	University of Johannesburg	South Africa
John L. Hopkins	Swinburne University of Technology	Australia
Joko Supriyanto	PT. Telkom Indonesia	Indonesia
Judy McKay	Swinburne University of Technology	Australia
Juha Vanhanen	Oy M. Haloila Ab	Finland
Jukka Hemilä	VTT Technical Research Centre of Finland	Finland
Junior Mabiza-ma-Mabiza	University of Johannesburg	South Africa
Jyri Vilko	Lappeenranta University of Technology	Finland
Kai Hashimoto	Waseda University	Japan
Kakuro Amasaka	Aoyama Gakuin University	Japan
Kamrul Ahsan	Victoria University	Australia
Karina Diandra S.	Padjajaran University	Indonesia
Kazi Anowar Hussain	World University Bangladesh	Bangladesh
Kazuho Yoshimoto	Waseda University	Japan
Kazuki Fujita	Aoyama Gakuin University	Japan

Kazuki Yamada	Waseda University	Japan
Kent Lumsden	Chalmers University of Technology	Sweden
Krit Lerdleuchachai	King Mongkut's University of Technology Thonburi	Thailand
Kuntoro Boga Andri	Assessment Institute of Agricultural Technology	Indonesia
Kusnandar	Padjajaran University	Indonesia
L.D.C.S. Layangani	University of Moratuwa	Sri Lanka
Laksito Purnomo	Universitas Atma Jaya Yogyakarta	Indonesia
Lee E J Styger	University of Wollongong	Australia
Lene Edvardsen	Narvik University College	Norway
Leonardo Quintana	Pontificia Universidad Javierana Bogota	Colombia
Liliane Streit-Juotsa	University of Applied Sciences Fulda	Germany
Linda Ingebrigtsen	Narvik University College	Norway
Locadia Linda Tombido	Sepuluh Nopember Institute of Technology	Indonesia
Loo Saw Khuan	Wawasan Open University	Malaysia
Lucia Diawati	Bandung Institute of Technology	Indonesia
M. Iman Santoso	Duisburg-Essen University	Germany
Mads Løkås	Narvik University College	Norway
Mahendrawathi ER	Institut Teknologi Sepuluh Nopember	Indonesia
Manik Mondal	World University Bangladesh	Bangladesh
Maria Anityasari	Sepuluh Nopember Institute of Technology	Indonesia
Maria Widyarini	Parahyangan Catholic University	Indonesia
Marian Liviu Mocan	Politehnica University from Timisoara	Romania
Markus Hartono	University of Surabaya	Indonesia
Marlene Carlsen	Narvik University College	Norway
Martha Caro	Pontificia Universidad Javierana Bogota	Colombia
Martin Thormann	TU Dortmund University	Germany
Mayang Kusumawardhani	University of Stavanger	Norway
Meditya Wasesa	Erasmus University	Netherlands
Meinar Dyan Muslimah	Bandung Institute of Technology	Indonesia
Merja Airola	VTT Technical Research Centre of Finland	Finland
Michael Wang	RMIT University	Australia
Michel Berthiaume	Université de Sherbrooke	Canada
Misra Hartati	UIN Suska Riau	Indonesia
Mohammad Khairul Islam	Government Ananda Mohan College	Bangladesh
Mohammad Rizal Firmansyah	University of South Australia	Australia
Mohammed Forhad Uddin	BUET	Bangladesh
Mokh Suef	Sepuluh Nopember Institute of Technology	Indonesia
Molin Liu	Chongqing University	China
Moses Laksono Singgih	Sepuluh Nopember Institute of Technology	Indonesia
Muhamad	PT. Telkom Indonesia	Indonesia
Muhamad Yusuf	PT. Telkom Indonesia	Indonesia
Muhammad Asif	RMIT University Brunswick	Australia
Muhammad Hatta	Universitas 45 Surabaya	Indonesia
	-	

Muhammad Nashir	Telkom University	Indonesia
Ardiansyah		
Muhammad Ridwan Andi Purnomo	Islamic University of Indonesia	Indonesia
Mukund Murari Singh	Schlumberger Asia Services Ltd	
Mutia	Parahyangan Catholic University	Indonesia
Naning A. Wessiani	Sepuluh Nopember Institute of Technology	Indonesia
Nathajeera Sribhokaratha	Kasembundit University	Thailand
Nils Andersson	Chalmers University of Technology	Sweden
Noor Hidayat	PT. Telkom Indonesia	Indonesia
Nur Mayke Eka Normasari	National Taiwan University of Science and Technology	Taiwan
Nurhadi Siswanto	Sepuluh Nopember Institute of Technology	Indonesia
Oded Berman	Canada University of Toronto	Canada
Oki Anita Candra Dewi	Sepuluh Nopember Institute of Technology	Indonesia
Orn-phailin		Thailand
Wongwaiphinij Omkarprasad S Vaidya	Indian Institute of Management	India
Onkarprasad S Valdya Opher Baron	Indian Institute of Management Canada University of Toronto	Canada
Parama Kartika Dewa	Sepuluh Nopember Institute of Technology	Indonesia
Parvathi Venkatesh	Mulund College of Commerce	India
Patdono Suwignjo	Sepuluh Nopember Institute of Technology	Indonesia
Patricia Nyamekye	Lappeenranta University of Technology	Finland
Per Engelseth	Molde University College, Faculty of Logistics	Norway
Prashant Barsing	Indian Institute of Management	India
Prof. Dr. Dorit Schumann-	University of Applied Sciences Fulda	Germany
Bölsche	Christie of Applied Sciences Fuldu	Germany
Prof. Prem Chhetri	RMIT University Brunswick	Australia
Prof. Rajiv Padhye	RMIT University Brunswick	Australia
Purnawan Adi Wicaksono	Diponegoro University	Indonesia
Putu Dana Karningsih	Sepuluh Nopember Institute of Technology	Indonesia
Rafed Zawawi	University of Technology Sydney	Australia
Rahmi Yuniarti	Brawijaya University	Indonesia
Rajesh Piplani	Nanyang Technological University	Singapore
Rajesri Govindaraju	Bandung Institute of Technology	Indonesia
Rama Bhupal Reddy Kotireddy	School of Engineering, Republic Polytechnic	Singapore
Reina Angkiriwang	Sepuluh Nopember Institute of Technology	Indonesia
Resa Christa Nugraha	Sepuluh Nopember Institute of Technology	Indonesia
Rini Prasetyani	Pancasila University	Indonesia
Rizky Ginardy	Institut Teknologi Bandung	Indonesia
Rohollah Ghasemi	University of Tehran	Iran
Ronny Mardiyanto	Institut Teknologi Sepuluh Nopember	Indonesia
Rosita Meitha Surjani	University of Surabaya	Indonesia
Royyana Muslim Ijtihadie	Sepuluh Nopember Institute of Technology	Indonesia
Ryota Nomura	Aoyama Gakuin University	Japan

Safrani Nurfatiasari	Padjajaran University	Indonesia
Sang-Heon Lee	School of Engineering, University of South	Australia
Sung Heon Lee	Australia	Rustrana
Saut Gurning	Sepuluh Nopember Institute of Technology	Indonesia
Saw Khuan Loo		Malaysia
Constan New Datasia	Wawasan Open University	To do no si s
Senator Nur Bahagia	Bandung Institute of Technology	Indonesia
Shams Rahman	RMIT University	Australia
Shu San Gan	Petra Christian University	Indonesia
Shunichi Ohmori	Waseda University	Japan
Shuntaro Toyoda	Aoyama Gakuin University	Japan
Silene Seibel	State University of Santa Carina	Brazil
Siska Noviaristanti	Telkom University	Indonesia
Siti Nurminarsih	Sepuluh Nopember Institute of Technology	Indonesia
Sorin-Ioan Maistor	Politehnica University from Timisoara	Romania
Sri Gunani Partiwi	Sepuluh Nopember Institute of Technology	Indonesia
Sudiyono Kromodihardjo	Sepuluh Nopember Institute of Technology	Indonesia
Sukoyo	Institut Teknologi Bandung	Indonesia
Suparno	Sepuluh Nopember Institute of Technology	Indonesia
Suprayogi	Institut Teknologi Bandung	Indonesia
Surahman Surahman	Victoria University, Politeknik Negeri Samarinda	Australia
Surya Dharamdass	Universiti Sains Malaysia	Malaysia
Suryadi Hadi	Tadulako University	Indonesia
Sushil Kumar	Indian Institute of Management	India
Taiwo O. Adetiloye	Concordia University	Canada
Tarig K. Eltayeb Nour	Dhofar University	Sultanate of Oman
Alhadi		0 1 10
Tatenda. Chingono	University of Johannesburg	South Africa
Tatiana Segura	Pontificia Universidad Javierana Bogota	Colombia
Tetra Rachmawati	PT. Telkom Indonesia	Indonesia
Tharelelo Mokgokong	University of Johannesburg	South Africa
Thunyarat (Bam)	National Institute of Development Administration	Thailand
Amornpetchkul Tim Walters	Ahmad Dahlan University	Indonesia
Togar M. Simatupang	Institut Teknologi Bandung	Indonesia
Tomotake Kurosawa	Waseda University	Japan
Tomy Perdana	Universitas Padjajaran	Indonesia
Tore Markeset	University of Stavanger	Norway
Tota Simatupang	Bandung Institute of Technology	Indonesia
Tri Achmadi	Sepuluh Nopember Institute of Technology	Indonesia
Trisna Insan Noor	Padjajaran University	Indonesia
Tuanjai Somboonwiwat	King Mongkut's University of Technology Thonburi	Thailand
Udisubakti Ciptomulyono	Sepuluh Nopember Institute of Technology	Indonesia
Vaibhav Gupta	Indian Institute of Technology	India
Valonav Gupta Victor Gekara		Australia
vicioi Uckala	School of Bussiness IT and Logistics, RMIT	Ausualia

	University	
Victor Suhandi	Maranatha Christian University	Indonesia
Vincent F. Yu	National Taiwan University of Science and Technology	Taiwan
Vincent Li	Taiwan National Chiayi University	Taiwan
Violeta Roso	Chalmers University of Technology	Sweden
Virhanty Ernita Sukma P.	Sepuluh Nopember Institute of Technology	Indonesia
Waqar Ahmed Mirza	Aga Khan University Hospital	Pakistan
Watcharaphong Meesamut	Mahidol University	Thailand
Winda Narulidea	Sepuluh Nopember Institute of Technology	Indonesia
Wiwin Widiasih	Sepuluh Nopember Institute of Technology	Indonesia
Xin Yin	Chongqing University	China
Xiuzhou Zhang	Chongqing University	China
Xumei Zhang	Chongqing University	China
Yan Weng Tan	School of Business, SIM University	Singapore
Yanuar Tri Sulistyo	Telkom University	Indonesia
Yash Daultani	Indian Institute of Management	India
Yasutaka Kainuma	Tokyo Metropolitan University	Japan
Yat-Wah Wan	Taiwan National Dong Hwa University	Taiwan
Yeni Sumantri	Brawijaya University	Indonesia
Yicheng Lin	Taiwan National Chiayi University	Taiwan
Yohei Shinkawa	Waseda University	Japan
Yousef Amer	School of Engineering, University of South Australia	Australia
Yuanita Handayati	Institut Teknologi Bandung	Indonesia
Yudi Fernando	Universiti Sains Malaysia	Malaysia
Yuliani Dwi Lestari	Bandung Institute of Technology	Indonesia

AN INTEGRATED MODELING OF HUMAN, MACHINE, AND ENVIRONMENTAL ASPECTS IN SUPPLY CHAIN PLANNING AND OPERATIONS USING FUZZY LOGIC

ParamaKartikaDewa

Department of Industrial Engineering, SepuluhNopember Institute of Technology, Surabaya 60111 Indonesia, E-mail: paramakartikadewa@gmail.com

I NyomanPujawan

Department of Industrial Engineering, SepuluhNopember Institute of Technology, Surabaya 60111 Indonesia, E-mail: pujawan@gmail.com

IwanVanany

Department of Industrial Engineering, SepuluhNopember Institute of Technology, Surabaya 60111 Indonesia, E-mail: iwan.vanany@gmail.com

ABSTRACT

Supply chain planning and operations is deeply dependent on human endeavor. The performance of a supply chain is determined by the human that is involved in the process of planning and operation. Supply chain planning involves activities such as demand forecasting, developing various plans that includes production plan, procurement plan, and distribution plan. Supply chain operations are essentially executing such supply chain processes such as procurement, production, transportation, and warehousing. In all of the above processes, the roles of human are critical, although the specific roles played from one process to another are different. Human performance problems identified in real operational events often involve operators performing actions that are not required for accident response. Analyses of the major failure/accidents during recent decades have concluded that human errors on part of operators, designers or managers have played a major role. On the other hand, the effectiveness of human in planning as well as operations of a supply chain is affected by two other factors, namely the tools used and the working environment. In this paper we present a simulation modeling that establish a linkage between human, tools, and working environments in supply chain planning and operations to reduce or eliminate human error. The analysis of these relations is complex, involving vagueness and uncertainty data. Fuzzy Logics (FL) provides a mathematical framework for the systematic treatment of vagueness and imprecision data. This paper presents a simulation modeling using fuzzy logics in reducing human error.

Keywords: supply chain, human error, simulation, fuzzy logics

1. INTRODUCTION

Supply chain management (SCM) assists the business organization to compete in the international market (Habib, 2010). SCM is needed for various reasons like : increasing profits, improving operations, better outsourcing, enhancing customer satisfaction, increasing globalization, tackling competitive pressures, generating quality outcomes, and growing complexity of supply chains (Stevenson, 2002). Supply chains are relatively easy to define for manufacturing industries, where each participant in the chain receives inputs from a set of

suppliers, processes those inputs, and delivers them to a different set of customers (Habib, 2010). According to Christopher (1994), a supply chain is "a network of organizations that are involved, through upstream and downstream linkages, in the different processes and activities that produce value in the form of products and services in the hands of the ultimate customer." The supply chain includes suppliers, manufacturers, distributors, retailers, and customers (Chopra and Meindl, 2010). A supply chain is a system of human, activities, information, and resources involved in creating a product and then moving it to the customer (Ketchen, Rebarick, Hult, Meyer, 2008). Supply chain planning and operations is deeply dependent on human endeavor. There is evidence that 80 percent of supply chain problems occur due to human (Andraski, 1994). The performance of a supply chain is determined by the human that is involved in the process of planning and operation. Supply chain planning involves activities such as demand forecasting, developing various plans that includes production plan, procurement plan, and distribution plan. Supply chain operations are essentially executing such supply chain processes such as procurement, production, transportation, and warehousing. In all of the above processes, the roles of humanare critical, although the specific roles played from one process to another are different. Human performance problems identified in real operational events often involve operators performing actions that are not required for accident response. Analyses of the major failure/accidents during recent decades have concluded that human errors on part of operators, designers or managers have played a major role. On the other hand, the effectiveness of human in planning as well as operations of a supply chain is affected by two other factors, namely the tools used and the working environment. In this paper we present a simulation modeling that establish a linkage between human, tools, and working environments in supply chain planning and operations to eliminate or reduce human error. The analysis of these relations is complex, involving vagueness and uncertainty data. Fuzzy Logics (FL) provides a mathematical framework for the systematic treatment of vagueness and imprecision data. This paper presents a simulation modeling using fuzzy logics in reducing human error.

2. LITERATURE REVIEW

Supply chain is a collection of functional activities (transportation, inventory control, etc.), which are repeated many times throughout the channel through which raw materials are converted into finished products and consumer value is added (Ballou, 2004). Supply chains are responsible for the entire lifetime of the product, from preparation of materials and supply management, to production and manufacturing, distribution and customer service, and ultimately recycling and disposal at the end of product life (Jagdev, Browne, 1998). Decision phases in a supply chain are supply chain strategy or design, supply chain planning, and supply chain operations (Chopra and Meindl, 2010). Supply chain planning is concerned with the coordination and integration of key business activities, from the procurement of raw material to the distribution of final product to the end customers (Gupta, Maranas, 2003). Supply chain operations are essentially executing such supply chain processes such as procurement, production, transportation, and warehousing.

2.1 Human Role.

In order to address human in supply chain performance, humans' capabilities and limitations must first be understood. Humans' capabilities have been identified: (a) humans are not limited to one identity or any common set of emotions; (b) humans are not limited to acting in accordance with predermined rules; (c) humans are not limited to acting on local patterns (Kurtz and Snowden, 2003). Caves (1982) stated that human skills influence effectiveness level of transformation process from input into an output element of a system. Human skills are the

are checked to ensure picking accuracy and may be sorted or consolidated before dispatching. Consolidation refers to grouping multiple orders for the same destination. Dispatching is the last warehousing activity in which goods are loaded onto a transport carrier. Warehouses with human as operators are confronted with returns caused by incorrect delivery of items. Picking is the problematic sub-process of warehouses operations because of its high error. The different types of errors are picking of wrong types or quantities of articles, complete omission of an article type, and an insufficient quality of articles delivered. Reason (1990) defined human error as ' a generic term to encompass all those occasions in which a planned sequence of mental or physical activities fails to achieve its intended outcome, and when these failures cannot be attributed to the intervention of some chance agency'. These errors cause high costs for warehouse operators. Thus the main goal for warehouses is to eliminate errors or at least reduce their number.

3. FUZZY LOGIC

A contribution of fuzzy logic is its capability of representing vague data. Fuzzy logic resembles human reasoning in its use of approximate information and uncertainty to generate decisions (Gonzalez, Darbra, Arnaldos, 2013).Darbra and Casal (2009) established that fuzzy logic provides a way to use imprecise and uncertain information generated by system and human judgments in a precise manner. This human reasoning can be very helpful for solving engineering problems through the introduction of expert's knowledge in to the system. These steps of the fuzzy logic methodology developed in this study are presented in Figure 1.

3.1 Identification of the variables

As first step, fuzzy logic relies on the identification of variables that are relevant to the system (inputs and outputs). Since the objective of this study is to reduce or eliminate human error, the first step is to analyze the system of human error on warehouse operations. The variables involved in this study include: human aspect, tools aspect, and environment aspect. The fuzzy inference model developed in this study is limited to using the most dominant factors in every aspect. Based on previous research, data processing skills and analyzing data skills are the most dominant factors in performance of the human aspect. Brill et al. (1984) stated that noise and lighting factors is the dominant factor affecting human performance. These factors become part of the environment aspect. Tools aspect, tools used repetitively over an extended period of time can cause injury if they are not ergonomically designed. The use of tools frequently leads to feelings of discomfort during work. These feelings can reduce performance of human (Fellows and Freivalds, 1991; Evers et all, 2004). The tools design in this study is expressed as tools dimension. The tools dimension is determined by comparison with dimension of human body. The output variable in this model is prediction error level. The error rate was set to be three levels: low, medium and high. Fig. 2 shows the hierarchy of the Mamdani fuzzy inference system used for the manage error level.

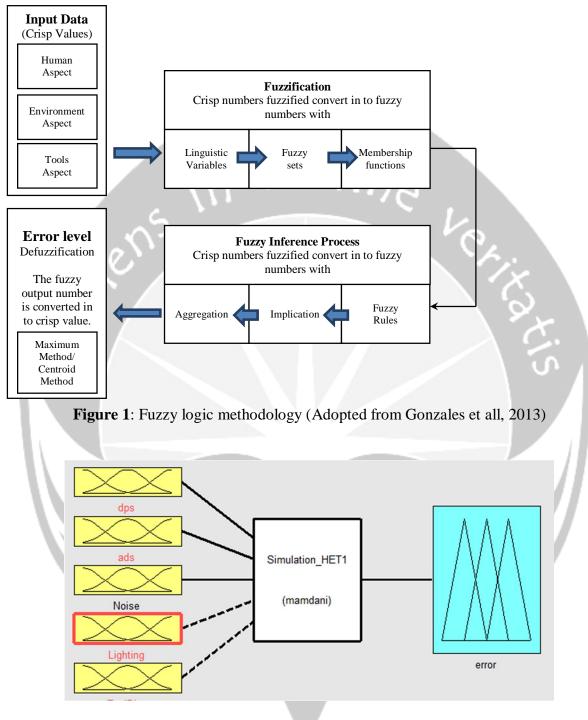


Figure. 2. Fuzzy inference system for manage error level.

3.2 Fuzzification Process.

Process to establish fuzzy sets to represent numerical value of inputs and output variables (Kosko, 1995; Bojorques, Tapia et al., 2002).Basically, fuzzy sets convert the numerical values of variables to linguistic parameters such as low, median or high. Inputs and output variables have

three triangular membership functions. Variable data processing skills (dps) and analyzing data skills (ads) on the human aspect was measured using a ten scale level of skill. The value of these skills then converted into linguistic parameters: low, medium and high.

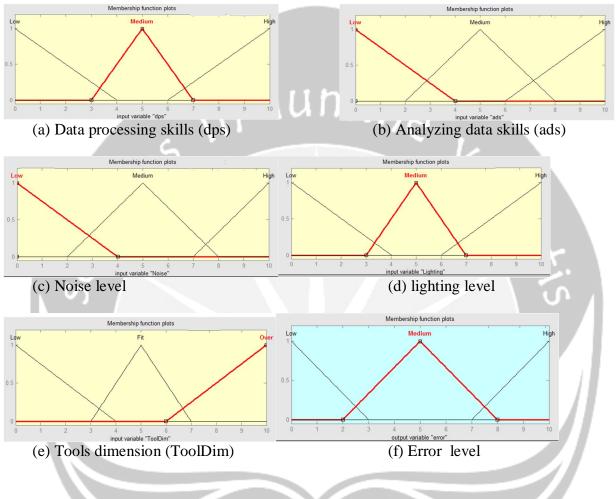
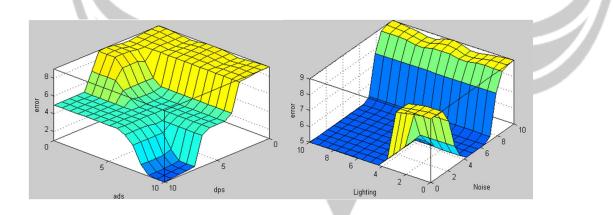


Figure. 3. Fuzzy inference system for manage error level.

Variable input on the environmental aspects are noise level and lighting level. Noise is measured in units called 'decibels'- normally written 'dB'. Permissible sound limits as per OSHA is 90 dBA (Jain, 2012). In this model, the value of the noise from 0 dBA - 90 dBA grouped into ranges of 0-10 to create membership function. Lighting level is measured in units called 'lux'- normally written 'lx'. A study indicated that an increase in illuminance from 500 lx to 1500 lx could increase the performance of workers (Baron et al. 1992). The value of lighting level from 100 lx to 1500 lx grouped into ranges of 0-10 to create membership function.

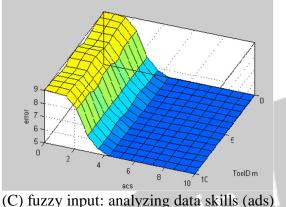
A variable tools dimension (ToolDim)set by measuring the dimension of the tools and compare with the anthropometry data (human hand). The value of tools dimension then converted into linguistic parameters: low, fit and over. The parameters is low if the dimension of tools small than the anthropometry data. The parameters is fit if the dimension of tools equals with the anthropometry data. Finally, the parameters is over if the dimension of tools bigger than the anthropometry data. The output variable in this model is prediction error level. The error rate was set to be three levels: low, medium and high. The grouping is determined based on the brainstorming process with management.Figs. 3 show the resulting membership functions for fuzzy inference system to manage error level.

3.3 Fuzzy Inference Process.


The general fuzzy inference system consists of input and output variables. The input variables in this model are five and one output variable. Total variables are six, for a total of five input variables, each having a varying 3 linguistic values, giving us a total of 243 (=3 x 3 x 3 x 3) different combinations (rules).Based on observations and results of research in the laboratory was composed fuzzy inference rules. The mapping between values of variables input and variables output (error level) is accomplished by the use of fuzzy if-then rules.

3.4 Experimental Results.

In this section, we present results obtained from simulating the influence of human, tools, and environment aspects to error level. Three scenarios are conducted to evaluate the proposed three aspects to error level. The first scenario represents the situation where variable data processing skills (dps) and analyzing data skills (ads) on the human aspect was increases in value, while the rest of the variables remain constant. The second scenario illustrates the case where variable noise and lighting level on environmental aspects was increases in value, while the rest of the variables remain constant. The third scenario represent the situation where variable tools dimension on tools aspect and analyzing data skills (ads) where usually used tools was increases in value, while the rest of the variables remain constant.


4. DISCUSSION AND EVALUATION OF THE RESULTS.

Figs. 4 show the resulting output surface error level for Mamdani fuzzy inference system. Fig. 4ashow the resulting output surface error level for the first scenario. The combination value of variable processing skills and analyzing data skill determine variety of the shape of surface error level. These results indicate that these two variable dominant in determining the error rate.

(a) Fuzzy input: data processing skills (dps) and analyzing data skills (ads).

(b) Fuzzy input: noise and lighting level

(C) fuzzy input: analyzing data skills (ads and tools dimension.

Figure. 4. Output error level surface (Mamdani) for two fuzzy input.

imine

Fig. 4bshow the resulting output surface error level for the second scenario. Based on shape of surface error level there are particular value combination of noise and lighting that generate low error level. Medium level on both noise and lighting level will generate low level error for the system. These results indicate that these two variable slight dominant in determining the error rate. Fig. 4cshow the resulting output surface error level for the third scenario. Based on shape of surface shape of error level, these shape more simple than result of second scenario. These results indicate that these two variable dominant in determining the error rate.

5. CONCLUSION

The relationship between human aspect, environmental aspect, and tools aspect to manage error level was investigated in this study. The main results are summarized as follows.

(1) Human aspect : skills of data processing and analyzing data become dominant variable on the system to reduce the error level. (2) Environmental aspect: noise and lighting level become slight dominant in determining variable on the system to reduce the error level. (3) Tools aspect: dimension tools become variable that have a minor influence on the system to reduce error level. Finally, the human aspect has the most dominant influence on the error rate. The management should more attention to the managing human.

7. REFERENCE.

- Andraski, J.C., (1994). Foundations for successful continuous replenishment programs. International Journal of Logistics Management 5 (1), 1-8.
- Attwood, D.A., Deeb, J.M., Danz-Reece, M.E., (2004). Ergonomic Solutions for the Process Industries, Oxford, UK: Gulf Professional Publishing.
- Baybutt, P.,(2002). Layers of protection analysis for human factors (LOPA-HF). Process Safety Progress 21(2), 119-129.
- Ballou, R.H.,(2004). Business Logistics/Supply Chain Management: Planning, Organizing, and Controlling the Supply Chain, 4th Edition, Prentice Hall, New York.
- Bailey, R.W., (1982). *Human Performance Engineering: A Guide for System Designers*. Englewood Cliffs, NJ: Prentice-Hall.
- Berg, J.P.V.D., Zijm, W.H.M., (1999). Models for warehouse management: classification and examples. International Journal of Production Economics 59, 519-528.

- Brill, M., Margulis. S, Konar E, Bosti, (1984). Using Office Design to Increase Productivity, Buffalo, New York.
- Brill, M.H., (1990). Image segmentation by object color: aunifying framework and connection to color constancy. Journal of The Optical Society of America7, 2041-2047.
- Bojorques, Tapia, L.A., Juarez, L., Cruz-Bello, G., (2002). Integrating fuzzy logic, optimization, and GIS for ecological impact assessments. Environmental Management 30(3), 418-433.
- Baron, R.A., REA, M.S., Daniels, S.G., (1992). Effects of indoor lighting on the performance of cognitive task and interpersonal behavior: the potential mediating role of positive affect. Motivation Emotion 16, 1-33.
- Caves, D.W., Christensen, L.R., Diewert, W.E., (1982). The economic theory of index numbers and the measurement of input, output, and productivity. Econometrica 50, 1393-1414.
- Christopher, M., (1994). Logistics and Supply Chain Management, Pitman Publishing, New York.
- Chopra, S., Meindl, P., (2010). Supply Chain Management, Prentice Hall, New Jersey.
- Dewa, P.K., Pujawan, I.N., Vanany, I., (2012). Human aspects in supply chain planning and operations. International Conference on IML, 394-399.
- Darbra. R.M., Casal. J., (2009).Environmental risk assessment of accidental releases in chemical plants through fuzzy logic. Chemical Engineering Transactions 17, 287-292.
- De Koster, R., Le-Duc, T., Roodbergen, K.J., (2007). Design and control of warehouse order picking: a literature review. European Jurnal of Operational Research 182.481-501.
- Evers, L.F.M., Groenesteijn, L., Looze, M.P., Vink, P., (2004). Identifying factors of comfort in using hand tools. Applied Ergonomics 35, 453-458.
- Fellows, G.L., Freivalds, A., (1991). Ergonomics evaluation of a foam rubber grip for tool handles. Applied Ergonomics 22(4), 225–230.
- Fitch, E., (2004). Creating and Effective Office Environment Within a Managed Work Space, MSc Dissertation, Sheffield Hallam University, Sheffield.
- Gonzalez. J.R., Darbra. R.M., Arnaldos, J.,(2013). Using fuzzy logic to introduce the human factor in the failure frequency estimation of storage vessels in chemical plants. Chemical Engineering Transactions 32, 193-198.
- Gu, J., Goetschalckx, M., McGinnis, L.F., (2007). Research on warehouse operation: a comprehensive review. European Journal of Operational Research 177(1), 1-21.
- Gupta, A., Maranas, C.D., (2003). Managing demand uncertainty in supply chain planning. Computers and Chemical Engineering 27, 1219-1227.
- Habib, M.M., (2010). Supply chain management: theory and its future perspectives. International Journal of Business Management and Social Sciences 1(1), 79-87.
- Islam,S., Shazali, S.T.S., (2011). Determinants of manufacturing productivity:pilot study on labor intensive industries. International Journal of Productivity and performance management60(6), 567-582.
- Jain.V., (2012).Analysis of noise level reduction for plant machine monitoring. International Journal of Scientific & Engineering Research Volume 3(9),1-3.
- Kosko B., (1995). Fuzzy Thinking, the New Science of Fuzzy Logic, 2ndEdition, Harper Collins, London.
- Ketchen, D.J.Jr., Rebarick, W., Hult, G.T.M., Meyer, D., (2008). Best value supply chains: a key competitive weapon for the 21st century. Business Horizons 51,235-243.
- Kurtz, C.F., Snowden, D.J.,(2003). The new dynamics of strategy: sense-making in a complex and complicated world. IBM Systems Journal 42(3),462-482.
- Leaman, A., (1995). Dissatisfaction and office productivity. Facilities 13(2), 13-19.

dominant input in a manufacturing system (Islam & Shazali, 2011). The skills level of human as a determinant of successful development of the manufacturing performance (Shahidul&Anwar, 2007). Human activities influence the outcome of a system. The variations on human skills affect the performance of a system (Patterson et al., 1997).

Each process on supply chain will produce the expected outputs if supported by the operator that has the suitable competences. The needed competence identifications in managing the planning activities and operations on a supply chain are as follows (Dewa, Pujawan, &Vanany, 2012): (1) Dataprocessing, which is the ability to make or prepare the needed data input to make various decisions in supply chain. (2) Skills to operate tools such as software and hardware, and use the various methods such as prediction technique, the methods to determine storage parameter, and so on. (3) The ability to analyze such as analyzing data, doing what-if analysis on various parameters, making scenario simulation related with supply chain planning. (4) The ability to react or adaptive toward the existence of the new information/situation such as rearrangement of production plans, processing demands with high urgency level, changing the delivery methods, and processing the sudden consumers' demands. (5) The working ability in a team, moreover to do the selling coordination and production plans, to do the production plan synchronization with buying plans, to do the development coordination of the new products with marketing plans. (6) The ability to collaborate with business partner such as involving suppliers in products' development process, preparing selling data from the distributors, making certain that the suppliers will provide order status on time.

2.2 Factors Affecting Human Performance.

Meister (1999) stated that human beingsin order to achieve good performance requirestools or technology to overcome their limitations. The tools will effectively help human when designed in accordance with the dimensions of the individual using it. In addition, physical environment around the working humans also gives impact on humans' performance (Parsons, 2000).Sekar (2011) stated that working tools and working place were the integral parts of the work itself. Bailey (1982) proposed a human performance model to develop humans' performance in a working system. The model explains that to get high performing humans, factors to be considered aretheir activity and the place where the work carried out. Human performance level in a working system is influenced by their working environment condition (Leaman, 1995; Oseland& Bartlett, 1999; Fitch, 2004; Leblebici, 2012; Brill, 1990).

2.3 Human Error on Warehouse Operations

Rouwenhorst (2000) stated that the efficiency and effectiveness of a supply chain network is dependent on the performance of its functional elements, in particular, warehousing operations. They facilitate storage and buffer functions between upstream and downstream points of the supply chain (De Koster et all., 2007). The core warehouse operations revolve around the flow of order picking and dispatching (Gu et al., 2007; Berg and Zijm, 1999). The operations of warehousing starts with receiving, in which the arriving items are unloaded from the transport carriers. Their identity, quantity and condition is checked at this stage, and items may be repacked to different stock keeping units, i.e. put into stillages, palletized or de-palletized, after which they await for the next process called put away. Put away is the process of physical moving of the received goods from the staging area to the locations in the warehouse, where they can be stored. Storage is the placement of goods in the facility for the purpose of safe keeping, protection and retrieval as required by the next activity. Order fulfillment or order picking refers to the removal of items from the storage locations for the purpose of fulfilling customer orders. Completed orders

- Leblebici, D., (2012). Impact of workplace quality on employee's productivity: case study of a bank in Turkey. Journal of Business, Economics & Finance1, 38-49.
- Meister, D.,(1999). *The History of Human Factors and Ergonomics*. London: Lawrence Erlbaum Associates.
- Oseland, N., Bartlett, P.,(1999). *Improving Office Productivity: a Guide for Business and Facilities Managers*, Longman, Singapore.
- Parsons,K.C., (2000). Environmental ergonomics: a review of principles, methods and models. Journal of Applied Ergonomics 31, 581-594.
- Rousseeuw. P.J., Kaufman,L., (1990). Finding Groups Data: An Introduction to Cluster Analysis, Wiley-Interscience, NY, USA.

Reason, J., (1990). Human Error, Cambridge University Press, New York.

- Stevenson, W.J., (2002). Operations Management, 7th Edition, McGraw-Hill/Irwin, New York.
- Sekar, C.,(2011). Workplace environment and its impact on organizational performance in public sector organizations. International Journal of Enterprise Computing and Business System International Systems1,1-15.
- Shahidul, M.I, Anwar.H.,(2007). Matrix of skill automation product cost: few case studies on manufacturing enterprises in Bangladest. Journal of Arthanity12(1),150-158.

