USULAN PERBAIKAN KUALITAS DI CV. JORDAN PLASTICS DENGAN METODE SIX SIGMA DMAIC

TUGAS AKHIR

Diajukan untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Teknik Industri

FABIAN GALIH KRIST PRADIPTA 13 06 07240

PROGRAM STUDI TEKNIK INDUSTRI
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2017

HALAMAN PENGESAHAN

Tugas Akhir berjudul

USULAN PERBAIKAN KUALITAS DI CV. JORDAN PLASTICS DENGAN METODE SIX SIGMA DMAIC

yang disusun oleh

Fabian Galih Krist Pradipta

13 06 07240

dinyatakan telah memenuhi syarat pada tanggal 9 Oktober 2017

Dosen Pembimbing 1,

Brillianta Budi N., S.T., M.T.

Dosen Pembimbing 2,

DM. Ratna Tungga D., S.Si., M.T.

Tim Penguji,

Penguji 1,

Brillianta Budi N., S.T., M.T.

Penguji 2,

Penguji 3,

Ririn Diar A., S.T., M.MT., D.Eng

Theodorus B. Hanandoko, S.T., M.T.

Yogyakarta, 9 Oktober 2017 Universitas Atma Jaya Yogyakarta,

Fakultas Teknologi Industri,

Dekan,

Dr. A. Teguh Siswantoro

PERNYATAAN ORIGINALITAS

Saya yang bertanda tangan di bawah ini

Nama: Fabian Galih Krist Pradipta

NPM : 13 06 07240

Dengan ini menyatakan bahwa tugas akhir saya dengan judul "Usulan Perbaikan Kualitas di CV. Jordan Plastics dengan Metode Six Sigma DMAIC" merupakan hasil penelitian saya yang bersifat original dan tidak mengandung plagiasi dari karya manapun. Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku termasuk untuk dicabut gelar Sarjana yang telah diberikan Universitas Atma Jaya Yogyakarta kepada saya. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Yogyakarta, 17 September 2017

Yang menyatakan METERAI TEMPEL

581ECAEF66884427

Fabian Gaiin Krist Pradipta

Sebuah ayat suci pada hari Minggu, satu hari sebelum saya maju ujian pendadaran, sungguh membuat hati saya tergerak. Berikut bunyi ayat suci tersebut yang diambil dari Kitab Yesaya:

"Seperti tingginya langit dan bumi, demikianlah jalan-Ku menjulang di atas jalanmu dan rancangan-Ku di atas rancanganmu"

Terima kasih Tuhan Yesus Kristus atas rancangan indah yang sudah Engkau karuniakan kepada saya

Terima kasih juga untuk kedua orang tuaku yang selalu mengingatkan saya dalam mengerjakan tugas akhir ini

Terima kasih untuk semua pihak yang terlibat dalam tugas akhirku ini, semoga bantuan kalian semua akan dibalas oleh karunia Tuhan Yesus Kristus yang begitu indah.

Semua ini kupersembahkan untuk kemuliaan Tuhan yang lebih besar.

AMDG "Ad Maiorem Dei Gloriam"

KATA PENGANTAR

Puji syukur saya ucapkan kepada Tuhan yang Maha Esa atas rahmat dan bimbingan-Nya sehingga saya dapat menyelesaikan tugas akhir dan dapat menyelesaikan pembuatan laporan tugas akhir tepat pada waktunya.

Adapun tujuan dari tugas akhir ini adalah untuk menerapkan teori-teori yang didapatkan oleh mahasiswa pada permasalahan nyata yang ada. Akhir kata saya mengucapkan terima kasih kepada pihak yang telah turut membantu selama pelaksanaan tugas akhir, yaitu kepada:

- 1. Bapak Dr. A. Teguh Siswantoro, selaku Dekan Fakultas Teknologi Industri
- 2. Bapak V. Ariyono, S.T., M.T., selaku Kepala Prodi Teknik Industrik
- 3. Bapak Brillianta Budi N., S.T., M.T. dan Ibu DM. Ratna Tungga D., S.Si.,M.T., selaku dosen pembimbing tugas akhir.
- 4. Pak Hastho, Pak Wahyu, dan segenap karyawan CV. Jordan Plastics yang tergabung dalam tim proyek
- 5. Orang tua saya yang selalu menyemangati segala proses pelaksanaan tugas akhir ini
- 6. Rekan-rekan angkatan 13 yang sudah menemani saya menjalani proses perkuliahan saya dari awal hingga akhir
- 7. Semua pihak yang telah membantu saya dan tak bisa disebutkan satu-persatu

Kiranya dengan terselesainya tugas akhir ini, dapat membantu semua pihak yang membacanya dan dapat diambil manfaatnya.

Saya juga menyadari dalam pembuatan tugas akhir ini masih banyak terdapat kekurangan-kekurangan, oleh karena itu saya sangat mengharapkan kritik dan saran yang bersifat membangun dari para pembaca.

Yogyakarta, 5 Oktober 2017

Penyusun

DAFTAR ISI

Е	BAB	JUDUL	HAL
		Halaman Judul	i
		Halaman Pengesahan	ii
		Pernyataan Originalitas	iii
		Pernyataan Originalitas Halaman Persembahan Kata Pengantar	iv
		Kata Pengantar	٧
		Daftar Isi	vi
		Daftar Tabel	х
	1	Daftar Gambar	xi
ħ	\mathcal{U}	Daftar Lampiran	xii
		Intisari	xiii
	1	Pendahuluan	/1
Ĺ		1.1. Latar Belakang	/ 1
7		1.2. Perumusan Masalah	2
ľ	1	1.3. Tujuan Penelitian	2
1		1.4. Manfaat Penelitian	2
		1.5. Batasan Masalah	2
	2	Tinjauan Pustaka dan Dasar Teori	3
		2.1. Tinjauan Pustaka	3
		2.1.1. Cost of Poor Quality	3
		2.1.2. Six Sigma DMAIC	4
		2.2. Dasar Teori	7
		2.2.1. Definisi Kualitas	7

	2.2.2. Biaya Kualitas	8
	2.2.3. Definisi Six Sigma	10
	2.2.4. Six Sigma DMAIC	10
3	Metodologi Penelitian	30
	3.1. Tahap Pendahuluan	30
	3.2. Tahap Pengambilan Data 3.2.1. Metode Pengambilan Data	30
	3.2.1. Metode Pengambilan Data	30
	3.2.2. Data yang Dikumpulkan dan Sumbernya	30
	3.3. Tahap Analisis Data	31
3	3.3.1. Fase Define	31
U	3.3.2. Fase Measure	32
כ	3.3.3. Fase Analyze	32
	3.3.4. Fase Improve	32
	3.3.5. Fase Control	32
		//
4	Data	/
7	4.1. Profil Perusahaan	35
C	4.2. Proses Produksi	36
	4.2.1. Persiapan Bahan Baku	36
	4.2.2. Proses Pemasangan Mold	36
	4.2.3. Proses Pencetakan	36
	4.2.4. Proses Inspeksi	38
	4.2.5. Proses Penggilingan	38
	4.2.6. Proses Pengemasan	38
	4.3. Data Harga Bahan Baku	40
	4.4. Data Proses Reamer	40

	4.5. Data Inspeksi	41
	4.6. Data Trial	41
	4.7. Data Perbaikan Mesin	41
	4.8. Data Measurement System Analysis	41
	4.9. Data Noncorformities	42
5	Analisis Data dan Pembahasan	45
	5.1. Perhitungan COPQ Saat Ini	45
	5.1.1. Identifikasi Komponen COPQ	45
	5.1.2. Komponen COPQ Hasil Identifikasi	47
j	5.2. Tahap Define	51
υ	5.2.1. Pemilihan Proyek Potensial	51
)	5.2.2. Pembuatan Project Charter	53
	5.2.3. Pembuatan Diagram SIPOC	54
•	5.2.4. Identifikasi CTQ	55
	5.3. Tahap Measure	60
	5.3.1. Penentuan CTQ Dominan	60
2	5.3.2. Pengukuran Kapabilitas Proses	61
C	5.3.3. Pengukuran Kondisi Baseline Kinerja	63
	5.3.4. Analisis Sistem Pengukuran	64
	5.4. Tahap Analyze	68
	5.4.1. Pembuatan Diagram Sebab-Akibat	68
	5.4.2. Pembuatan Process FMEA	77
	5.5. Tahap Improve	80
	5.5.1. Intrinsic Viscosity	82
	5.5.2. Kristalisasi PET	84
	5.5.3. Natural Stretch Ratio	84

	5.5.4. Pembuatan Instruksi Kerja	85
	5.5.5. Penambahan Alat	88
	5.6. Tahap Control	89
6	Kesimpulan	92
	6.1. Kesimpulan	92
	6.1. Kesimpulan 6.2. Saran	92
	Daftar Pustaka	93
	Lampiran	95
3	7.	
S	\sqrt{0}	
		П
I \		//
	₹	

DAFTAR TABEL

Tabel 2.1. Matriks Tinjauan Pustaka	7
Tabel 2.2. Prinsip Data Variabel dan Atribut	17
Tabel 2.3. Skala Severity	25
Tabel 2.4. Skala Occurrence	25
Tabel 2.5. Skala Detection	26
Tabel 4.1. Daftar Harga Bahan Baku	40
Tabel 4.2. Durasi Penggunaan Mesin Bor Duduk	41
Tabel 4.3. Data MSA	42
Tabel 4.4. Data Noncorformities	43
Tabel 5.1. Cost of Poor Quality CV. Jordan Plastics	50
Tabel 5.2. Project Charter CV. Jordan Plastics	54
Tabel 5.3. Deskripsi CTQ Produk Botol	56
Tabel 5.4. PFMEA Proses Stretch Blow Molding	78
Tabel 5.5. Nilai Konstanta K	83
Tabel 5.6. Instruksi Kerja Proses Trial	86
Tabel 5.7. Control Plan Instruksi Kerja	89
Tabel 5.8. Checksheet Incoming Material	90
Tabel 5.9. Instruksi Kerja Proses Monitoring Trial	90
Tabel 5.10 Instruksi Kerja Proses Pemeriksaan Kebutuhan Material Trial	91

DAFTAR GAMBAR

Gambar 2.1. Contoh Tabel Project Charter	12
Gambar 2.2. Contoh Tree Diagram Sederhana	13
Gambar 2.3. Contoh SIPOC Sederhana	15
Gambar 2.4. Pembagian Peta Kendali	18
Gambar 2.5. Contoh u-Chart Sebuah Kasus	20
Gambar 2.6. Pareto Diagram Kasus Sederhana	21
Gambar 2.7. Contoh Fishbone Diagram Kasus Sederhana	23
Gambar 2.8. Contoh FMEA Kasus Sederhana	27
Gambar 3.1. Diagram Alir Tahapan Penelitian	33
Gambar 3.2. Diagram Alir Tahapan Penelitian (Lanjutan)	34
Gambar 4.1. Flowchart Proses Produksi CV. Jordan Plastics	39
Gambar 5.1. Diagram Pareto COPQ Bulan September 2016	52
Gambar 5.2. Diagram Pareto Biaya Bahan Baku Reject Bulan September	
2016	53
Gambar 5.3. Diagram SIPOC CV. Jordan Plastics	55
Gambar 5.4. CTQ Tree Produk Botol CV. Jordan Plastic	56
Gambar 5.5. Diagram Pareto Jenis CTQ yang Muncul	61
Gambar 5.6. Hasil Keluaran Analisis Kapabilitas Minitab 16	62
Gambar 5.7. Tabel Konversi Nilai Sigma	64
Gambar 5.8. Diagram Sebab-Akibat Cacat Semu Putih	69
Gambar 5.9. Bahan Baku Preform PET	81
Gambar 5.10. Proses Bisnis Permintaan Trial	85
Gambar 5.11. Form QSR Parameter Setting Trial	87

DAFTAR LAMPIRAN

Lampiran 1. Data Inspeksi (softcopy)	95
Lampiran 2. Data Trial (softcopy)	96
Lampiran 3. Data Downtime Mesin (softcopy)	97
Lampiran 4. Perhitungan COPQ (softcopy)	97
Lampiran 5. Data Kerusakan Mesin	100
Lampiran 6. Dokumen Prosedur Mutu Pelaksanaan Trial Produksi (softcopy)	104

INTISARI

CV. Jordan Plastics adalah perusahaan yang bergerak dalam bidang manufaktur plastik berbahan high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropolene (PP), dan polyethylene terephthalate (PET). Setiap bulannya perusahaan ini mampu memproduksi puluhan ton botol plastik, tetapi 2,5% dari keseluruhan produksi adalah produk cacat. Produk cacat yang sangat banyak membuat perusahaan harus mengeluarkan beban biaya atas kegagalan mereka memenuhi keinginan konsumen atau yang biasa disebut cost of poor quality (COPQ). Penelitian ini dilakukan untuk mencari usulan perbaikan yang dapat dilakukan dalam usaha mengurangi produk cacat yang paling banyak muncul dalam proses produksi dengan melihat komponen COPQ terbesar sebagai acuannya. Metode Six Sigma DMAIC (Define-Measure-Analyze-Improve-Control) digunakan untuk membantu penelitian ini. Tahap define menggunakan project charter, SIPOC, dan CTQ Tree. Tahap measure menggunakan diagram pareto, control chart, dan measurement system analysis. Tahap analyze menggunakan diagram sebab-akibat dan PFMEA. Tahap improve menggunakan instruksi kerja. Tahap control menggunakan control plan, checksheet, dan instruksi kerja. Hasilnya, COPQ pada bulan terakhir, September 2016, sebesar Rp42.491.118,09 dengan komponen biaya produksi yang hilang menyumbangkan 43.4% untuk COPQ pada bulan tersebut, di mana proses stretch blow molding memberikan kontribusi sebesar 64,4% dibandingkan proses lain untuk biaya produksi yang hilang. Kapabilitas proses produksi stretch blow molding berada pada posisi 3,65 sigma. Jenis cacat semu putih menjadi jenis cacat yang paling banyak muncul dengan persentase hingga 36% dari keseluruhan cacat yang muncul. Cacat semu putih disebabkan oleh tiga faktor utama, vaitu mesin, manusia, dan material, dengan solusi perbaikan yang direkomendasikan adalah pembuatan instruksi kerja penetapan setting mesin (trial) yang baru pada mesin stretch blow molding dengan memperhatikan faktor besaran IV dan suhu material preform.

Kata kunci: semu putih, Six Sigma, stretch