UPPER STRUCTURE DESIGN OF COLLEGE BUILDING E6 AND E7 TWIN TOWER UNIVERSITAS MUHAMMADIYAH YOGYAKARTA

Final report

as one of the requirements to obtain a Bachelor's degree from Universitas Atma Jaya Yogyakarta

> By : Maria Oktaviana Toring Student ID : 121314459

INTERNATIONAL CIVIL ENGINEERING PROGRAM DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING UNIVERSITAS ATMA JAYA YOGYAKARTA YOGYAKARTA JUNE 2017

STATEMENT

I signed bellow

Name

: Maria OktavianaToring

Student ID

: 121314459

Studied Program : International Civil Engineering Program

Declare that I will work on myself and would not do plagiarism on my final report with title :

"UPPER STRUCTURE DESIGN OF COLLEGE BUILDING E6 AND E7 TWIN TOWERUNIVERSITAS MUHAMMADIYAH YOGYAKARTA'

If during the preparation of the final project later proved that my final report done by the other party or I do plagiarism, then my final project disqualified by the administrator of the study program

Yogyakarta, June 2017

Who made the remarks, TERAI C6AEF262501670 (Maria OktavianaToring)

4

APPROVAL

Final Report

UPPER STRUCTURE DESIGN OF COLLEGE BUILDING E6 AND E7 TWIN TOWER UNIVERSITAS MUHAMMADIYAH YOGYAKARTA

by:

Maria Oktaviana Toring Student ID: 121314459

has been evaluated and aproved to be presented

Yogyakarta, June 8th , 2017

Supervisor,

dur

(Prof.Ir Yoyong Arfiadi, M.Eng., Ph.D)

Department of international civil engineering Chairman,

(Dt Eng Luky Handoko)

APPROVAL

Final Report

UPPER STRUCTURE DESIGN OF COLLEGE BUILDING E6 AND E7 TWIN TOWER UNIVERSITAS MUHAMMADIYAH YOGYAKARTA

by: Maria Oktaviana Toring Student ID : 121314459

Has been tested and approved by

	Name	Date Signature
Chairman	: Prof.Ir Yoyong Arfiadi, M.Eng.,Ph.D	June 8, 2017 Slange
Secretary	:Anggun Tri Atmajayanti, M.Eng	June 8, 2017 May .
Member	:Dr. AM Ade Lisantono	JUNK 8, 2017

TABLE OF CONTENTS

COVER	i		
STATEMENT	ii		
APPROVAL	iii		
PREFACE	iv		
TABLE OF CONTENTS	v		
LIST OF TABLE	xi		
LIST OF GRAPH	xiii		
LIST OF PICTURE	xvi		
ABSTRACT	XV		
CHAPTER I INTRODUCTION	1		
1.1. Background	1		
1.2. Problem Statement	2		
1.3. Problem Scope	2		
1.4. Specification	3		
1.5. Originality	3		
1.6. Objetive And Benefits	3		
CHAPTER II LITERATURE REVIEW	<u> </u>		
2.1 Imposition of Scructural Components	4		
2.2 Beam	5		
2.3 Column	6		
2.4 Floor Plate	6		
CHAPTER III BASIC THEORY	7		
3.1 Structure Loading	7		
3.1.1 Strong Need	,		
3.1.2 Strength Reducting Factor	9		
3.2 Element of the Structure			
3.2.1 Slab	10		
3.2.2 Beam	10		

	3.2.3	Column	11
	3.3 Earthc	uke Planing Based On SNI 1726:2012	11
	3.3.1	Sds And Sd1	11
	3.3.2	Risk Category	11
	3.3.3	Seismic Design Category	<u>13</u>
	3.3.4	Structural Systems And Structural Parameters	14
	3.3.5	Seismic Impotance Factor	17
	3.3.6	Period Fundamental	18
	3.3.7	Factors Earthquake Response	<u></u> 19
	3.3.8	Slide Style Earthquake	20
	3.3.9	Distribution of Lateral Load on Each Floor	20
	3.4 Design	n Elements Structure	20
	3.4.1	Design Of Slab	20
	3.4.2	Design Beam	23
	5	1. Reinforcement For Bending	24
	95 A.	2. Shear Reinforcement	25
	3.4.3	Design Of Column	27
	3.4.4	Beams Columns Joints	31
	CHAPTER I	V EARTHQUAKE ANALYSIS	
	4.1 Calcul	lation Of Earthquake Loading	32
11	4.1.1	Acceleration Design Sds And Sd1 Parametre	33
11	4.1.2	Risk Category	33
11	4.1.3	Seismic Design Category (SDC)	33
	4.1.4	Structure Sistem And Structure Of SDC	
		Parametre	33
	4.1.5	Respond Spectrum Design	33
	4.1.6	Earthequake Virtue Factor	34
	4.1.7	Fundamental Period	34
	4.1.8	Earthquake Estimation	34
	4.1.9	Seismic Coefisien	34
	4.2 Earthc	quake Calculation	35
	4.2.1	Weight Building	36
	4.2.2	Seismic Shear Force	36
	4.1.10	Deviation Floor	
	CHAPTER	V DIMENSI ESTIMATION OF COMPONENT STRUCTURE	39
	5.1 Buildi	ng Sketch	39
		<u> </u>	

5.1.	1 Sketch of Beam And Typical of Structure Plate	42
5.2 Din	nensi Estimation of Beam	42
5.2.	1 Beam At Basement, Ground Level Until	
	Rooftop	
5.3 Din	nensi Estimation of Floor Plate	45
5.3.	1 Estimation Thickness of Floor Plate	45
5.3.	2 Loading Plan of Floor Plate	51
5.4 Dimensi Estimation of Column		
5.4.	1 Loading Plan	
5.4.	2 Loading Calculation for Each Column	
5.4.	3 Estimation Dimensions of the Column	59
CHAPTEI	R VI STRUCTURE ANALYSIS	61
6.1 Des	ign of Slab Reinforcemet	61
6.1.	1 One Way Slab	61
6.1.	2 Calculation of Momen Plate	61
6.1.	3 Calculation of the Floor Slab Reinforcement	
6.1.	4 Two Ways Slab	
6.2 Des	ign Of Stairs	71
6.2.	1 dimension of stairs	71
6.2.	2 stairs loading	73
6.2.	3 design of reinforcement slab bordes and stairs	76
6.2.	4 design of reinforcement beam bordes	80
6.3 desi	gn beam	88
6.3.	1 design of longitudinal steel beams	
6.3.	2 design tranverssal reinforcement	<u>98</u>
6.3.	3 design of shrinkage reinforcement out of sendi	
	plastic area	103
6.4 desi	gn column	105
6.4.	1 examination of the terms of the column to	
	SRPMK	107
6.4.	2 examination of stiffness column	107
6.4.	3 design reinforcement longitudinal direction of	
	the column	112
6.4.	4 Check the column flexural strength	116
6.4.	5 Design tranversal reinforcement (shear)	120
6.5 Be	am Column Joint	128

CHAPTER VIICONCLUTION AND RECOMMENDATION

ECOMMENDATION	130
7.1 Conclution	130
7.2 Recommendation	131

REFERENCES

ATTACHMENT

LIST OF TABLE

- Table <u>3. 1Weight building.</u>
- Table 3. 2 Strength reduction factor design.
- Table 3. 3 Category building contruction and non building.
- Table 3. 4 Seismic design categories based on the acceleration response parameter period.
- Table 3.5 Earthquake virtue factor.
- Table 3. 6 Value parameter approaches period Ct and x.
- Table 3.7 Coefficients for the upper limit of the period are counted.
- Table 3.8 The minimum thickness of the slab in one direction when the deflection is not counted.
- Table 4.1 Shear force by earthqueke dynamic load.
- Table 4.2 X direction of diviation floor.
- Table 4. 3 Y direction of viviation floor.
- Table 6.1 Square plates moment rested on all four due to the load distributed.
- Table 6.2 Input loading.
- Table 6.3 Maximum value and number blocks expriencing moment and scroll to type beam load on the entirectructure B1.
- Table 6.4Output data moment (Mu) support envelope B1 floor beams at first floor.
- Table 6.5 Output data moment (Mu) field envelope B1 floor beams at ground floor .
 - Table 6.6 Output axial force maximum, moment M2 and M3 in Column C1 at groundfloor .
- Table 6. 1 Square plates moment rested on all four due to the load distributed.
- Table 6. 2 Input loading .
- Table 6. 3 Maximum value and number block expriencing moment and scroll to type beam load on the entirectructure B1.
- Table 6.4 Output data moment (Mu) support envelope B1 floor beamsat first floor.
- Table 6.5 Output data moment (Mu) field envelope B1 floor beams at ground floor .

LIST OF GRAPH

- 2.2 Variasi d Graph
- 4.1 Respon Spectrum Graph

LIST OF PICTURE

Picture 2.1 . Strain distribution beam section Picture 5.2 Sketch of floor plate at rooftop

Picture 5.1 Sketch of beam at rooftop

Picture 5.7 Skecth of floor plate

Picture 5.4 sketch of floor plate at basement

Picture 5.5 Sketch of beam at first until fifth floor

Picture 5.6 Sketch of floor plate at first until fifth floor

Picture 5.8 beam section 2 and 4

Picture 5.8 beam section 2 and 4

Picture 5.3 Sketch of beam at basement

Picture 6.1 Moment plate (3 span or more) Picture 6.2 *d* effective for X direction

Picture 6.3d effective fo Y direction

Picture 6.4. Stairs detail

Picture 6.4 Input loading Dead Load of Stair slab and bordes

Picture 6.5 Input loading Live Load of Stair slab and bordes Picture 6.6 SFD Picture 6.7 BMD Picture 6.9. Effective Length Factor Diagram for Portal Not Sway Picture 6.9. Effective Length Factor Diagram for Portal Not Sway Picture 6.10 Graph diagram column interaction for $f'_c = 25$ Mpa and $f_y = 400$ Mpa DETAIL REINFORCEMENT BEAM DETAIL REINFORCEMENT COLUMN DETAIL REINFORCEMENT STAIRS DETAIL REINFORCEMENT SLAB

PREFACE

Praise and Gratitude author presence of God Almighty forany guidance, opportunity, and everything that accompanies until completion this final report. Sometimes, hard to finish this, buteverything could be resolved slowly over wisdom.

On this occasion, the authors are grateful to everyone present and given its own color, both those who are near and far. Thanks to:

- 1. Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D., As dean of the Faculty of Engineering Universitas Atma Jaya Yogyakarta.
 - Dr. Eng. Luky Handoko, As Department of international civil engineering chairman.
 - 3. Prof. Ir. Yoyong Arfiadi, M. Eng., Ph.D., As Supervisor who is willing provide guidance and take the time during the process final report.
 - 4. The Lectures Faculty of Engineering, University of Atma Jaya Yogyakarta has been guiding for the author of study.
 - The entire staff of Administration Faculty of Engineering, University of Atma Jaya Yogyakarta.
 - 6. Parents, brother, and sister for the trust and opportunity be given.
 - 7. Friends who support, pray, and help during the final preparation of this report.
 - 8. All that cannot be mentioned one by one.

Writers receive when there is criticism or suggestions regarding this final report. Final words of gratitude and hope this final report could be useful for all readers.

Yogyakarta, June 2017

ABSTRACT

UPPER STRUCTURE DESIGN OF COLLEGE BUILDING E6 AND E7 TWIN TOWER UNIVERSITAS ATMA JAYA YOGYAKARTA, Maria Oktaviana Toring, Student Number 121314459, 2012, Specialization Field of Structural Engineering, Department of Civil Engineering International, Faculty of Engineering, Universitas Atma Jaya Yogyakarta.

All universities strive to provide quality in teaching with supporting facilities. Likewise with the Universitas Muhammadiyah Yogyakarta, this provides various facilities to support the teaching process for students in Universitas Muhammadiyah Yogyakarta. So University of Muhammadiyah Yogyakarta build a new building with the concept of twin buildings. In the case of a construction project engineers must uphold the security and safety of humans. (1) The problem of this final project is how to design building structure five floors with two basements covering planning dimensions of the structure, analysis structures, reinforcement beams, columns, plates, according with SNI 2847:2013 and SNI 1726:2012. The design of the structure of the upper structures. The structure above includes design of floor slabs, beams, columns using the structure reinforced concrete. (2) The structure of the building is designed with a number of level 5 floors plus 2basements. (3) The structure was designed using bearer Special Moment Frame (SMF). (4) The location of the building in the West Ring Road Yogyakarta to soil typeis the ground of being. (5) Analysis of lateral load (earthquake) using a static analysis of seismic load equivalent.

Plates roof and floor slabs are designed using a plate one-way and two-way. Thick roof plate of 120 mm, with reinforcement of staple P10 - 200 mm and reinforcement shrinkage P8 - 200 mm. Designed with a thick slab of 200 mm, base reinforcement P10 - 200 mm, and shrinkage reinforcement P10 - 300 mm.

IIA stairs with a height of 3.5 m using a staple reinforcement D13 - 250 mm on the stairs and landing, for shrinkage reinforcement used P10 - 300 mm. IIB stairs with a height of 4 m using a staple reinforcement D13 - 75 mm on the stairs and landing, for shrinkage reinforcement used P10 - 200 mm. Beam landing for all types of ladders used dimension 400×700 mm², Using longitudinal steel pedestal on 2D22, under 6D22, 4D22 longitudinal reinforcement upper field, under 4D22. Reinforcement transversal 2P10 - 100 mm in the staging area and 2P10 - 200 mm in field. Columns that are reviewed are the middle column on the ground floor with dimensions 800 x 800 mm as follows:

Longitudinal reinforcement using 24D25 ($A_{st} = 6872.2339 \text{ mm}^2$)

Transversal reinforcement is calculated by reviewing from 2 directions

So, High building needs design that is based on appropriates the applicable provisions, namely in terms of strength, stability, security, comfort and economic factors. Its has been shown in this final report how about strength if the design depent on SNI.

Keywords: design structure, analysis structure, planning dimensions, design reinforcement, earthquake analysis, special moment frame, static analysis.

