

Computational Acceleration of Image Inpainting

Alternating-Direction Implicit (ADI) Method Using

GPU CUDA

Mutaqin Akbar

Magister Teknik Informatika

Universitas Atma Jaya Yogyakarta

Yogyakarta, Indonesia

mutaqin.akbar@gmail.com

Pranowo

Magister Teknik Informatika

Universitas Atma Jaya Yogyakarta

Yogyakarta, Indonesia

pran@mail.uajy.ac.id

Suyoto

Magister Teknik Informatika

Universitas Atma Jaya Yogyakarta

Yogyakarta, Indonesia

suyoto@mail.uajy.ac.id

Abstract—This paper presents a computational acceleration

of image inpainting using parallel processing based on Graphics

Processing Unit (GPU) Compute Unified Device Architecture

(CUDA). We use parabolic partial differential equation (PDE)

called heat equation as the model equation. The heat equation is

discretized numerically using Finite Difference method. Semi-

algebraic equation that formed then solved by using Alternating-

Direction Implicit (ADI) scheme. The numerical algorithm is

implemented in GPU CUDA parallel computing to speed up the

computational time. The computational process of the inpainting

can be done using larger time-step. The computational time can

be accelerated to 5.86 times faster using an image with 2736x1824

resolution.

Keywords—image inpainting, PDE, ADI, parallel computing,

GPU CUDA

I. INTRODUCTION

The field of digital image processing refers to processing
digital images by means of a digital computer [1]. Some fields
in digital image processing are image enhancing, image
filtering, edge detection, and the newest one is image
inpainting. Inpainting is a term that begun from art literature.
Long time ago inpainting is done by an artist manually, to
achieve its main goal which is restoring damaged area on a
painting to looks like it first created.

Fig 1. Inpainting example, the damaged painting (top-left) and the inpainting
result (bottom-right) (https://projects.library.villanova.edu/paintingrestoration/).

This technique is then brought into digital scope [2].
Different from conventional inpainting that needs thoroughness
from an artist, digital inpainting use information from the
surrounding of damaged area to fill in the damaged area. This
process is done automatically, where user just needs to mark
the area to be inpainted.

The technique fills in damaged area by propagating the
edges into the damaged target area through the diffusion
process of partial differential equations of physical heat flow.
In this technique, there are 2 schemes presented, explicit
scheme and implicit scheme. The explicit scheme first done by
Bertalmio et al [2]. Implicit scheme have advantages which are
resulting unconditionally stable [3] and convergent solution
although using a larger time-step. Somehow, the implicit
scheme’s solution procedure is very time-consuming.
Alternating-Direction Implicit (ADI) method can overcome
this by splitting the solution [4].

Other technique of partial differential equations image
inpainting is by implementing phase-field model based on
Cahn-Hilliard equation. This technique first done by Bertozzi
et al [5] and then updated by Darae Jeong et al [6] and
Schonlieb [7].

All techniques above require long computational time done
by a sophisticated Central Processing Unit (CPU). The use of
GPU for general purpose can tackle this obstacle. Past research
by Prananta prove that GPU can accelerate fourth order PDE
equation Image Inpainting [8].

This paper presents the implicit scheme of heat equation
which is discretized using Finite Difference method.
Alternating-Direction Implicit (ADI) scheme is used to solved
Semi-algebraic equation that formed. Parallel computing is
implemented to speed up the computational time. Parallel
computing on GPU is implemented using CUDA, an
Application Programming Interface (API) developed by
NVIDIA.

II. EQUATION, DISCRETIZATION, AND GPU IMPLEMENTATION

We use Crank-Nicolson method to solve heat equations. By
using the Finite Difference approach, the images pixel can be
associated to finite difference grids and intensity of image is

The 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)

978-1-5386-1667-3/17/$31.00 ©2017 IEEE 186

associated to temperature. Images used in this paper is
grayscale images with various resolutions. Generally, The heat
equation for the inpainting process can be written as follows:

 (1)

 (2).

Image intensity denoted as , where are pixel

coordinates and is the intensity of current pixel coordinate,
is a constant value, is time-step, and are space-step in x
(abscissa) and y (ordinate), is mask image, and is damaged
image.

A. Implicit Scheme

For the 2 dimensional space, the Crank-Nicolson equation
can be written below [9]:

 (3)

To obtain a direct solution to this scheme, it will be difficult
and computationally inefficient. So the usage of Alternating-
Direction Implicit (ADI) method is well-known to overcome
the difficulty of this scheme. ADI method known to its better
performance compared to other implicit methods. Well defined
and structured access pattern can be achieved by splitting the
problem which changes the sparse matrix memory access
pattern. [10]

B. Alternating-Direction Implicit (ADI)

The main idea of the ADI for the 2 dimensional problem is
to split the computations in two steps. In the first step, we
sweep through x-direction by applying an implicit method in
the x-direction and an explicit method in the y-direction,
producing an intermediate solution for time. In the second step,
we sweep through y-direction by applying an implicit method
in the y-direction and an explicit method in the x-direction.

So ADI implementation of Crank-Nicolson’s solution [4]
discretized below and the illustration shown in Fig. 2.

 (4)

 (5)

Fig 2. ADI illustration in the grid system.

The ADI solution to heat equation will form two tridiagonal
matrix system, which can be solved efficiently using Thomas’s
algorithm.

C. GPU and CUDA

GPUs are first-known as graphics accelerators. Recently
demand of processing large number of data (or even big data)
makes GPUs evolved to be powerful, general-purpose, fully
programmable, task and data parallel processors, ideally suited
to tackle massively parallel computing problems. The use of
GPUs is already embraced by many scientific field, such as
fluid-dynamics, aero-dynamics, artificial intelligence, machine
learning/deep learning, image processing, etc.

Basically, data is stored one-dimensionally. Even when a
logical multi-dimensional view of data is used, it still maps to
one-dimensional physical storage. CPU processes data
sequentially from the first until the end of data (finished one
data to execute the next data). While GPU can allocate every
threads it has to processes every single one of data at the same
time, depends on the capability of the GPU itself.

Fig 3. Grid, Block, and Thread in a GPU.

The 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)

978-1-5386-1667-3/17/$31.00 ©2017 IEEE 187

CUDA is a general-purpose parallel computing platform
and programming model that leverages the parallel compute
engine in NVIDIA GPUs to solve many complex
computational problems in a more efficient way [11].

D. Inpainting Flowchart

Fig. 4 describes the algorithm of the inpainting process
using GPU CUDA implementation.

Fig 4. Inpainting Based on GPU Flowchart.

III. RESULTS AND ANALYSIS

Simulation has been done using a personal computer with
specification described below:

- CPU Intel(R) Core(TM) i7-3770K @3.50GHz

- GPU GeForce GTX660Ti 2GB RAM

- RAM 16GB

Images used are grayscale images with various resolutions,
shown in Table I and the mask images shown in Table II.

TABLE I. IMAGES USED IN SIMULATIONS

Image

Resolution
Damage Image

483 x 405

1024 x 1024

1532 x 1021

2189 x 1459

2736 x 1824

TABLE II. MASK IMAGES USED IN SIMULATIONS

Image

Resolution
Mask Image

483 x 405

The 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)

978-1-5386-1667-3/17/$31.00 ©2017 IEEE 188

1024 x 1024

1532 x 1021

2189 x 1459

2736 x 1824

Restoration rate (α) used is 1.0 and time-step (∆t) equals
0.5. Table III below, shows the results of image inpainting in
10th iteration and Table IV shows the results for 50th iteration.
In the 10th iteration the result images are not yet inpainted and
in the 50th iteration, the solution is already convergent. In the
girls and cars image, the result image are well-inpainted. But in
the lena image, the result is not as good as two others image,
even though the solution is already convergent.

TABLE III. INPAINTING RESULTS FOR 10TH ITERATION

Image

Resolution
10

th
 Iteration

483 x 405

1024 x 1024

1532 x 1021

2189 x 1459

2736 x 1824

TABLE IV. INPAINTING RESULTS FOR 50TH ITERATION

Image

Resolution
50

th
 Iteration

483 x 405

1024 x 1024

The 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)

978-1-5386-1667-3/17/$31.00 ©2017 IEEE 189

 1532 x 1021

2189 x 1459

2736 x 1824

TABLE V. THE PERFORMANCE OF CPU AND GPU

Image

Resolution

Number of

Iterations

CPU Time

(ms)
GPU Time

(ms)

Speed

Up

(x)

483 x 405 50 26224 15318 1.71

1024 x 1024 50 146343 39481 3.70

1532 x 1021 50 211692 54491 3.88

2189 x 1459 50 437023 85997 5.08

2736 x 1824 50 685278 116807 5.86

By comparing the result done by computing on CPU and
GPU, we can say that the bigger the resolution of a given
image used, the bigger the speed up achieved. The speed up for
GPU implementation reaches 5.86 when the image resolution
is 2736x1824.

IV. CONCLUSION

This paper presents a computational acceleration of image
inpainting using parallel computing based on GPU CUDA.
Using Crank-Nicolson’s solution to heat equation and ADI’s
solution to two-dimensional problem, the computational
process of image inpainting can be done using larger time-step
with stable and convergent result. The computational process
time can be accelerated (speed up) using CUDA
implementation to 5.86 times faster using an image with
2736x1824 resolution.

REFERENCES

[1] Gonzales R C, Woods R E. Digital Image Processing. 3rd Edition. New
Jersey: Pearson Education, Inc. 2008; 1-2.

[2] Bertalmio M, Sapiro G, Caselles V, & Ballester C. Image Inpainting.
SIGGRAPH ACM. 2000; 417-424.

[3] Fjelland B. Thesis on applications of the Alternating Direction Implicit
method. Thesis. Copenhagen: Copenhagen Business School; 2012.

[4] Hoffmann K A, Chiang S T. Computational Fluid Dynamics. Fourth
Edition. Kansas: A Publication of Engineering Education System. 2000;
76-80.

[5] Bertozzi A L, Esedoglu S, Gillette A. Inpainting of Binary Images Using
the Cahn–Hilliard Equation. IEEE Transactions on Image Processing.
2007; 16(1): 285-291.

[6] Darae J, Yibao L, Hyun G L, Junseok K. Fast and Automatic Inpainting
of Binary Images Using a Phase-Field Model. J. KSIAM. 2009; 13(3):
225–236.

[7] Schonlieb C-B. Modern PDE Techniques for Image Inpainting. Thesis.
Cambridge: University of Cambridge; 2009.

[8] Prananta E, Pranowo, Budianto D. GPU CUDA Accelerated Image
Inpainting using Fourth Order PDE Equation. TELKOMNIKA. 2016;
14(3): 1009-1015.

[9] Araujo A, Neves C, Sousa E. An alternating direction implicit method
for a second-order hyperbolic diffusion equation with convection.
Elsevier. Applied Mathematics and Computation 239. 2014; 17–28.

[10] Laszlo E. Parallelization of Numerical Methods on Parallel Processor
Architectures. Thesis. Hungary: Pázmány Péter Catholic University;
2016.

[11] Cheng J, Grossman M, McKercher T. Professional CUDA C
Programming. Indiana: John Wiley & Sons, Inc. 2014; 14-31.

The 2017 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)

978-1-5386-1667-3/17/$31.00 ©2017 IEEE 190

