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Abstract-The development of discontinuous Galerkin method in order to solve the steady state of natural
convection problem is presented. In the present method, the collocated nodes were used, whereas the velocity,
pressure and temperature fields were located on the same nodes, The pseudo-unsteady and explicit low storage
fourth orders Runge-Kutta method scheme were used for the time integration. Next, the discontinuous Galerkin
finite element and unstructured mesh were employed to calculate the spatial discretization. The difficulty relates to
the pressure can be overcome by using an artificial compressibility method. Solutions to the 2-D natural convective
flow in concentric annulus have been obtained and compared with available results. The compansons showed a

good agreement.
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L INTRODUCTION

The free convective flow, especially in a concentric
annulus, can be found in many industrial applications.
Such problem commonly occurs in the electrical, nuclear
energy fields, as well as in solar energy and thermal
storage system. Due to the flow behavior in this problem
are very complicated: therefore, it is necessary to clarify
the flow structure and the mechanism in details to
establish an improved design technique. The numerical
method has a powerful ability to investigate the flow
behavior and to clarify the predominant factors that
influence the flows.

Extensive works in this field have been performed in
the past. Takata et al. (1984) used finite difference
method to solve 3-D natural convection in an inclined
cylindrical annulus. Shu et al. (1999,2000) used
Generalized Differential Quadrature (GDQ) to simulate
the natural convection in concentric and arbitrarily
eccentric annulus. Recently, Shi etal. (2006) proposed a
finite difference-based Lattice Boltzmann for solving
natural convection in concentric annulus.

The above proposed methods have the difficulties in
solving problems with complicated geometries.
Ramaswamy (1988) employed finite element method to
solve natural convection problems. Finite element
method can handle complicated domains easily. Manzari
(1998) used standard galerkin finite element to simulate
forced and natural convection heat transfer. Explicit
Runge Kutta scheme was used in the calculation of time
domain. The procedure is stabilized using an artificial
dissipation technique.  The continuity equation is
modified by employing an artificial compressibility
concept in order to couple the pressure and velocity
fields of the fluid. Meanwhile a general solution to solve
the relating problem is still unclear.

The present study, we concern with the numerical
prediction of the natural convection in concentric
annulus. The general method is pseudo-unsteady and
uses a low storage fourth order Runge Kutta for the time
integration as reported by Kennedy and carpenter
(1994) . The spatial discretization uses a high order
nodal discontinuous Galerkin and unstructured mesh.
The difficulty relating to the pressure can be overcome
by using an artificial compressibility method.

2. PROBLEM DESCRIPTION

In this problem, we considered a Newtonian fluid of
kinematic viscosityv, thermal diffusivity o and thermal
expansion coefficient fenclosed in a concentric annulus
with inner radius r, = 0.625 and outer radiusr, =1.625 .

The vertical (opposite to the gravity vector) and
horizontal axis in a coordinate system is defined
respectively as y-axis and x-axis. Constant uniform
temperatures T, and 7. (7, >7.) are imposed at the
inner and outer walls, respectively.

An appropriate scaling for the flow regime is
characterized by the following reference quantities (Le
Quere, 1991): L =5 -7 for length; |7 = [a/"L}Ra"-sfor
velocity, where Ra is the Rayleigh number
{gﬁan-‘/‘a): I:(Lz/a)Ra""s for time and the scaled
temperature &is defined as: (T —;";)/(T ch).

By using the above reference quantities, the
governing equations is defined as follow:
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where u and v are velocity components, p is the
deviation from hydrostatic pressure divided by the mean
density multiplied by V? . and ¢ is artificial
compressibility coefficient. Pr is the Prandtl number
(V).
The boundary conditions are as follows
e u, vand w=0 at the walls
e ¢=050on r=rand@=-050nFr=r,

Here, pressure and velocity fields are set to zero as initial
conditions.

3. DISCRETIZATION

The spatial derivatives are discretized by using a
discontinuous galerkin method. The simplified of Eq.(1)
according to Galerkin’s procedure using the same basis
function ¢ within each element is defined below:

[es.@mf—"mﬂ):n
at ax ay

; ; 2
@[aﬁ%} +(¢i,;\n_, q+.8rz_l_q]m —(E(Aqﬁ)__q}
ar ), dx

Here () represents the normal 2 L inner product and the
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second term is flux vector. The mathematical
manipulation of the flux vector is as below:
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(¢.An, +Bn, fG-q ) =0
where,
al,=il.a)
In this problem, the numerical flux vector is calculated
by using the Lax-Friedrich flux.
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where [q]:q*—q‘ and ).=m.ax(~fiu2+vzi+sz)i5 the

largest wave speed. Iere, we took the Komwinder
Dubiner function on straight sided triangle as the basis
written in equation 5 (see Figs. 1 and 2):
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where, P“” is orthogonal Jacobi polynomial
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Figure 1.
Coordinate Transformation

Figure 2.
Seventh order Gauss Lobatto Quadrature Nodes

The vector q=(p u v @) is expanded using

equation (5) as follows:
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where Vj and N are Vandermonde matrix dan the

I/
order of Jacobi polynomial respectively.

The second order terms in equation (1) are solved
using local discontinuous galerkin (LDG) method with
central fluxes as suggested by Warburton (2003). The
semi discrete Eq. (8) is integrated in time marching by
using five stage of fourth order 2N-storage Runge-Kutta
scheme as developed by Carpenter & Kennedy (1994).
The final equations are found as written in Eqs. (9) and
(10) for the heat rate and the 5-stage of 2N-storage
Runge-Kutta algorithm respectively.

d_q =
= L[t,q(t)] ©)

dq, =A,dq,., +hL(g,)

(10)
q,=9,,+B,+dq,
where 4 is the time step. The vectors A and B are the
coeflicients that will be used to determine the properties
of the scheme.
The algorithm is implemented as follows.

1. Define the initial and boundary conditions for the
pressure, velocities and temperature (p™ 2" V", w",
an.

2. Solve the equation (1) by Runge Kutta method to
obtain &, v**! w!and @,

ikl "
3. Caleulate g0 = M if error less than
anies
tolerance or if iterations is equal to the limit, the
calculation will be finished. In addition, the results
have no a physical meaning, if the steady state can
not be achieved.

4. RESULTS

The implementation of numerical calculation was
done by using the Matlab on 1600 MHz Centrino Duo
personal computer. The Rayleigh (Ra) numbers were
varied from 2.38x10% to 1.02x10°. We used the single
mesh for all the ranges of Ra numbers. The mesh
consisted of 478 elements. For all the calculation, we
took a fixed order of polynomial N =4, Prandtl number is
0.717 and fixed artificial compressibility coefficients is

equal to unity.
The calculation result of the isotherms at steady states
for different Ra and Pr numbers are shown in Fig. 4.
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Fig. 4a. Isotherm of Ra=2.38x10%
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Fig. 4b. Isotherm for Ra=9.50x10?
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Fig. 4c. Isotherm of Ra=3.20x10"
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Fig. 4e. Isotherm of Ra=1.02x10°

From fig.(4) 1t 1s shown clearly that at low Ra number,
the fluid motion driven by the buoyancy force is slow,
leading to the strong diffusion. Consequently, the
corresponding  isothermals  exhibit rather  slight

difference as compared to those of pure heat conduction
between the annulus. On the other hand, when Ra
number is increased, the buoyancy force accelerates the
circulation of fluid flow and natural convection is
significantly enhanced. The above-discussed behaviors
are also found in the previous numerical study as
reported by Shi et al. (2005).

Regarding the effect of an increasing of the Rayleigh
number on the mean value of Nussel number is shown in
Table 1. The results indicated that a good agreement
among the present numerical results, the previous
proposed experimental data, and the previous numerical
resulted by the finite difference Lattice Boltzmann
(FDLB) method (see Shi et al., 2006). Here. the mean
value of Nu was computed by the bellow equations:

Nu,. =- L ﬁnv + Qn‘, 12)
2z, \dx )
Nu,,. = o ¥ é—gn‘ + Qn‘_ as
2z \ox o~y
Table 1
The mean value of Nusselt number
Experimental”
Ra | Fresent | hn& | FDLB'
work SEEI
G in)
3.28x10° 1.363 1.38 1.320
9.50x103 2.035 2.01 1.999
3.20x10¢ 2.861 2.89 2911
6.19x10¢ 3.318 3.32 33601
1.02x10° 3.741 3.66 3.531

* adopted from: Shi et al. (2006)

6. CONCLUSSION

In this paper, we have presented a discontinuous
galerkin method for solving natural convection in
artificial compressibility formulation. The method is
fully explicit and exhibits good numerical stability. The
numerical results have a good agreement with the
proposed experimental and numerical results reported in
the previous studies.
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