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ABSTRACT

Purpose: To develop high order discontinuous
galerkin method for solving steady and unsteady
incompressible  flow  based on  artificial
compressibility method.
Design/methodology/approach: This paper uses
discontinuous galerkin finite element procedure
which is based on the artificial compressibility
technigque in connection with a dual time stepping
approach. A second order implicit discretization
is applied to achieve the required accuracy in
real time while an explicit low storage fourth
order Runge Kutta scheme is used to march in the
pseudo-time domain. A nodal high order
discontinuous galerkin finite element is used for
the spatial discretization.

Findings: Provides stable and accurate methods
Jor solving incompressible  viscous  flows
compared with previous numerical resulls and
experimental results.

Research limitations: It is limited to two-
dimensional steady and unsteady laminar viscous
flow.

Practical implications — A very usefil source of
information and favorable advice for people is
applied to piping system and low speed
aerodynamics.

Originality: This works presents an extension of
the previous work of [1] and [2] to time and
space accurate method for solving unsteady
incompressible flows.

Keywords:  sieady and unsteady  flows,
discontinwous galerkin, artificial compressibility.

1. INTRODUCTION

Numerical Solutions of the incompressible
Navier-Stokes equations are of interest in many
engineering applications. Problems which can be
addressed by incompressible Navier-Stokes
equations include internal flows, hydrodynamics
flows, low speed aerodynamics and external
flows. There is a continuing interest in finding
solution methodologies which will produce
accurate results in time and space. The problem of
coupling changes in the welocity field with
changes in pressure field while satisfying the
continuity equation is the main difficulty in
obtaining solutions to the incompressible Navier-
Stokes.

There are two types of method using primitive
variables which have been developed to solve the
equations. The first type of methods can be
classified as pressure-based methods. In these
methods, the pressure field is solved by
combining the momentum and mass continuity
equations for form a pressure or pressure-
correction equation. The second type of methods
employs the artificial compressibility (AC)
formulation. This idea was first introduced by
Chorin [3] and extensively used by other
researchers since. In this method. a pseudo-
temporal pressure terms is added to continuity
equation to impose the incompressibility
constraint. Several authors have employed this
method successfully in computing unsteady
problems.




The original version of the AC method is only
accurate for  steady-state solutions to the
incompressible flows [4, 5], however there are
some efforts which conducted to solve unsteady
flows using dual time stepping AC method.
Reference [6] used third order flux difference
technique for convective terms and second-order
central difference for viscous terms. The semi
discrete equations are solved implicitly by using
block line-relaxation scheme. Reference [1] used
finite element method for spatial discretization. A
second-order discretization is employed in real
time while an explicit multistage Runge Kutta is
used to march in pseudo time domain.

This work presents an extension of the previous
work of [1, 2] to time and space accurate method
for solving unsteady incompressible flows. A
nodal high order discontinuous galerkin finite
element is used for the spatial discretization a
second order implicit discretization is applied to
achieve the required accuracy in real time while
an explicit low storage fourth order Runge Kutta
scheme is used to march in the pseudo-time
domain. The computed results show accuracy of
the code by presenting the steady and unsteady
flow past a 2-dimensional circular eylinder.

2. PROBLEM DESCRIPTION

Artificial compressibility method is introduced by
adding a time derivative of pressure to the
continuity  equation. In  the steady-state
formulation, the equations are marched in a time-
like fashion until the divergence of velocity
vanishes. The time variable for this process no
longer represents physical time. Therefore. in the
momentum equations t is replaced with 7 , which
can be thought of as an artificial time or iteration
parameter [7]. As a result, the governing
equations can be written in the following form:
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In these equations, 7 is the artificial time variable,
u,1s the velocity in direction x_ , p is the pressure,

T, 1S stress ftensor, & is an artificial

compressibility parameter, 5, is Kronecker delta

and Re is the Reynolds number.

The extension of artificial compressibility method
to unsteady flow is introduced by adding physical
time derivative of velocity components to 2
momentum equations in Equations (2) [6, 1]. The
obtained equations can be written as:
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3. DISCRETIZATION

The spatial derivatives are discretized by using a
discontinuous galerkin method. The simplified of
Eq. (3) according to Galerkin’s procedure using
the same basis function ¢ within each element is

defined below:
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Integrate by parts again equation (4):
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Where
P =0/, 24 G - 6/(6.67)

are the numerical fluxes.

Here [} represents the normal L: inner product

and third term is flux vector. In this problem the
numerical flux for convective terms is calculated




by using the Lax-Friedrich flux and local
discontinuous galerkin for viscous terms.

Here, we took the Komwinder Dubiner function
on straight sided triangle as the basis written in
equation (5) (see figure 1 and 2):
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where, P*7 s orthogonal Jacobi polynomial.
All straight sided triangles are the image of this
triangle under the map:
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Figure 1: Coordinate transformation

Figure 2: Seventh order Gauss Lobatto
quadrature nodes

The vector U=(p u v)is expanded using

equation (6), pressure is taken as example as
follows:
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where v, and N are Vandermonde matrix and

the order of Jacobi polynomial respectively.

The semi discrete of equation (5) can be written in
the following form:

£+|.uﬂ=R i
dr dt

A dual time stepping approach is employed for
marching equation (12) in time. The real time 7 is
discretized using second order implicit backward
difference formula. The resulting equation
becomes:

qurt | QU0 ) (12)
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where superscript n denotes the current time level
t, and n-1 refers to the previous time step -Af,
while the unknowns are calculated at time #+Af by
n+l. Equation (12) can be written in a simpler
form as:

du™! —R (13)
dr

where R contains the right hand side of equation
(12) and the second term on left hand side of this
equation. Equation (13) represents a pseudo-time
evolution of flow field and has no physical
meaning until the steady state in pseudo-time is
reached.

The Equation (8) is integrated in pseudo-time
marching by using five stage of fourth order 2N-
storage Runge-Kutta scheme as developed by [8].
The final equations are found as written in Egs.
(14yand (15):
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where dr is the pseudo-time step. The vectors A
and B are the coefficients that will be used to
determine the properties of the scheme.

4. INITIAL AND BOUNDARY
CONDITIONS

Initial and boundary conditions The governing
equations (1) or (3) require initial condition to
start the calculation as well as boundary
conditions at every time step. In the calculations
presented in this paper, the uniform free-stream
values are use as initial  conditions:
P=p, - W =u L Uy =, . For external flow

applications, the far-field bound is placed far
away from the solid surface. Therefore, the free-
stream values are imposed at the far-field
boundary except along the outflow boundary
where extrapolation for velocity components in
combination with p=p is used. On the solid

surface, the no-slip condition is imposed for
velocity components:  a, =0: u,=0. The
surface pressure distribution is determined by
setting the normal gradient of pressure to be zero:
[7)
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5. RESULTS AND DISCUSSION

The accuracy of the proposed method is
demonstrated by solving incompressible flow past
2-dimensional circular cylinder. The Reynolds
number is varied from 20 to 40 for steady flow
and from 100 to 200 for unsteady flow. The
computational domain for steady flow is rectangle
(-15, 25) x (-15, 15) and for unsteady flow is (-20,
20) x (-20, 80) wherein a circular cylinder of
diameter d =1 placed at (0, 0). The mesh consists
of 1228 triangles for steady flow and 5092
triangles for unsteady flow. For all the
calculation, we took a fixed order of polynomial
N =4, Prandtl number is 0.717 and fixed artificial
compressibility parameter is equal to unity.

Figure 3b: Close-up mesh around cylinder for
steady flow
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Figure 4a: Mesh for unsteady flow

Figure 4b: Close-up mesh around cylinder for
unsteady flow

Pseudo time step is A7 = 0.0012 for steady flow.
The results can be seen in figure 5 and 6. In front
of object, pressure strongly varies and a region of
high pressure is formed near separation point and
two regions of low pressure are developed next.
From figure 5, it can be seen the development of a
recirculation zone behind the object with reverse
velocity. Figure 5 and 6 give the computed




pressure for different values of Reynolds number
(Re=20 and 40). As shown, the DG scheme gives
excellent pressure stabilization, with the
computed pressure contours being highly smooth
and non-oscillatory.

The calculated results for steady flows are
compared with the other numerical data. Table 1
compares the Drag coefficient (Cd). The
agreement is quite good.
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Figure 5a: Isobar of Re=20

Figure 5b: Horizontal velocity of Re=20
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Fig. 6a. Isobar of Re=20

Figure 6b: Horizontal velocity of Re=20

Table 1. Drag coefficient (Cd) comparisons for
steady flows

Author Re=20 Re=40
Takami ef al * 2.003 1.536
Dennis ef al * 2.045 1.522
Tuann ef al * 2.253 1.675
Ding et al.* 2.180 1.713
Nithiarasu ef al.* 2.060 1.564
Thomas* 2.076 1.603
Present work 2.040 1.527

*: adapted from [9]

The ability of the discontinuous galerkin scheme
with dual time-stepping to simulate transient flow
is illustrated here by computing the vortex
shedding in the wake of flow past a circular
cylinder at Re = 100 and 200. This has been a
popular test case for validating the transient part
of numerical schemes. The problem is solved
using is A = 0.1 and Az = 0.001 and total of 250
pseudo-time iterations. Figure 7 provides a full
simulation analysis of the Cl and Cd histories for
each real time step on the mesh. As can be seen,
once the initial transient stage has passed. the
simulation settles down to an almost periodic
convergence pattern. After the initial transient,
each variable develops a periodic variation. This
is due to the periodic shedding of vortices from
behind the cylinder. This can be seen more clearly
in figure 7, 8 and 9. A quantitative analysis of the
results was also conducted and is shown Table 2.
Generally, all the results shown for DG scheme
are in good agreement with the other results.




Table 2: CI, Cd and 8t comparisons for unsteady

flows
Author Re=100
l Cd St
Roger & | £0.358 1.376 0.163
Kwak [6] +0.011
Pontaza [10] +0.356 1.356 0.167
Mittal [11] +0.356 1.386 0.169
Roshko (exp) | - - -
[12]
Bintoro & - - -
Pranowo [13]
Rosenfeld - - -
[12]
Li[14] - . &
Present +0.3644 1.3440 0.1563
work +0.013
Re=200
1 cd St

.65 1.23+0.05 0.185
- - 0.18
+0.552 1.24:0.00 0.17
+0.674 1.329:0.044 0.197
+1 1.1740.15 0.18
+0.645 1.311+ 0.036 0.176
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Flgure 7b: Cd & CI HlStOl’} for Re=200

The qualitative results are shown in figures 8 and
9. Here, the contours of pressure and vorticity are
shown, for the real non-dimensional times of 100
and 120 respectively. All results are of high
quality with no non-physical osecillations. The
narrowing of the wake and the increase in
shedding frequency, as the Reynolds number
increases, is clear from these plots. We observe
that at higher Reynolds numbers the vortices in
the far-downstream wake coalesce and the region
of coalescence moves upstream as the Reynolds
number increases.
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Figure 8a: Iso-vorticity and Isobar for Re=100 at
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Figure 8b: Iso-vorticity and Isobar for Re=100 at

=120
Soticity
- 1
Yia @”q
% 3l
0 15 =
Pressure

0.5

Figure 9a: Iso-vorticity and Isobar for Re=200 at
=100
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Figure 9a: Iso-vorticity and Isobar for Re=200 at
=120

It can be seen from the plots that the proposed
method is stable for long time simulations. In
addition, the plots show evidence that the outflow
boundary condition allows for a smooth exit of
the flow field and does not distort the flow
upstream.

7. CONCLUSION

In this paper, we have presented a discontinuous
galerkin method for steady and unsteady in
artificial compressibility formulation connection
with a dual time stepping approach. The method
exhibits good numerical stability. The numerical
results have a good agreement with the proposed
experimental and numerical results reported in the
previous studies.
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