,Certificate. .

Trie Organizing Committee gertiﬁééi that

+ has participated as a 'pre:s'einter in

Conference on Industrial and Applied Matﬁemaﬁcs (CIAM) 2010
Institut Teil_(nc_)i'ogi; Bandung, 6— 8'July2010

July 8, 2010

Head of Industrial and Financial VR p’ Te¥m | Chair of Organizing Committee
Mathematics Research Group _ -

M\_I} 1_8( fndustrial & Financial 2\QJ\

Mathematics

Prof. Dr. Roberd Saragih Dr. L.H. Wiryanto



Proceeding of CIAM

Conference on
Industrial and Applied Mathematics

6th — 8th July 2010
Institut Teknologi Bandung

Editors:
L.H. Wiryanto
S.R. Pudjaprasetya

Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung

Jalan Ganesha 10 Bandung, Indonesia.
Phone : +62 22 2502545

Fax  :+62 22 250 6450

ISSN: 977-208-70510-0-8

Q‘L?EUBT

051UUSH




Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

Electronic Proceeding

GIAN 2010

Conference on Industrial and Applied Mathematics

6 -8 July 2010

The Committees of the conference

Scientific Committee
Larry Forbes (University of Tasmania, Australia)
Robert McKibbin (Messey University, New Zealand)
Susumu Hara (Nagoya University, Japan)
Edy Soewono (ITB, Indonesia)
Chan basaruddin (University of Indonesia, Indonesia)
Roberd Saragih (ITB, Indonesia)

Organizing Committee
L.H. Wiryanto (Chair)
Sri Redjeki Pudjaprasetya
Novriana Sumarti
Andonowati
Kuntjoro Adji Sidarto

Technical Committee

Jalina Wijaya Maulana Wimar Banuardhi
Agus Yodi Gunawan Indriani Rustomo

Nuning Nuraini Pritta Etriana

Janson Naiborhu Adrianus Yosia

Adil Aulia Rafki Hidayat

Lina Anugerah Intan Hartri Putri

Ismi Ridha Yunan Pramesi Haris

Ikha Magdalena Freddy Susanto



Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

Introduction

This proceeding contains papers which were presented in Conference on Industrial and
Applied Mathematics. The editors would like to express their deepest gratitude to all
presenters, contributors/authors and participants of this conference for their overwhelming
supports that turn this conference into a big success. While every single effort has been made
to ensure consistency of format and layout of the proceedings, the editors assume no
responsibility for spelling, grammatical and factual errors. Besides, all opinions expressed in
these papers are those of the authors and not of the conference Organizing Committee nor the
editors.

The Conference on Industrial and Applied Mathematics is the first international conference
held at Institut Teknologi Bandung-Indonesia, during July 6 — 8, 2010; hosted by Industrial
and Financial Mathematics Research Division, Faculty of Mathematics and Natural Sciences
ITB. The research division has continuing research interests in financial mathematics,
optimization, applied probability, control theory and its application; biological, physical
modeling and the application of mathematics in sciences, fluid dynamics, and numerical
methods and scientific computing. The conference provided a venue to exchange ideas in
those areas and any aspect of applied mathematics, in promoting both established and new
relationships.

Permission to make a digital or hardcopies of this proceeding for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage.

Editors:
L.H. Wiryanto
S.R. Pudjaprasetya

Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung

Jalan Ganesha 10 Bandung, Indonesia.
Phone : +62 22 2502545

Fax 1 +62 22 250 6450



Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

Table of Content

The committees of the conference

Introduction

Table of Content

Research Articles:

1

10

11

12

An adaptive nonstationary control method and its application to
positioning control problems, Susumu Hara

Some aspects of modelling pollution transport in groundwater aquifers,
Robert McKibbin

Jets and Bubbles in Fluids — Fluid Flows with Unstable Interfaces, Larry
K. Forbes

Boundary Control of Hyperbolic Processes with Applications in Water
Flow, M. Herty and S. Veelken

Isogeometric methods for shape modeling and numerical simulation,
Bernard Mourrain, Gang Xu

FOURTH-ORDER QSMSOR ITERATIVE METHOD FOR THE SOLUTION OF
ONE-DIMENSIONAL PARABOLIC PDE’S, J. Sulaiman, M.K. Hasan, M. Othman,
and S. A. Abdul Karim

A Parallel Accelerated Over-Relaxation Quarter-Sweep Point Iterative
Algorithm for Solving the Poisson Equation, Mohamed Othman, Shukhrat |.

Rakhimov, Mohamed Suleiman and Jumat Sulaiman

Value-at-Risk (VaR) using ARMA(1,1)-GARCH(1,1), Sufianti and Ukur A.
Sembiring

Decline Curve Analysis in a Multiwell Reservoir System using State-Space
Model, S. Wahyuningsih™, S. Darwis, A.Y. Gunawan®’, A.K. Permadi

Study of Role of Interferon-Alpha in Immunotherapy through
Mathematical Modelling, Mustafa Mamat, Edwin Setiawan Nugraha, Agus
Kartono, W M Amir W Ahmad

Improving the performance of the Helmbold universal portfolio with an
unbounded learning parameter, Choon Peng Tan and Wei Xiang Lim

Optimal Design The Interval Type-2 Fuzzy PI+PD Controller And

Page

1-8

9-16

17-25

26-28

29-33

34-39

40-43

44-49

50-53

54-62

63-66

67-71



Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

13

14

15

16

17

18

19

20

21

22

23

24

25

Superconducting Energy Magnetic Storage (SMES) For Load Frequency
Control Optimization On Two Area Power System, Muh Budi R Widodo, M
Agus Pangestu H.W

Dependence of biodegradability of xenobiotic polymers on population of
microorganism, Masaji Watanabe and Fusako Kawai

PROTOTYPE OF VISITOR DISTRIBUTION DETECTOR FOR COMMERCIAL
BUILDING, Sukarman, Suharyanto, Samiadji Herdjunanto

APPLICATION ANFIS FOR NOISE CANCELLATION, Sukarman

THE STABILITY OF THE MECD SCHEME FOR LARGE SYSTEM OF ORDINARY
DIFFERENTIAL EQUATIONS, Supriyono

Real Time Performance of Fuzzy Pl+Fuzzy PD Self Tuning Regulator In
Cascade Control, Mahardhika Pratama, Syamsul Rajab, Imam Arifin,
Moch.Rameli

APPROXIMATION OF RUIN PROBABILITY FOR INVESTMENT WITH
INDEPENDENT AND IDENTICALLY DISTRIBUTED RANDOM NET RETURNS
AND MULTIVARIATE NORMAL MEAN VARIANCE MIXTURE DISTRIBUTED
FORCES OF INTEREST IN FIXED PERIOD, Ryan Kurniawan and Ukur Arianto
Sembiring

Stochastic History Matching for Composite Reservoir, Sutawanir Darwis,
Agus Yodi Gunawa, Sri- Wahyuningsih, Nurtiti -Sunusi, Aceng Komarudin
Mutagin, Nina Fitriyani

PROBABILITY ANALYSIS OF RAINY EVENT WITH THE WEIBULL

DISTRIBUTION AS A BASIC MANAGEMENT IN OIL PALM PLANTATION, Divo
D. Silalahi

A Multi-Scale Approach to the Flow Optimization of Systems Governed by
the Euler Equations, Jean Medard T. Ngnotchouye, Michael Herty, and Mapundi
K. Banda

Modelling and Simulating Multiphase Drift-flux Flows in a Networked
Domain, Mapundi K. Banda, Michael Herty, and Jean Medard T. Ngnotchouye

Calculating Area of Earth’s Surface Based on Discrete GPS Data, Alexander A
S Gunawan , Aripin Iskandar

Study on Application of Machine Vision using Least-Mean-Square (LMS),
Hendro Nurhadi and Irhamah

Cooperative Linear Quadratic Game for Descriptor System, Saimah

72-78

79-85

86-93

94-99

100-103

104-108

109-115

116-120

121-126

127-133

134-137

138-144

145-250



Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

26

27

28

29

30

31

32

33

34

35

36

37

38

39

ARMA Model Identification using Genetic Algorithm (An Application to Arc
Tube Low Power Demand Data), irhamah, Dedy Dwi Prastyo and M. Nasrul
Rohman

A Particle Swarm Optimization for Employee Placement Problems in the

Competency Based Human Resource Management System, Joko Siswanto
and The Jin Ai

Measuring Similarity between Wavelet Function and Transient in a Signal
with Symmetric Distance Coefficient, Nemuel Daniel Pah

An Implementation of Investment Analysis using Fuzzy Mathematics,
Novriana Sumarti and Qino Danny

Simulation of Susceptible Areas to the Impact of Storm Tide Flooding
along Northern Coasts of Java, Nining Sari Ningsih, Safwan Hadi, Dwi F. Saputri,
Farrah Hanifah, and Amanda P.Rudiawan

Fuzzy Finite Difference on Calculation of an Individual’ Bank Deposits,
Novriana Sumarti and Siti Mardiah

An Implementation of Fuzzy Linear System in Economics, Novriana Sumarti
and Cucu Sukaenah

Compact Finite Difference Method for Solving Discrete Boltzmann
Equation, PRANOWO, A. GATOT BINTORO

Natural convection heat transfer with an Al,03; nanofluids at low Rayleigh
number, Zailan Siri, Ishak Hashim and Rozaini Roslan

Optimization model for estimating productivity growth in Malaysian food
manufacturing industry, Nordin Hj. Mohamad, and Fatimah Said

Numerical study of natural convection in a porous cavity with transverse
magnetic field and non-uniform internal heating, Habibis Saleh, Ishak
Hashim and Rozaini Roslan

THE DISTRIBUTION PATTERN AND ABUNDANCE OF ASTEROID AND
ECHINOID AT RINGGUNG WATERS SOUTH LAMPUNG, Arwinsyah Arka, Agus
Purwoko, Oktavia

Low biomass of macrobenthic fauna at a tropical mudflat: an effect of
latitude?, Agus Purwoko and Wim J. Wolff

Density and biomass of the macrobenthic fauna of the intertidal area in
Sembilang national park, South Sumatra, Indonesia, Agus Purwoko and Wim
J. Wolff

151-155

156-161

162-166

167-169

170-178

179-183

184-187

188-193

194-199

200-206

207-211

212-215

216-224

225-234



Proceeding of Conf. on Industrial and Appl. Math., Bandung-Indonesia 2010

40

41

42

Intelligent traffic light system for AMJ highway, Nur llyana Anwar Apandi, 235-238
Puteri Nurul Fareha M. Ahmad Mokhtar, Nur Hazahsha Shamsudin and Anis
Niza Ramani and Mohd Safirin Karis

Goodness of Fit Test for Gumbel Distribution Based on Kullback-Leibler 239-245
Information using Several Different Estimators, S. A. Al-Subh, K. Ibrahim , M.
T. Alodat, A. A. Jemain

Impact of shrimp pond development on biomass of intertidal 246-256

macrobenthic fauna: a case study at Sembilang, South Sumatra, Indonesia,
Agus Purwoko, Arwinsyah Arka and Wim J. Wolff

Vi



Compact Finite Difference Method for Solving Discrete Boltzmann
Equation
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ABSTRACT

Fourth compact finite difference (FD) method for
solving two dimensional Discrete Boltzmann
Equation (DBE) for simulation of fluid flows is
proposed in this paper. The solution procedure is
carried out in FEulerian framework. BGK
(Bhatnagar—Gross—Krook) scheme is adopted to
approximate the collison term. The convective
terms are discretized using 4™ compact finite
difference method to improve the accuracy and
stability. Te semidiscrete equations are updated
using 4™ order explicit Runge-Kutta method.
Preliminary results of the method applied on the
Taylor-Green vortex flows benchmark are
presented. We compared the numerical results
with other numerical results, i.e. explicit 2 and 4™
FD, and exact solutions. The comparisons showed
excellent agreement.

KEYWORDS
Compact finite difference; Boltzmann; BGK; ;
Taylor vortex

I.INTRODUCTION

In the last decade the lattice-Boltzmann
method (LBM) has attracted much attention in
the simulation of fluid dynamics problems.
Unlike  conventional computational fluid
dynamics methods, which  discretize the
macroscopic governing equations directly, the
LBM method solves the gas kinetic equation at
the mesoscopic scale, i.e. the discrete
Boltzmann equation with the Bhatnagar—
Gross—Krook (BGK) relaxation for the
collision operator. The BGK relaxation
process allows the recovery of Navier Stokes
equations through Chapman Enskog expansion
for low Knudsen number.

In the gas kinetic theory, the evolution of the
single-particle density distribution function
f(t,x,e) which represents the probability
density of a particle with unit mass moving
with velocity € at point Xat time t, is
governed by the Boltzmann equation:
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%Jreon:—(f_—feq) (1)

T

where f*is the equilibrium distribution and
T is relaxation time. After discretizing the
velocity space € into various directions, the 2-
D Boltzmann equation for ' the velocity

distributon function f, may be written as

discrete Boltzmann equation.

i+ei o Vf, =—Lf‘eq) @)
ot T

The discrete velocity €; is expressed as:

(0,0) Ji=1
e = (cos@i,sinei) , 0, =(i—1)%,i=2,3,4,5
\/E(cosﬁi ,sin 6, ), o, =(i - 1)%,i =6,7,8,9
8
Po= D (3a)
i=0
8
pus =2 Ty (3b)
i=0
. eu (eu) |
o el
c2  2ct 2
with @ =4/9,0, =0, =0, =0, =1/9,
and @y =, =0, =0, =1/36.  The

pressure can be calculated from P = C: L with

of sound velocity C, = 1/ 3 in lattice unit



-
and the kinematic viscosity of fluid is v = E

Figure 1. Velocities in 2-D Lattice
Boltzmann model (D2Q9)

In Lattice Boltzmann method eq. (2) is solved
in the form of

fioc+e;,t+1)= f,(x

,t)+

Lo 1oxe) O

using AX=Ay=At=1. The use of unit
square mesh elements is restrictive. Several
extension to the LBM have been developed to
overcome this restriction. Reference [1] used
finite difference method (FDM) with 2™
upwind discretization for convective terms. In
ref. [1] the FDM is extended to curvilinear
coordinates =~ with  non-uniform  grids.
Unfortunately the 2™ upwind makes the stencil
longer, so it is not easy to handle the boundary
condition. Reference [2] used FDM on non-
uniform grids. They used implicit temporal
discretization to improve the stability. Many
modified FDM were proposed to improve the
stability and numerical accuracy. Upwind
FDM suffers from large dissipation error and
standard 2" suffers from large dispersion
error. Spectral method [5] offers exact
differentiation but suffers from low flexibility
in treatment of boundary condition.

In this paper, the 4™ order compact FDM is
proposed to discretize the convective terms of
eqg. (2). The method is preffered due to high
accuracy and flexibility [4]. For improving the
stability, the 2™ explicit Runge Kutta method
is used to integrate the semi-discrete equation.
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1. DISCRETIZATION

The linear convective terms of equations (2)
are discretized using 4™ compact finite
difference method:

1(611] 2(011} 1(5@
e I e o
6\ 0X )iy 3\0X ) 610X )y,

fk+l,l B fi—k,l
2AX

1(afij 2(6fij 1(afi]

. + — — + — — =
6\ oy K1+ 3\ oy k.l 6\ oy K I-1
(fi )k,l+1 —(fi )k,l—l

2Ay

(52)

(5b)

Ly

k+1,1

Figure 2. Finite Difference Stencil

After discretizing the convective terms using
4™ compact FD, we obtain semi discrete
equation of (2).

:e,-Vfi—w:L(fi)

Then the time update is performed using
classical 4™ explicit Runge Kutta method.

I11. ANALYSIS OF DISCRETIZATION
The analysis of spatial and temporal
discretization are given in this section. For
simplicity, linear advective equation is takes as
example.

a o, x e[027]
OX

) ikx

a,
at (7)
u(x



where a is velocity constant.

The exact solution of eq. (7) is easily
computed, and we have

u(x,t) =g (8)

where k is the wave number and @is angular
frequency. From the exact solution, we
obtained the exact dispersion relation:

@w=2ak. By subtituting the local solution
ui(X,t)z Uiei(k‘xlf‘”t) to eq. (6), we obtain
the numerical dispersion relation [5]:

1.5sin(kAx)
1+ N cos(kAx)

ik Ax =i ©)

From the eq. (9), it can be seen that numerical
dispersion relation of 4™ compact FD has no
imaginair components, so it can be concluded
that 4™ compact FD is conservative and has no
dissipation error. For acceptable dispersion

error ‘k*AX—kAX‘SIO'Z, we found that

k"Ax=1.0893. Therefore, the spatial grid
points  per  wavelength  (PPW) is

PPW =27/1.0893=75.7683.

right term of eq. (9) the eigenvalues of 4™
compact FD can be calculated and they are
purely imaginary, covering

(—1.732a/Ax,+1.732a/AX)

From the

3+

25

4'h compact FD

standard 2" FD

0.5

0 0.5 1 15 2 25 3
kax

Figure 3. Dispersion error

—-=L(f;) (10)

where L is the residual terms which contains
the spatial terms of the governing equations.

By subtituting f, = fi (t)ekx into eq. (6), we
obtain

of,
i 11
ot )

Where f is the Fourier coefficient, i =+/—1

,and A is complex number. The left terms of
eq. (11) is expanded by using 4™ explicit
Runge-Kutta scheme  to  obtain the
amplification factor:

£ N+l
G-t =1+(/1At)+%(ﬂAt)2 (12)

n
i

The stability condition requires that the
amplification factor must be bounded,

G| <1 (13)

unstable

2.828

stable
- spectrum

" of 4th compact FD

o At

-2.828

Figure 4. The stability region in complex plane

The stability region in complex plane can be
seen in figure 4. The eigenvalues of 4™ RK in
imaginary axis are covering



(— 2.828,+2.828)At , the stability condition of
the fully discrete equation is

aAt
CFL=——-<2.828/1.732
AX / (14

CFL<1.6328
CFL is Courant Friedrichs Lewy number.

IV. NUMERICAL RESULTS

The performance of numerical is tested by
application to 2 benchmark problems. The first
problem to be solved is 1-D linear convection
problem [3]:

L) - Zﬁ@ =0, xel0.27]
ot OX

U(X,O) : esin(x)
with periodic boundary condition

The exact solution to above equation is a right-
moving wave of the form:

U(X,t) 4 esin(x—Znt)
and AX=0.0982Ax=0.0491Ax=0.024%.

Convergence History CFL =05

Log gl L=}

—~ Compact FD 47 srdw

”_ .". / Eaphet £ 7 e

— Explict FD Lpwind 47 ovdies |

] 2 03 04 05 [T [
Time

Figure 5. Convergence History for linear convection
problem
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Figure 6. Accuracy Order

We compare the results with explicit 2" and
4" order FD. We take constant At =5¢—3

From figure 5, we can see that 4™ compact FD
has the lowest error among the r methods. The
accuracy orders are in a good agreement with
theoritical results.

The second problem to be solved is 2-D
decaying Taylor —Green vortex flow problem
[5]. The Taylor-Green vortex flow has the
following analytic solutions to incompressible
Navier-Stokes equation in 2-D:

u, (X, y.t) = ~U, cos(k,x)sin(k, y e 1"

uy (X’ yat) EXU 0 COS(ky y)sin(kxx)e’(kx*ky)Zt

y
u: k)
ux(x,y,t)z—T cos(2k, x) + p° s1n(2kyy)
y

e—(kx+ky)2t _1

where U, is initial velocity amplitude, K, and

k y are the wave number in X dan y direction.

(5]
T

Figure 7.Velocity fields at t=2

We use 2-D system of size 32 x 32 with
periodic boundary condition in both directions.

The simulation parameters are U, =0.01,
k, =k, =2, At=0.005, and 7=0.0018

The initial condition of velocity distributon



function f; actually are unknown, it is not

easy how to generate consistent initial

condition of f

.- Research for generating

consistent initial condition of f; is still in

progress [6]. In this paper, we use a simple
approach, we use the equilibrium distribution
function f* to intialize f;.

Figure 8. Density distribution at t=2.

Figure 7 and 8 show the computed results for
velocity field and density at t =2 .

Numerical and exact solutions of vertical
velocity for t=2 and t = 150 are compared in
figure 8, showing excellent agreement.

0.01

0.008
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0.004
0.002
> Df
-0.002¢
-0.004

-0.006+ o Exact

_o.008k — 4" compact FD

Gl 4 5 6

3
X

Figure 8. Comparison of vertical velocity at t=2 and
t=150

We compared the vertical velocity error of 4™
compact FD with explicit 2" and 4™ FD, the
comparisons show that 4™ compact FD much
more accurate than 2" and slightly more

accurate than explicit 4™ FD. Figure 9a and 9b
show the comparisons.
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Figure 9b.Vertical velocity error at t=150 and y= 3.043

Figure 10 shows the evolution of averaged
error for 4™ compact FD, 2" and explicit 4™
FD schemes. It can be seen that the averaged
error of 4™ compact FD and explicit 4™ FD are
almost equal and the the averaged error of 2™
FD scheme is higher than others.

LogygiLy)
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Figure 10. Convergence history of Taylor-Green vortex
problem



V. CONCLUSIONS

In this paper, we have presented a 4™ compact
finite difference method for solving two
dimensional Discrete Boltzmann Equation.
The proposed method has been verified for the
1-D convective equations and Taylor-Green
vortex flows benchmark. The excellent
agreement with exact solution and results of
2" and explicit 4™ FD shows the excellent
accuracy and stability of the proposed method.
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