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ABSTRACT

Fourth compact finite difference (FD) method for
solving two dimensional Discrete Boltzmann
Equation (DBE) for simulation of fluid flows is
proposed in this paper. The solution procedure is
carried out in Eulerian framework. BGK (Bhatnagar—
Gross—Krook) scheme is adopted to approximate the
collison term. The convective terms are discretized
using 4" compact finite difference method to improve
the accuracy and stability. Te semidiscrete equations
are updated using 4" order explicit Runge-Kutta
method. Preliminary results of the method applied on
the Taylor-Green vortex flows benchmark are
presented. We compared the numerical results with
other numerical results, i.e. explicit 2¢ and 4™ FD,
and exact solutions. The comparisons showed
excellent agreement.
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LINTRODUCTION

In the last decade the lattice-Boltzmann method
(LBM) has attracted much attention in the
simulation of fluid dynamics problems. Unlike
conventional computational fluid dynamics
methods, which discretize the macroscopic
governing equations directly, the LBM method
solves the gas kinetic equation at the mesoscopic
scale, 1.e. the discrete Boltzmann equation with
the Bhatnagar-Gross—Krook (BGK) relaxation
for the collision operator. The BGK relaxation
process allows the recovery of Navier Stokes
equations through Chapman Enskog expansion
for low Knudsen number.

In the gas kinetic theory, the evolution of the
single-particle density distribution function

I (I g x,e) which represents the probability
density of a particle with unit mass moving with
veloeity e at point X at time t. 1s governed by the
Boltzmann equation:

— fed
gﬂeon:—(f / ()
T
where f“/1s the equilibrium distribution and 7

is relaxation time. After discretizing the velocity
space einto various directions, the 2-D
Boltzmann equation for the velocity distributon

function f, may be written as discrete

i

Boltzmann equation.
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with @, =4/9.0, =0, =0, =0; =1/9, and
0, =0, =0, =0, =1/36. The pressure can
be calculated from p =c_3 p with of sound
velocity ¢, =l/ V3 in lattice unit and the

p P p v T
kinematic viscosity of fluidis v =—. .

Figure 1. Velocities in 2-D Lattice
Boltzmann model (D2Q9)

In Lattice Boltzmann method eq. (2) is solved in
the form of

f,.(x+e,.,t+1)=f,.(x,t)+

SN

using Ax = Ay = Af =1. The use of unit square
mesh elements is restrictive. Several extension
to the LBM have been developed to overcome
this restriction. Reference [1] used finite
difference method (FDM) with 2" upwind
discretization for convective terms. In ref. [1]
the FDM 1s extended to curvilinear coordinates
with non-uniform grids. Unfortunately the 2
upwind makes the stencil longer, so it is not easy
to handle the boundary condition. Reference [2]
used FDM on non-uniform grids. They used
implicit temporal discretization to improve the
stability. Many modified FDM were proposed to
improve the stability and numerical accuracy.
Upwind FDM suffers from large dissipation
error and standard 2™ suffers from large
dispersion error. Spectral method [5] offers

exact differentiation but suffers from low
flexibility in treatment of boundary condition.

In this paper, the 4™ order compact FDM is
proposed to discretize the convective terms of
eq. (2). The method is preffered due to high
accuracy and flexibility [4]. For improving the
stability. the 2" explicit Runge Kutta method is
used to integrate the semi-discrete equation.

IL. DISCRETIZATION

The linear convective terms of equations (2) are
discretized using 4" compact finite difference
method:

ohy 2% L% .
6 ax kel 3 ax k! 6 ax 1‘—|J_

(fa‘ )x.-+|..* B (ﬂ ).-_:-,;

2Ax
(5a)
l[ij +2{%J +1[%J
6\ )y 3\ ) 6\ )i,
(.f; )A—_.f+1 - (f; );.—_f—l
2Ay
(5b)
Ax
k,+1 by
k1.l k.| k+1,1
k,J-1

Figure 2. Finite Difference Stencil
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After discretizing the convective terms using 4"
compact FD, we obtain semi discrete equation of

Q).

L, o), - () — V) o

Then the time wupdate is performed using
classical 4" explicit Runge Kutta method.

ITI. ANALYSIS OF DISCRETIZATION

The analysis of spatial and temporal
discretization are given in this section. For
simplicity, linear advective equation is takes as
example.

cu ou
m + a—a; =0, xel0,27]

u(x,O) =

where «a 1s velocity constant.

(N

The exact solution of eq. (7) is easily computed,
and we have

ulx,r)=e'®-) )

where & 1s the wave number and o is angular
frequency. From the exact solution, we obtained
the exact dispersion relation: @=ak. By
subtituting the local solution
u (x f) Ue i o) to eq. (6), we obtain the
numerical dispersion relation [5]:

) 1.5sin(kAx)
1+ i cos(kAx)

ik Ax = ®)

From the eq. (9), it can be seen that numerical
dispersion relation of 4" compact FD has no
Imaginair components, so it can be concluded
that 4" compact FD is conservative and has no
dissipation error. For acceptable dispersion

erTor |k "Ax — kM <1072, we found that

k"Ax=1.0893. Therefore, the spatial grid
points per wavelength (PPW) 1s
PPW =27/1.0893 =5.7683 . From the right
term of eq. (9) the eigenvalues of 4™ compact
FD can be calculated and they are purely
imaginary, covering (—1.732 a/Ax.+1.732 a/ Ax)

2.5r

4™ compact FD

___standard 2" FD

® oo

0 05 1 15 2 25 3
kax

Figure 3. Dispersion error

The stability of 2™ explicit Runge-Kutta scheme
can be analyzed by considering eq. (6),

d, _
- =L0) (10)

where I 1s the residual terms which contains the
spatial terms of the governing equations. By

subtituting f, = £, (¢)e™* into eq. (6). we obtain

d,
ot

=i (1

Where f is the Fourier coefficient, i =~/—1 |,
and A is complex number. The left terms of eq.
(11) is expanded by using 4" explicit Runge-
Kutta scheme to obtain the amplification factor:

n+l
G-
A

=1+ (AA0)+ = (,w)2 (12)
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The stability condition requires that the
amplification factor must be bounded,

G| <1 (13)

The stability region in complex plane can be
seen in figure 4. The eigenvalues of 4™ RK in
imaginary axis are covering
(—2.828 +2.828)Ar , the stability condition of
the fully discrete equation is

al\t
FL=——<2. 73
CFL ~ <2.828/1.732 (14)

CFL<1.6328

CFL 1s Courant Friedrichs Lewy number.

3 unstable 2.828
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1+ Ele o spectrum
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Figure 4. The stabilitv region in complex plane

IV. NUMERICAL RESULTS

The performance of numerical is tested by
application to 2 benchmark problems. The first
problem to be solved 1s 1-D linear convection
problem [3]:

@ + 2}7@ =0, xe [0,2?1']
ot Ox

u(x,O): Pl

with periodic boundary condition

The exact solution to above equation is a right-
moving wave of the form:

u(x.f) — esin[.\r-ZM)

We compare the results with explicit 2" and 4™
order FD. We take constant Af=5¢—3 and
Ax=0.0982.Ax =0.0491, Ax =0.0245.

Convergence History CFL=05
15, r r . . .
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] [X] [F: 1] 4 05 (1] 07
Time

Figure 5. Convergence History for linear convection

problem
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Figure 6. Accuracy Order

From figure 5, we can see that 4" compact FD
has the lowest error among the r methods. The
accuracy orders are in a good agreement with
theoritical results.

The second problem to be solved is 2-D
decaying Taylor —Green vortex flow problem
[5]. The Taylor-Green vortex flow has the
following analytic solutions to incompressible
Navier-Stokes equation in 2-D:
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u, ()C, ¥. I) = _LT” coik,r x)Sin(k_],y)e -(.l'x +k_‘.):;

u, (X, L t) = .;{_". U” Cos(k_,,y)sm (k,x)e (e, P

¥

-

p(x,y, r) =- UT:' cos(kax) + [;L—'] Sin(Zk,,y)
c )

y

e-{x.-‘q-,.F; 1

where U, is initial velocity amplitude, k_and

k, are the wave number in x dan y direction.

We use 2-D system of size 32 x 32 with
periodic boundary condition in both directions.
The simulation parameters are U, =0.01,
k,=k, =2, At=0.005, and 7=0.0018. The
initial condition of velocity distributon function
J.actually are unknown, it is not easy how to
generate consistent imitial condition of  f.
Research for generating consistent 1nitial
condition of J, is still in progress [6]. In this
paper, we use a simple approach, we use the

equilibrium distribution function f;*to intialize

S

Figure 7 and 8 show the computed results for
velocity field and density at £ =2 .

Figure 7.Velocity fields at =2

Figure 8. Density distribution at /=2.

Numerical and exact solutions of wvertical
velocity for =2 and ¢ = 150 are compared in
figure 8, showing excellent agreement.

a.01

0.008
0.006
0.004
0.002

» 0

-0.002

0004 e

-0.006

@ Exact

-0.008 — 4 compact FD

-0.01
0

Figure 8. Comparison of vertical velocity at /=2 and
=150

We compared the vertical velocity error of 4"
compact FD with explicit 2" and 4™ FD, the
comparisons show that 4™ compact FD much
more accurate than 2" and slightly more
accurate than explicit 4" FD. Figure 9a and 9b
show the comparisons.
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Figure 9a.Vertical velocity error at /=2 and y=3.043
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Figure 9b.Vertical velocity error at =150 and y= 3.043

Figure 10 shows the evolution of averaged error
for 4™ compact FD, 2™ and explicit 4" FD
schemes. It can be seen that the averaged error
of 4™ compact FD and explicit 4" FD are almost
equal and the the averaged error of 2" FD
scheme 1s higher than others.
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Figure 10. Convergence history of Taylor-Green vortex
problem
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V. CONCLUSIONS

In this paper, we have presented a 4" compact
finite difference method for solving two
dimensional Discrete Boltzmann Equation. The
proposed method has been verified for the 1-D
convective equations and Taylor-Green vortex
flows benchmark. The excellent agreement with
exact solution and results of 2™ and explicit 4"
FD shows the excellent accuracy and stability of

the proposed method.
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