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NUMERICAL SIMULATION OF SEISMIC WAVE PROPAGATION NEAR A 

FLUID-SOLID INTERFACE 

Pranowo 1, Yoyok Adi Laksono 2, Wiwit Suryanto3, Kirbani Brotopuspito3 

 

1 Department of Informatics Engineering, Atma Jaya Yogyakarta University (pran@staff.uajy.ac.id) 
2 PhD student of Department of Physics, Gadjah Mada University & Lecturer of Department of  

 Physics, Malang State University  
3 Department of Physics, Gadjah Mada University 

ABSTRACT 

We introduce a high-order discontinuous galerkin method for modeling wave propagation in complex media 

with both uid (acoustic) and solid (elastic) medium, as for instance in offshore seismic experiments. The 

problem is formulated in terms of velocity-stress in both media. A nodal high order discontinuous galerkin 

finite element is used for the spatial discretization while an explicit low storage fourth order Runge Kutta 

scheme is used to march in the time domain. The numerical scheme provides stable and accurate methods for 

simulating seismic wave across a fluid – solid interface, the comparisons with finite element method and 

analytical solutions show a good agreement. 

Keywords: seismic wave, fluid – solid interface, discontinuous galerkin. 

1. INTRODUCTION 

Seismic wave propagation near fluid-solid interface problems are found in many scientific and engineering 

applications such as: 

 Seismic exploration in marine environment 

 Interaction seismic wave with reservoir dam  

 Earthquake induced tsunami 

Until now, these problems are still open research area. Many researchers has invesigated these problems 

experimentally or numericaly. Physical modeling has been successfully used in investigation of the seismic 

wave along liquid-solid interfaces (Person, 1999), from her experimental results she can identify the modes 

of propagation of interfaces waves, measure velocities, attenuation and re-radiation of these waves. The 

drawbacks of experimental approach are the measurement and data processing are so complicated, the 

measurement accuracy depended on the operator skill and the physical models are not easy to be built and 

expensive. Supporting by tremendeous of the increase computational power, numerical modeling has 

become an important research area. Much attention has been paid by many researchers to solve the seismic 

wave propagation near fluid-solid interface problems by using numerical approach. Assuming solid as elastic 



 

 

O-64 

 

medium and fluid as acoustic medium is sufficient in that context. Based on that asumption the wave 

propagation in solid medium can be modeled by elastodynamic equations and the wave propagation in fluid 

medium can be modeled by acoustic equations. One needs to model wave propagation in fluid as well in the 

underlying solid. 

The oldest and the famous numerical method that have been used widely to model seismic wave propagation 

in time domain is finite difference method (FDM). Van Vossen et al. (2002) used this method to model 

seismic wave propagation in fluid-solid configuration. The wave motion is governed by equation of motion 

and the elastic constitutive equation which are written in  a first-order hyperbolic equation system for 

unkonown components of stress and particle velocity. In the fluid medium the Lame’s coefficients   is set 

to be equal zero. A dipping interface is represented by staircase of vertical and horizontal fluid-solid 

boundary segments in the numerical scheme and properties of medium near the interface are calculated using 

arithmetic average. Van Vossen et al. (2002) showed that the accuracy of the FDM is good for small dipping 

but poor for large dipping angle (> 30o). This is the main drawback of FDM which can not be used for 

modeling of irregular domain. 

Diaz and Joly (2005) proposed nonconforming finite element method for solving time dependent 

fluid-structure interaction problems. They used different formulations for both fluid and solid media. 

Pressure-velocity formulation is used in fluid medium and velocity-stress formulation is used in solid 

medium. The coupling between the fluid and solid is done via continuity of normal velocities and of normal 

stresses. They used staggered mesh for both spatial and temporal domain as FDM did for minimizing the 

dispersion error. They showed that their numerical results have good agreement with analytical solutions. 

The use of staggered mesh made the numerical algorithm more complicated and the application of the 

method is limited for simple spatial domain only. 

Komatitsch et al. (2000, 2011) and Madec et al. (2009) developed a high order spectral element method 

(SEM) for simulating seismic wave propagation near a fluid-solid interface. They showed that SEM is an 

efficient tool for modeling wave propagation in complex structures, and high order accuracy can be 

achieved. The spectral element method is developed from conventional finite element method by replacing 

the basis function with the higher order legendre polynomials.They used seconder order hyperbolic equation 

system i.e. velocity potential formulation for fluid medium and displacement formulation for solid medium. 

The semi discrete equations are integrated in time using explicit predictor-corrcetor staggered time scheme. 

This time integration has only second order accuracy. 

Wilcox et al. (2010) developed a high order discontinuous galerkin method (DGM) for modeling seismic 

wave through coupled three dimensional elastic-acoustic media. They used first-order hyperbolic equation 

system for unkonown components of strain and particle velocity. In the fluid medium the Lame’s 

coefficients   is set to be equal zero. The DG methods allow unstructured mesh configuration and 

inter-element continuity is not required. The basis function is discontinuous across mesh boundaries. Through 

a proper choices of flux computation points, the method only requires communication between mesh that have 

common faces. No global matrix invertion is required and the problem can be solved locally in each mesh. In 
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their approach, they divided the spatial domain into hexahedral elements. Higher order accuracy can be 

achieved easily by increasing the order of basis function polynomials. 

In this paper we develop a high order discontinuous galerkin (DG) method for simulating two dimensional 

seismic wave near fluid-solid interface. The wave motion in both fluid and solid media is governed by 

elastodynamics equations in the form of velocity-stress formulation. The spatial domain is divided into 

unstructured triangular elements. Perfectly matched layer (PML) is used as as absorbing boundary condition. 

2. GOVERNING EQUATIONS 

Our approach of treating seismic waves numerically is based on the theory elastodynamics. We use the 

velocity-stress formulation as the governing equations: 

 x
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In which xv and yv are the components of velocity vectors, 
xx , 

yy dan 
xy  are the elements of the stress 

tensor and and  yx ff ,  are body force vector. The elastic medium is described by the density and the Lame 

coefficients  yx,  &  yx, . In the fluid medium the Lame coefficients  yx,  is set to be zero 

3. PERFECTLY MATCHED LAYER  

The simulation of seismic waves by discontinuous galerkin method in unbounded domains requires a 

specific boundary condition of the necessarily truncated computational domain. We propose an absorbing 

boundary condition called perfectly matched layer (PML). Presented in time domain electromagnetic 

simulations (Berenger, 1996), PML has since been used extensively in that field. PML has also been 

incorporated into a variety of wave propagation algorithms. Colino and Tsogka (2001) have formulated and 

demonstrated PML in the P-SV case via Virieux (1986) finite difference scheme and a mixed finite element 

algorithms. Excellent results were demonstrated in homogeneous and heterogeneous media, including 

anisotropy in the finite element scheme. 

Starting with the system of equations (1), each equation is split into a parallel and perpendicular component, 

based on spatial derivative separation. That is, the perpendicular equations contains the spatial derivative 

term which acts normal to the coordinate plane of interest and a damping term, and the parallel equation 



 

 

O-66 

 

contain the remaining spatial derivative terms. Finally, an additional equation is required to sum the results 

of the split equations 
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In the absorbing layers we use the following model for the damping parameters:  
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where  is the length of the layer and d0 is a function of the theoretical reflection coefficient (R) 

 For simplicity, the split equations (2) are writen in vector form as follows: 

  

  f
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where   Txyyxyxyyyyyxxxyxxxyyyxxyxx vvvv q  

      

4. DISCONTINUOUS GALERKIN METHOD 

The spatial derivatives are discretized by using a discontinuous galerkin method. The simplified of Eq.(1) 

according to Galerkin’s procedure using the same basis function   within each element is defined below 

(Hesthaven & Warburton, 2002; 2008) 



 

 

O-67 

 

      0,q,q,
q

,

0
qq

,





































































qBAqA

BA
q





yx
Bnn

t

yxt

yx

         (4) 

Here  .,.  represents the normal 2 L inner product, the second term is flux vector and  yx nn ,  are normal 

vector. The mathematical manipulation of the flux vector is calculated as below: 
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where  






  q,qq̂q  and the last term of equation (3) is called numerical flux. 

The numerical flux along three sides of triangular element is calculated by Lax Friedrich flux.  
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Here, we took the Kornwinder Dubiner function on straight sided triangle as the basis written in equation 7 

(see Figs. 1 and 2):  
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where,  ,P  is orthogonal Jacobi polynomial   

All straight sided triangles are the image of this triangle under the map: 
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The set of points in the triangle, which we can build the Lagrange interpolating polynomials, can be viewed 

as Gauss-Legendre –Lobatto (GLL) points. 
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The vector q  is expanded using equation (3), we take expansion of xv  as example: 
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where ijV   and N are Vandermonde matrix dan the order of  Jacobi polynomial respectively. 

The semi discrete Eq. (4) is integrated in time marching by using five stage of fourth order 2N-storage 

Runge-Kutta scheme as developed by Carpenter & Kennedy (1994). The final equations are found as written in 

Eq. (11). 
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where dt  is the time step. The vectors A and B are the coefficients that will be used to determine the properties 

of the scheme. The maximum time step is (Hesthaven and Warburton, 2002): 

Figure 1: Coordinate Transformation 

 

 

Figure 2: Seventh Order Gauss Lobatto 

Quadrature Nodes 
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where pc is primary wave velocity and h is the smallest edge length of the element 

5. RESULTS AND DISCUSSION 

In this section we present two numerical examples. The the first example aims at showing the accuracy of 

DGM compared to analytical solution and Fem whis proposed by Diaz et al. (2004) and the second example 

aims at showing that DGM can easily handle problems with complicated interface.  

5.1. Numerical Example I 

The first example has a simple configuration: two half-planes separated by a straight interface, one 

constitutes the fluid medium and the second one constitutes solid medium. The material properties for the 

fluid are -1ms 1500pc , -1ms 0sc  and -3m kg 1000  and the material properties for the solid are 

-1ms 4000pc , -1ms 1800sc  and -3m kg 1850 . The size of each medium is 20 mm  5 mm. We 

added absorbing layer surounding the domain with the thickness of the layer equals 1 mm and total number 

of triangular elements is 15060. The polynomial degree is 3N  and the time step st 810 . The 

source function is a point source located in the fluid at 2 mm above the interface, the time variation of the 

source is given as Gaussian with dominating frequency is 1 MHz. 

 

 

 

 

 

 

 

 

 

 

 

 

Snapshots of the first example can be seen in figure 4a – 4f. 

 

Figure 3: Mesh of first example 
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Figure 4a: Velocity fields of 1st example  

at 0.18 s 

 

Figure 4b: Velocity fields of 1st example  

at 0.27 s 

 

Figure 4c: Velocity fields of 1st example  

at 0.36 s 

Figure 4d: Velocity fields of 1st example  

at 0.45 s 

 

Figure 4e: Velocity fields of 1st example  

at 0.54 s 

 

Figure 4f: Velocity fields of 1st example  

at 0.63 s 
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Figure (4d) shows that the direct wave (a) and reflected wave can be observed in the uid, the transmitted P 

(c) and P-to-S converted (d) waves are clearly visible in the solid. Signi cant refracted waves are also 

present (e, f, g). 

To validate the DG method, we compare the numerical DGM (the green curve) solution to the FEM solution 

(the red curve)  and analytical solution (the blue curve) which are provided by Diaz et al. (2005). The two 

components of the numerical and analytical velocity are shown by figure 5a and 5b. The curves are perfectly 

superimposed, showing the goood accuracy of DGM. 

 

 

 

 

 

 

 

 

 

 

 

 

From 4a – 4f we can see no reflection on the left, right and bottom edges. The PML absorbed the outgoing 

waves well. 

5.2. Numerical Example II 

This example is taken from Komatitsch et al. (2000). The domain of the second example consists of two 

homogeneous half-spaces in contact at a sinusoidal interface, as shown in figure 6. The lower part of the 

model is elastic, while the upper part is acoustic, a water layer. The material properties for the water are 

-1ms 1500pc , -1ms 0sc  and -3m kg 1020  and the material properties for the solid are 

-1ms 3400pc , -1ms  1963sc  and -3m kg 2500 . Total number of triangular elements is 13876. 

The polynomial degree is 5N  and the time step st 210 . The source function is a point source 

located in the fluid at m 2900x and m 3098y , the time variation of the source is given as Ricker (i.e., 

the first derivative of a Gaussian) with dominating frequency is 7 Hz. 

 

 

Figure 5a: Horizontal velocity  xv  

 

Figure 5b: Vertical velocity  yv  
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Figure 6: Mesh of second example 

 

Figure 7a: Velocity fields of 2nd example at 0.3 s 

 

Figure 7b: Velocity fields of 2nd example at 0.6 s 

 

Figure 7c: Velocity fields of 2nd example at 0.9 s 

 

Figure7d: Velocity fields of 2nd example at 1.2 s 
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Figure 7e: Velocity fields of 2nd example at 1.5 s 

 

Figure 7f: Velocity fields of 2nd example at 1.8s 

 

Figure 8a: Seismogram of  xv  of DGM Figure 8b: Seimogram of  xv  of SEM 

 

Figure 9a: Seismogram of  yv  of DGM 

 

Figure 9a: Seismogram of  yv  of SEM 
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Figure6a – 6f show the snapshots of seismic wave propagation in two-layered media at 

s  1.8 and 1.5,  2,.1  0.9,  0.6,  0.3,  tttttt . Mode conversions of wave reflected at the 

interface are clearly visible. The entire wavefields are composed of various waves as described by 

Komatitsch at al. (2000), i.e: (a) the direct P-wave, (b) the strongly curved re ected P-wave on the rst 

anticline on the right, (c) the P-wave re ected off the rst anticline on the left [symmetric of phase (b)], (d) 

the P-wave re ected off the central syncline, which undergoes a time delay and there-fore a triplication, (e) 

various transmitted P-waves, (f) various transmitted P-to-S converted waves, and (h) a slow phase traveling 

along the interface, which is interpreted to be a Stoneley wave.  

Comparisons of seismograms between DGM and SEM results are shown in figure 8a- 8b and 9a -9b. Those 

figures show a a good agreement. Although the numerical calculations show  an excellent results, the 

modeling of fluid medium by using velocity-stress formulation has a drawback. This formulation will 

generate a small parisitic S-waves near the interface. This parasitic S-waves will be accumulated for long 

time simulation and can destroy the stability of the numerical scheme.   

6. CONCLUSIONS AND FUTURE WORKS 

We have introduced that the use of high-order discontinuous galerkin methods allows one to model seismic 

wave propagation across a fluid – solid interface  The numerical scheme provides stable and accurate 

methods for simulating seismic wave, the comparisons with finite element method and analytical solutions 

show a good agreement. 

Numerical results have shown that the use of velocity-stress formulation will generate very small parasitic 

S-waves near the interfacs. Therefore in the future we will use velocity strain formulation instead 

velocity-stress formulation for modeling seismic wave near fluid-solid interface. 
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