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ABSTRACT

Better understanding of the mechanism in which ultrasonic wave interacts with bone is important in therapy and
diagnosis alike, such as extracorporeal shock wave therapy (ESWT). In this paper, numerical simulation for
investigating the interaction of ultrasonic wave with bone is presented. The elastodynamic equations was used as the
governing equations. A nodal high order discontinuous galerkin finite element was used for the spatial discretization
while an explicit low storage fourth order Runge Kutta scheme is used to march in the time domain. This paper
demostrated the power of numerical method for biomedical research, which deals with ultrasonic wave propagation
in human body.
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1. INTRODUCTION

Interaction between ultrasonic wave propagation with bone occurs in many biomedical treatments, such
as extracorporeal shock wave therapy (ESWT). The ESWT is a noninvasive treatment for a variety of
musculoskeletal ailments. The ultrasonic shock wave is generated by a spark plug source (lithotripter) in
water and then focused using an acoustic lens or reflector so the energy of the wave is concentrated in a
small treatment region (Fagnan, 2010).
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Figurel. Lithotripter

Better understanding of the mechanism of the interaction of the ultrasonic wave with bone is important
for the biomedical treatment. In this paper, numerical simulation approach for investigating the
mechanism was proposed.. The bone was assumed as elastic solid material and the water as inviscid fluid.
The water can be treated as solid with zero shear stress. Therefor a single partial differential equation
system, called elastodynamics equations, can be applied as the governing equations for both materials.
Then the governing equations is formulated in terms of velocity-stress in both media. Many numerical
method were proposed for the solution of the governing equations [e.g., finite difference time domain
(FDTD) or finite element methods (FEM)]. The FDTD method (Kaufmann et al., 2008; Matsukawa et al..
2008) is limited for simple spatial domain only and the conventional FEM (Protopappas et al., 2007,
Nguyen et al., 2010) has a high dispersion error. A nodal high order discontinuous galerkin (DG) finite
element 1s used for the spatial discretization while an explicit low storage fourth order Runge Kutta
scheme is used to march in the time domain. The DG method can apllied for irregular domain and has
low dispersion error.




The simulation of ultrasonic wave by discontinuous galerkin method in unbounded domains requires a
specific boundary condition of the necessarily truncated computational domain. We propose an absorbing
boundary condition called perfectly matched layer (PML). Presented in time domain electromagnetic
simulations (Berenger, 1996), PML has since been used extensively in that field PML has also been
mncorporated into a variety of wave propagation algorithms. Colino and Tsogka (2001) have formulated
and demonstrated PML in the P-SV case via Virieux (1986) finite difference scheme and a mixed finite
element algorithms.

2. GOVERNING EQUATIONS

Starting with the system of governing equations, each equation is split into a parallel and perpendicular
component, based on spatial derivative separation. That is, the perpendicular equations contains the
spatial derivative term which acts normal to the coordinate plane of interest and a damping term, and the
parallel equation contain the remaining spatial derivative terms. Finally, an additional equation is required
to sum the results of the split equations
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3. DISCONTINUOUS GALERKIN METHOD
For simplicity, the split equations (2) are writen in vector form as follows:
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The spatial derivatives are discretized by using a discontinuous galerkin method. The simplified of Eq.(2)
according to Galerkin’s procedure using the same basis function ¢ within each element is defined below

(Hesthaven & Warburton, 2002; 2008).
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Here (...) represents the normal 2 L inner product, the second term is flux vector and (J'I . _‘.) are normal

vector. The mathematical manipulation of the flux vector is calculated as below:
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where ‘m =q" (q' ,q*] and the last term of equation (3) is called numerical flux.
3 o0

Here, we took the Kornwinder Dubiner function on straight sided triangle as the basis written in equation
4 (see Figs. 1 and 2):
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where, P*” is orthogonal Jacobi polynomial
All straight sided triangles are the image of this triangle under the map:

The set of points in the triangle, which we can build the Lagrange interpolating polynomials, can be
viewed as Gauss-Legendre —Lobatto (GLL) points.
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Figure 3: Seventh Order Gauss Lobatto Quadrature
Figure 2: Coordinate Transformation Nodes

The vector q is expanded using equation (4), we take expansion of v, as example:
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where V; and N are Vandermonde matrix dan the order of Jacobi polynomial respectively.

The semi discrete Eq. (3) is integrated in time marching by using five stage of fourth order 2N-storage
Runge-Kutta scheme as developed by Carpenter & Kennedy (1994). The final equations are found as
written in Eq. (8).
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where g is the time step. The vectors A and B are the coefficients that will be used to determine the
properties of the scheme. The maximum time step is (Hesthaven and Warburton, 2002):
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where ¢, is primary wave velocity and / is the smallest edge length of the element

4. RESULTS AND DISCUSSIONS

In this section we present two numerical examples. The the first example aims at showing the accuracy of
DGM compared to analytical solution and Fem whis proposed by Diaz and Patrick (2005) and the second
example aims at showing that DGM can easily handle problems with complicated interface.

4.1. Numerical Example I

The first example has a simple configuration: two half-planes separated by a straight interface, one
constitutes the fluid medium and the second one constitutes solid medium. The material properties for the
fluid are ¢, =1500 ms™’. ¢, =0ms ™" and p =1000 kg m™ and the material properties for the solid are

¢, =4000 ms”, ¢, =1800 ms™" and p =1850 kg m™. The size of each medium is 20 mm x 5 mm.
We added absorbing layer surounding the domain with the thickness of the layer equals 1 mm and total

number of triangular elements is 15060. The polynomial degree is N =3 and the time step Af =105 .
The source function is a point source located in the fluid at 2 mm above the interface. the time variation
of the source is given as Gaussian with dominating frequency is 1 MHz. Snapshots of the first example
can be seen in figure 4a — 4b.

0008 0006 -0.004 -0002 O 0002 0004 0006 0008 0008 0006 -0004 0002 0 Q002 0004 0006 0008
X (m) X (m)

Figure 4a: Velocity fields of 1*' example Figure 4b: Velocity fields of 1* example
at 0.36 ps at 0.54 ps
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To validate the DG method, we compare the numerical DGM (the green curve) solution to the FEM
solution (the red curve) and analytical solution (the blue curve) which are provided by Diaz and Patrick.
(2005). The two components of the numerical and analytical velocity are shown by figure 5a and 5b. The
curves are perfectly superimposed, showing the goood accuracy of DGM. From 4b we can see no
reflection on the left, right and bottom edges. The PML absorbed the outgoing waves well.
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Figure 5a: Horizontal velocity (vx ) Figure 5b: Vertical velocity (v‘_)

4.2. Numerical Example II

In this example, the interaction of ultrasonic wave propagation, which generated by lithotripter, with
human skull. The contour of human skull was extracted from MRI scanned image by using level set
segmentation, as shown n figure 6. Figure 7 shown the whole of physical domain, including lithotripter
and absorbing layer. The major and minor axes of the ellipsoid of the lithotripter are @ = 70 mm and b =
40 mm. The domain is dicretized into triangular 7433 elements. The material properties for the water are
#=0GPa, A=22GPa and p=1000 kgem™ and the material properties for the bone are

#=94GPa. A=20GPa and p =2000 kg m~. The polynomial degree is N =4 and the time step

Af =107%s . The source function is a point source located at the focus of ellipsoid, the time variation of
the source is given as Ricker (ie., the first derivative of a Gaussian) with dominating frequency is 0.5
MHz.

Figure 6. Horizontal section of human head and the bone segmentation
(https://www.msu.edu/~brains/brains/human/horizontal/ 1400 cut.html)
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Figure 9a — 9Sh show the interaction ultrasomic wave propagation with the human skull at

1=20,t=50, t=70, t=90, t=120,, =140, f=1060andf =200 z5. The wave propagation
starts from the focus of the ellipsoid. The wave, which hit the the metal wall, will be reflected back. The
metal wall acts as wave guide, so the wave will be guided to propagate to the right. When the wave
encounters the bone, the wave will be scattered and partially will be transmitted through the bone. Figure
9¢ and figure 9d show the scattered and transmitted waves at the interface clearly. The transmitted wave
will be guided along the bone and propagates faster than the wave that propagates in the water (figure 9d -
9h). The outgoing wave that left the domain will be absorbed well in the PML.
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Time = 0.160 ms. Tirne = 0.200 ms
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Figure 9g: Velocity fields of 2 " example Figure 9h: Velocity fields of 2 ™ example
at 160 ps at 200 ps
Figure 10.a and 10.b contain the traces recorded at receiver position = (0.1, 0.05), and figure 10.c

contains the traces recorded at all receiver position. As one can see from the figurer, the solutions
obtained from discontinuous galerkin methods has smooth solution contained no numerical oscillation.
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Figure 10a: Horizontal velocity (\’_‘)rccordcd atreceiver  Figure 10b: Vertical velocity (VJ) at receiver position
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4.3. Conclusions

In this paper, numerical simulation for investigating the interaction of ultrasonic wave with bone based on
discontinuous galerkin method is presented. To model the interaction ultrasonic wave with bone, bone
material was considered as a elastic solid medium immersed in an acoustic fluid. The discontinuous
galerkin method provides stable and accurate methods for simulating the interaction ultrasonic wave with
bone. It is shown that numerical simulation is a valuable tool for investigating ultrasonic wave
interactions with bone. Numerical simulation can provide important insights that can lead to many
practical advantages, dealing with ultrasonic wave propagation in human body.
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