

PARALLEL PARTICLE SWARM OPTIMIZATION

FOR IMAGE SEGMENTATION

Agustinus Kristiadi, Pranowo, Paulus Mudjihartono

Atma Jaya Yogyakarta University – Yogyakarta - Indonesia

Jl Babarsari 43 Yogyakarta 55281 Indonesia

090705773@students.uajy.ac.id, pranowo@staff.uajy.ac.id, paul235@staff.uajy.ac.id

ABSTRACT
One of the problems faced with Particle Swarm

Optimization (PSO) is that this method is simply time

consuming. It is so, especially when it deals with a

problem that needs a lot of particles to represent. This

paper tries to compare the speed of PSO run at parallel

mode to ordinary one. The testing applies an example

of an image segmentation to demonstrate the PSO

method to find best clusters of image segmentation.

Best clustering is determined by viewing it as it is an

optimization problem in finding the minimum error of

the clustering. The PSO process, especially the

iteration; the one that is the most time consuming; can

be fastened by the usage of the parallel property of the

PSO. We use NVIDIA CUDA for parallelizing the

computation occurred in each particle. The results

show that PSO run 170% faster when it used Graphic

Processing Unit (GPU) in parallel mode other than

that used CPU alone, for number of particle=100. This

speed is growing as the number of particle gets

higher.

Keywords: PSO, Parallel, Image Segmentation,

Clustering, CUDA.

1. INTRODUCTION

Particle Swarm Optimization (PSO) is a

metaheuristic method using swarm intelligence

[1]. The idea behind PSO originated from

behaviour of swarm of animals, for example flock

of birds or school of fish, to search foods. In

PSO, each particle move based of best known

position of optima, so that each particle tends to

move to that best known position with a hope that

it finds global best position in the search space.

Since PSO is a metaheuristic method, it offers

many solutions in many ways to one specific

problem. Some solutions are satisfied and some

others are not. However it is practically accepted.

PSO can be used to solve many optimization

problems, for example scheduling [2], neural

network weighting, and data mining [3]. Another

example is that PSO is used in generating

‘university timetable’, a kind of lecturing

schedule in university, in a manner of its very

origin [4]. Moreover, PSO can also be used to

solve clustering problems and can be applied to

the image segmentations.

As it is metaheuristic methods, PSO implements

the stochastic optimization which includes

random and trial-error behaviours which is

relatively slow [5]. From this point of view, we

need to do research for finding the methods that

can be accelerated the processing time of PSO.

One of these methods is parallel computing.

Fortunately, parallel computing library is

available. It is NVIDIA CUDA. CUDA is a

technology that does calculation concurrently in

graphic processing unit (GPU) [6].

To analyze the good of PSO using CUDA, we

compare the speed and the quality of an image

segmentation using PSO clustering method that

run in both CPU and GPU.

2. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) developed by

Kennedy and Eberhart as a stochastic

optimization method based on swarm

intelligence. The idea behind PSO is to mimic

behaviours of school of fish and flock of birds

whenever they looking for food [7]. PSO is

modeling population of swarm as search agents

that move looking for an optimal solution in

search space. Each individual (particle) in the

swarm remembers its best known position.

Each particle’s movement is affected by its

current velocity, personal best known position,

and best known position in the entire swarm.

Hence, for particle i, in dimension d, its

movement is calculated as follows:

vid = w * vid + c1* r1 * (pid– xid)
 + c2* r2 * (pgd–xid) (1)

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 129

mailto:pranowo@staff.uajy.ac.id
mailto:paul235@staff.uajy.ac.id

where w is the inertia, c1 and c2 are nonnegative

constant, r1 and r2 are random number between 0

and 1. pid is personal best known position, pgd is

best known position in the entire swarm, and xid

is current position of particle.

Velocity from equation (1) is used to determine

new position of particle. New particle’s position

can be calculated as follows:

xid = xid + vid (2)

3. PSO IMAGE SEGMENTATION

One of the methods to perform image

segmentation is clustering. The idea is that the

pixels in an image are grouped into several

smaller groups called clusters. The grouping is

done in pixel color basis. Pixels with similar

color or relatively similar are grouped into one

certain cluster. PSO can be used to solve

clustering problem, which in this case, PSO is

used to perform image segmentation.

In the clustering context, each particle represents

set of cluster centroids as many as Nc [8]. Each

particle is represented as follows:

xi=(mi1,…mij,...miNc) (3)
where mij is j-th centroid in i-th particle. Swarm

of particles represents several candidate solutions

for clustering problems. Furthermore, in each of

iterations PSO tries to improve the candidate

solution.

The quality of clustering can be measured using

quantization error:

(4)

where Z is data vector to be clustered, and d

function is the Euclidean distance:

(5)

where dm is dimension of data to be clustered.

4. NVidia CUDA

CUDA (Compute Unified Device Architecture) is

a GPU architecture from NVidia that enables

program run at GPU [9]. This refutes that GPU

can merely do graphics computing; on the

contrary it can also do general purpose computing

such as those on CPU. CUDA architecture was

first introduced in 2007; which is GPU NVidia

series G80.

The model of CUDA programming divides work

into many smaller works that will be handled by

smallest processor unit, called thread. Each

thread has its own memory and process to

perform the works altogether with all other

threads. The group of all threads is divided into

several groups of threads called blocks. Each

block shares a memory for communicating

among the threads in that block. All blocks are

eventually grouped to become a grid; which is

used to perform a computation. See Figure 1,

which is taken from [10].

Figure 1. CUDA Processor Structure (source [10])

In CUDA, CPU is called the host, and GPU is

called the device. Furthermore CUDA program

has two parts; which are function that runs at

CPU and function that runs at GPU. Function on

CUDA program that runs at GPU is called the

kernel. During the execution of the function,

programmer should provide GPU a piece of

information of how many blocks are needed and

how many threads in each block should be.

Programming Language that used by CUDA is

C/C++ with the specific extension of functions

and syntax particularly set to CUDA. CUDA

compiler, with its driver nvcc, will compile the

code running at the device while the code which

runs at the host will be compiled by the compiler

resides at the host, such as GCC/G++ in Linux or

Visual C++ in Windows.

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 130

5. GPU PSO IMAGE SEGMENTATION

The ordinary method of PSO remains the same

with the original PSO itself. In the case of image

segmentation, one particle is represented by the

sequence of cluster centroids, while the position

of particle is represented by the RGB values of

those centroids. Suppose we intend to cluster the

image data into two colors then there are two

RGBs stand for the position of the particles;

which is six dimensions. This algorithm can be

written as follows (two clusters division):

1. Initialize N particles taken from N/2 couple

pixels of the sample image and set their

position accordingly. Set pBest (personal best

position of particle p), and gBest (global best

position of particle p) with the random two

RGB values of the sample image data and

also set the speed of each particle with zero.

2. For iteration = 1 to max_iteration do:

a. For each particle p do:

i. For each cluster c do:

Update speed of p of dimension d

on cluster c

Update position p of dimension d

on cluster c

ii. p.posisi ← position of p.

b. For each particle p do:

i. If (fitness(p.posisi) <

fitness(p.pBest)):

 p.pBest ← p.posisi

ii. If (fitness(p.pBest) < fitness(gBest)):

 gBest ← p.pBest

After some iteration, gBest will get its optimal

solution of clustering. The optimal solution is the

solution that satisfies the objective function, in

this case, is to minimize the quantization error of

the cluster. The solution is a couple of pixel (the

case of 2 clusters) that compels the segmentation

falling into two colors.

On the other hand, the parallel PSO algorithm

uses the parallel property to generate the

solutions. PSO naturally is an algorithm that

inherently parallel not serial. This means that the

process of one certain particle does not depend on

other particle processes. One particle should not

wait for other particles to finish their processes to

finish its own.

There are three kinds of parallel PSO

implementation; they are naïve, asynchronous

and full device implementation. Firstly, in naïve

implementation pBest computation (concurrently

among particles) is done in device but the gBest

computation is in the host. It needs frequent

copies of pBest from the device to the host so that

the computation is not optimized. Secondly,

asynchronous implementation is just like the

naïve one unless it performs the kernel

concurrently with the copying computation.

Lastly, full device implementation that we did in

our research needs all PSO functions are

concurrently accomplished on the device. The

algorithm of this full device implementation is as

follows:

1. Initialize some particles; pBest; gBest and the

speed of each particle as in ordinary PSO

mode.

2. For iteration = 1 to maximum iteration do:

a. Update the speed and position of the

particles concurrently on the device.

b. Update pBest of all particles concurrently

on the device.

c. Set Idx with the index of particle which its

gBest is minimum.

d. Update gBest with pBest of particle with

the index Idx.

(Each particle carries out its computations

independently in a single thread. This has

removed the loop ‘for each particle’.)

6. EXPERIMENTAL RESULTS

Experiment is done using a PC with Intel Core 2

Duo T6600 2.2 GHz as CPU, and NVIDIA

GeForce 110M with 256MB of memory as GPU.

In this experiment, we study the time processing

of PSO when it runs in GPU compared to CPU,

relative to number of particle. The experiment

needs the sample image to be segmented. It is a

color image with 160 x 120 pixels of dimension.

Other parameters that are also needed will be the

number of cluster and the maximum iteration,

where we pick 2 and 60 respectively.

Figure 2. The Interface of the Tester Prototype Displaying

Sample Image

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 131

Figure 2 shows the sample image to be clustered.

In this case, image is clustered into two clusters

by doing PSO with 60 particles and 60 iterations.

Similarly, the testing also applied for 20 and 100

particles with the same number of cluster and

iteration.

Figure 3. The Interface of the Tester Prototype Displaying

the Image Segmentation Result

Next, figure 3 presents the cluster results. There

are two segments in the image that fall in their

two color clusters, red and blue respectively.

In Addition, table 1, 2 and 3 display the testing

results of both methods.

Table 1. Test Result for Cluster=2; Epoch=60; p=20

Method Fitness Time

CPU 15.729 9.805

Full Device GPU 15.642 18.982

Table 2. Test Result for Cluster=2; Epoch=60; p=60

Method Fitness Time

CPU 15.616 27.8478

Full Device GPU 15.613 23.6246

Table 3. Test Result for Cluster=2; Epoch=60; p=100

Method Fitness Time

CPU 15,611 46.346

Full Device GPU 15,614 27.363

In the same notion of presenting results, the

results can be viewed through graphics

visualization as in figure 4 and 5.

Figure 4. Time Consumption Relative to the Number of

Particle with Cluster=2, Epoch=60.

Figure 4 shows the processing time used by PSO

for image segmentation in GPU and CPU,

relative to the number of the particles p. PSO for

image segmentation that run in GPU is generally

faster than that run sequentially in CPU. It is

about 1.7 times as fast as that in CPU for a big

enough number of the particles (p=100).

However, in the case of a small number of the

particles, PSO for image segmentation in GPU

run slower than that in CPU due to the overhead

of the parallel processing such as memory copies

from CPU to GPU. This overhead time becomes

the major portion of the whole processing time in

small p while in CPU mode this overhead time

does not exist.

In the case of big p, CPU mode is getting worse.

The sequential process takes place and fills up the

most time of computation. On the other hand,

time process in GPU mode relatively remains

constants at its portion of the overhead time. It

implies that the overhead time is likely not

affected by the number of the particles in parallel

mode. It shows that the bigger the p number, the

clearer that the parallel mode (in GPU) win the

competition over the sequential one (in CPU

only).

.

Figure 5. Fitness Value Relative to the Number of Particle

with Cluster=2, Epoch=60.

Lastly, figure 5 shows the quality of the

clustering of PSO for image segmentation that

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 132

runs in CPU and GPU, relative to number of

particle. In general, the quality of the two only

differs a little. In p=20, the difference does not

exceed 0.1 while in p=60, and p=100 the

difference is relatively none. This means the

objective function is as well achieved in parallel

mode as in ordinary one.

7. CODE IMPLEMENTATION

This section will only list code from basic data

structure, digital image capturing, and PSO GPU-

related codes. A data structure is needed to

represent data digital, particle, and GBest. This

data structure resides on host only. First, we need

to represent digital image data; which is a pixel.

The data structure of image data is simply an

array of three integer since pixel is composed

from three colors; Red, Green and Blue.

Moreover, we also need to represent Particle and

GBest. Particle contains as many positions,

pBests and velocities as clusters whereas GBest

as another important structure consisting

centroids and quantization error values. Here are

the data structures:

struct Data

{

 int info[DATA_DIM];

};

struct Particle

{

 Data *position;

 Data *pBest;

 Data *velocity;

};

struct GBest

{

 short *gBestAssign;

 Data *centroids;

 int *arrCentroids;

 float quantError;

};

The Digital image data should be saved in the

host by an assignment. Since we have only Data

which represents pixel then we need to create

array of Data to accommodate all pixels of the

image. The image data capturing code is as

follows:

IplImage* input = NULL;

input =

cvLoadImage(file_name.toStdString().c_st

r(), -1);

arr_image_ = new char[w * h * c];

flat_datas_ = new int[w * h * c];

datas_ = new Data[w * h];

for (int i = 0; i < w * h; i++)

{

 Data d;

 for(int j = 0; j < c; j++)

 {

 arr_image_[i*c+j] = (unsigned

char)input->imageData[i*c+j];

 flat_datas_[i*c+j] = (unsigned

char)input->imageData[i*c+j];

 d.info[j] = (unsigned char)input-

>imageData[i*c+j];

 }

 datas_[i] = d;

}

Clustering functions are needed by both methods;

PSO CPU or PSO GPU. The following text is the

clustering function header in host and device

respectively:

GBest hostPsoClustering(Data *datas, int

data_size, int channel,int

particle_size, int cluster_size, int

max_iter);

extern "C" GBest devicePsoClustering

(Data *datas, int *flatDatas, int

data_size,int channel, int

particle_size,int cluster_size, int

max_iter);

There one extra parameter in the device side

function header that is flatDatas. This

parameter is needed since the PSO GPU

functions needs the array 1-dimension data

variabel.

Next, the PSO GPU-related functions are listed in

the next code.

cudaMalloc((void**)&devPositions, size);

cudaMalloc((void**)&devVelocities,

size);

cudaMalloc((void**)&devPBests, size);

cudaMalloc((void**)&devGBest,

sizeof(int) * cluster_size * DATA_DIM);

cudaMalloc((void**)&devPosAssign,

assign_size);

cudaMalloc((void**)&devPBestAssign,

assign_size);

cudaMalloc((void**)&devDatas,

sizeof(int) * data_size * DATA_DIM);

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 133

Like the implementation of PSO CPU, PSO GPU

also allocates memory for the operating vaiables

by using cudaMalloc function. The difference of

the memory allocation between both methods is

that in PSO GPU, all variables changed to be an

array of 1-dimension types. This fits to the so

called ‘coalesced memory access’ in CUDA

where accessing consecutive memory is faster

than not.

cudaMemcpy(devPositions, positions,

size, cudaMemcpyHostToDevice);

cudaMemcpy(devVelocities, velocities,

size, cudaMemcpyHostToDevice);

cudaMemcpy(devPBests, pBests, size,

cudaMemcpyHostToDevice);

cudaMemcpy(devGBest, gBest, sizeof(int)

* cluster_size * DATA_DIM,

cudaMemcpyHostToDevice);

cudaMemcpy(devPosAssign, posAssign,

assign_size, cudaMemcpyHostToDevice);

cudaMemcpy(devPBestAssign, pBestAssign,

assign_size, cudaMemcpyHostToDevice);

cudaMemcpy(devDatas, flatDatas,

sizeof(int) * data_size * DATA_DIM,

cudaMemcpyHostToDevice);

After allocating memory on the device side, the

memory needs to be initialized with the data

comes from the host. The initialization process is

done by using function cudaMemcpy that

resembles memcpy in C. The parameters of

cudaMemcpy encompass the pointer of the

destination memory, the pointer of the source

memory, the amount (bytes) of the memory

needs to be copied and flag that determines the

direction of copying process whether from the

device to the host or vice versa.

__global__ void kernelUpdateGBest (int

*gBest, int *pBests, int offset, int

cluster_size)

{

 int i = blockIdx.x * blockDim.x

 + threadIdx.x;

 if(i >= cluster_size * DATA_DIM)

 return;

 gBest[i] = pBests[offset + i];

}

__global__ void

kernelUpdateGBestAssign(short

*gBestAssign, short *pBestAssign, int

offset, int data_size)

{

 int i = blockIdx.x * blockDim.x

 + threadIdx.x;

 if(i >= data_size)

 return;

 gBestAssign[i] =

 pBestAssign[offset + i];

}

The code listed above displays that every single

thread is used to update one single index of

gBest. This means that we need as many thread as

gBest index in the array. The final gBest that

found on the last iteration will eventually become

the solution itself. Lastly, the value of final gBest

will be copied from the device back onto the host

for presentation purpose.

8. CONCLUSION

From the experimental results, we can say that

parallel PSO for image segmentation is more

efficient than that run in CPU. In the case of the

big number of particle (p=100), the speed in

parallel mode is up to around 1.7 times as fast as

that in CPU. This number is growing as the

number of particle p gets higher. While in the

case of the small number of particle, the

application of the parallel PSO does not make any

good. In addition, the quality between the two has

no significant difference.

For future research, the speed of PSO for image

segmentation can be further improved by using

faster and newer model of GPU. Moreover, PSO

for image segmentation can also be developed in

OpenCL.

9. REFERENCES

1. Poli, R., Kennedy J., Blackwell T.: Particle Swarm

Optimization: An Overview, Springer Science (2007).

2. Tasgetiren F., Sevkli M., Liang Y.C., Geneyilmaz G.:

Particle Swarm Optimization Algorithm for Single

Machine Total Weighted Tardiness Problem, 2004

IEEE Congress on Evolutionary Computation, Volume

2 (2004).

3. Weiss, R.M.: GPU-Accelerated Data Mining with

Swarm Intelligence, Department of Computer Science

Macalaster College, PhD Thesis (2010).

4. Mudjihartono P., Gunawan W.T., Ai T.J.: University

Timetabling Problems With Customizable Constraints

Using Particle Swarm Optimization Method,

International Conference on Soft Computing,

Intelligent System and Information Technology

(ICSIIT), Petra University, Indonesia. ISBN: 978-602-

97124-0-7 (2010)

5. Chen, X., Li Y.: Neural Network Training Using

Stochastic PSO, ICONIP'06 Proceedings of the 13th

International Conference on Neural Information

Processing- Volume Part II (2006).

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 134

6. Zhou, Y., Tan Y.: GPU-based Parallel Particle Swarm

Optimization, 2009 IEEE Congress on Evolutionary

Computation, Volume 2 (2009).

7. Kennedy, J., Eberhart, R.C.: Swarm Intelligence,

Morgan Kauffman (2001).

8. Merwe V. D., Engelbrecht A.P.: Data Clustering using

Particle Swarm Optimization, Proceedings of IEEE

Congress on Evolutionary Computation (2003).

9. Kirk, D.B., Hwu W.W.: Programming Massively

Parallel Processors: A Hands-on Approach, Morgan

Kauffman (2010).

10. NVidia CUDA C Programming Guide Version 3.2,

NVidia, pp. 9 (2010).

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 135

