
 

 

PARALLEL PARTICLE SWARM OPTIMIZATION 

FOR IMAGE SEGMENTATION 

Agustinus Kristiadi, Pranowo, Paulus Mudjihartono 

Atma Jaya Yogyakarta University – Yogyakarta - Indonesia 

Jl Babarsari 43 Yogyakarta 55281 Indonesia 

090705773@students.uajy.ac.id, pranowo@staff.uajy.ac.id, paul235@staff.uajy.ac.id 

ABSTRACT 
One of the problems faced with Particle Swarm 

Optimization (PSO) is that this method is simply time 

consuming. It is so, especially when it deals with a 

problem that needs a lot of particles to represent. This 

paper tries to compare the speed of PSO run at parallel 

mode to ordinary one. The testing applies an example 

of an image segmentation to demonstrate the PSO 

method to find best clusters of image segmentation. 

Best clustering is determined by viewing it as it is an 

optimization problem in finding the minimum error of 

the clustering. The PSO process, especially the 

iteration; the one that is the most time consuming; can 

be fastened by the usage of the parallel property of the 

PSO. We use NVIDIA CUDA for parallelizing the 

computation occurred in each particle. The results 

show that PSO run 170% faster when it used Graphic 

Processing Unit (GPU) in parallel mode other than 

that used CPU alone, for number of particle=100. This 

speed is growing as the number of particle gets 

higher. 

Keywords: PSO, Parallel, Image Segmentation, 

Clustering, CUDA.  

1. INTRODUCTION

Particle Swarm Optimization (PSO) is a 

metaheuristic method using swarm intelligence 

[1]. The idea behind PSO originated from 

behaviour of swarm of animals, for example flock 

of birds or school of fish, to search foods. In 

PSO, each particle move based of best known 

position of optima, so that each particle tends to 

move to that best known position with a hope that 

it finds global best position in the search space. 

Since PSO is a metaheuristic method, it offers 

many solutions in many ways to one specific 

problem. Some solutions are satisfied and some 

others are not. However it is practically accepted. 

PSO can be used to solve many optimization 

problems, for example scheduling [2], neural 

network weighting, and data mining [3]. Another 

example is that PSO is used in generating 

‘university timetable’, a kind of lecturing 

schedule in university, in a manner of its very 

origin [4]. Moreover, PSO can also be used to 

solve clustering problems and can be applied to 

the image segmentations. 

As it is metaheuristic methods, PSO implements 

the stochastic optimization which includes 

random and trial-error behaviours which is 

relatively slow [5]. From this point of view, we 

need to do research for finding the methods that 

can be accelerated the processing time of PSO. 

One of these methods is parallel computing. 

Fortunately, parallel computing library is 

available. It is NVIDIA CUDA. CUDA is a 

technology that does calculation concurrently in 

graphic processing unit (GPU) [6].  

To analyze the good of PSO using CUDA, we 

compare the speed and the quality of an image 

segmentation using PSO clustering method that 

run in both CPU and GPU. 

2. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) developed by 

Kennedy and Eberhart as a stochastic 

optimization method based on swarm 

intelligence. The idea behind PSO is to mimic 

behaviours of school of fish and flock of birds 

whenever they looking for food [7]. PSO is 

modeling population of swarm as search agents 

that move looking for an optimal solution in 

search space. Each individual (particle) in the 

swarm remembers its best known position. 

Each particle’s movement is affected by its 

current velocity, personal best known position, 

and best known position in the entire swarm. 

Hence, for particle i, in dimension d, its 

movement is calculated as follows: 

vid    =  w * vid + c1* r1 * (pid– xid) 
  + c2* r2 * (pgd–xid) (1) 
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where w is the inertia, c1 and c2 are nonnegative 

constant, r1 and r2 are random number between 0 

and 1. pid is personal best known position, pgd is 

best known position in the entire swarm, and xid 

is current position of particle. 

Velocity from equation (1) is used to determine 

new position of particle. New particle’s position 

can be calculated as follows: 

xid = xid + vid  (2) 

3. PSO IMAGE SEGMENTATION

One of the methods to perform image 

segmentation is clustering. The idea is that the 

pixels in an image are grouped into several 

smaller groups called clusters. The grouping is 

done in pixel color basis. Pixels with similar 

color or relatively similar are grouped into one 

certain cluster. PSO can be used to solve 

clustering problem, which in this case, PSO is 

used to perform image segmentation. 

In the clustering context, each particle represents 

set of cluster centroids as many as Nc [8]. Each 

particle is represented as follows:   

xi=(mi1,…mij,...miNc)   (3) 
where mij is j-th centroid in i-th particle. Swarm 

of particles represents several candidate solutions 

for clustering problems. Furthermore, in each of 

iterations PSO tries to improve the candidate 

solution. 

The quality of clustering can be measured using 

quantization error: 

(4) 

where Z is data vector to be clustered, and d 

function is the Euclidean distance: 

(5) 

where dm is dimension of data to be clustered. 

4. NVidia CUDA

CUDA (Compute Unified Device Architecture) is 

a GPU architecture from NVidia that enables 

program run at GPU [9]. This refutes that GPU 

can merely do graphics computing; on the 

contrary it can also do general purpose computing 

such as those on CPU. CUDA architecture was 

first introduced in 2007; which is GPU NVidia 

series G80.  

The model of CUDA programming divides work 

into many smaller works that will be handled by 

smallest processor unit, called thread.  Each 

thread has its own memory and process to 

perform the works altogether with all other 

threads. The group of all threads is divided into 

several groups of threads called blocks. Each 

block shares a memory for communicating 

among the threads in that block. All blocks are 

eventually grouped to become a grid; which is 

used to perform a computation. See Figure 1, 

which is taken from [10]. 

Figure 1. CUDA Processor Structure (source [10]) 

In CUDA, CPU is called the host, and GPU is 

called the device. Furthermore CUDA program 

has two parts; which are function that runs at 

CPU and function that runs at GPU. Function on 

CUDA program that runs at GPU is called the 

kernel. During the execution of the function, 

programmer should provide GPU a piece of 

information of how many blocks are needed and 

how many threads in each block should be.  

Programming Language that used by CUDA is 

C/C++ with the specific extension of functions 

and syntax particularly set to CUDA. CUDA 

compiler, with its driver nvcc, will compile the 

code running at the device while the code which 

runs at the host will be compiled by the compiler 

resides at the host, such as GCC/G++ in Linux or 

Visual C++ in Windows. 
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5. GPU PSO IMAGE SEGMENTATION 

The ordinary method of PSO remains the same 

with the original PSO itself. In the case of image 

segmentation, one particle is represented by the 

sequence of cluster centroids, while the position 

of particle is represented by the RGB values of 

those centroids. Suppose we intend to cluster the 

image data into two colors then there are two 

RGBs stand for the position of the particles; 

which is six dimensions. This algorithm can be 

written as follows (two clusters division):  

1. Initialize N particles taken from N/2 couple 

pixels of the sample image and set their 

position accordingly. Set pBest (personal best 

position of particle p), and gBest (global best 

position of particle p) with the random two 

RGB values of the sample image data and 

also set the speed of each particle with zero. 

2. For iteration = 1 to max_iteration do: 

a. For each particle p do: 

i. For each cluster c do: 

Update speed of p of dimension d 

on cluster c  

Update position p of dimension d 

on cluster c  

ii. p.posisi ← position of p. 

b. For each particle p do: 

i. If  (fitness(p.posisi) < 

fitness(p.pBest)): 

 p.pBest ← p.posisi 

ii. If (fitness(p.pBest) < fitness(gBest)): 

 gBest ← p.pBest 

 

After some iteration, gBest will get its optimal 

solution of clustering. The optimal solution is the 

solution that satisfies the objective function, in 

this case, is to minimize the quantization error of 

the cluster. The solution is a couple of pixel (the 

case of 2 clusters) that compels the segmentation 

falling into two colors. 

On the other hand, the parallel PSO algorithm 

uses the parallel property to generate the 

solutions. PSO naturally is an algorithm that 

inherently parallel not serial. This means that the 

process of one certain particle does not depend on 

other particle processes. One particle should not 

wait for other particles to finish their processes to 

finish its own.  

There are three kinds of parallel PSO 

implementation; they are naïve, asynchronous 

and full device implementation. Firstly, in naïve 

implementation pBest computation (concurrently 

among particles) is done in device but the gBest 

computation is in the host. It needs frequent 

copies of pBest from the device to the host so that 

the computation is not optimized. Secondly, 

asynchronous implementation is just like the 

naïve one unless it performs the kernel 

concurrently with the copying computation. 

Lastly, full device implementation that we did in 

our research needs all PSO functions are 

concurrently accomplished on the device.  The 

algorithm of this full device implementation is as 

follows: 

1. Initialize some particles; pBest; gBest and the 

speed of each particle as in ordinary PSO 

mode. 

2. For iteration = 1 to maximum iteration do: 

a. Update the speed and position of the 

particles concurrently on the device.  

b. Update pBest of all particles concurrently 

on the device. 

c. Set Idx with the index of particle which its 

gBest is minimum. 

d. Update gBest with pBest of particle with 

the index Idx. 

(Each particle carries out its computations 

independently in a single thread. This has 

removed the loop ‘for each particle’.) 

 

6. EXPERIMENTAL RESULTS 

Experiment is done using a PC with Intel Core 2 

Duo T6600 2.2 GHz as CPU, and NVIDIA 

GeForce 110M with 256MB of memory as GPU. 

In this experiment, we study the time processing 

of PSO when it runs in GPU compared to CPU, 

relative to number of particle. The experiment 

needs the sample image to be segmented. It is a 

color image with 160 x 120 pixels of dimension. 

Other parameters that are also needed will be the 

number of cluster and the maximum iteration, 

where we pick 2 and 60 respectively. 

 

 
Figure 2. The Interface of the Tester Prototype Displaying 

Sample Image 
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Figure 2 shows the sample image to be clustered. 

In this case, image is clustered into two clusters 

by doing PSO with 60 particles and 60 iterations. 

Similarly, the testing also applied for 20 and 100 

particles with the same number of cluster and 

iteration.  

 

 
Figure 3. The Interface of the Tester Prototype Displaying 

the Image Segmentation Result 

 

Next, figure 3 presents the cluster results. There 

are two segments in the image that fall in their 

two color clusters, red and blue respectively.  

In Addition, table 1, 2 and 3 display the testing 

results of both methods. 
 

 

Table 1. Test Result for Cluster=2; Epoch=60; p=20 

Method Fitness Time 

CPU         15.729            9.805  

Full Device GPU         15.642          18.982  

 

Table 2. Test Result for Cluster=2; Epoch=60; p=60 

Method Fitness Time 

CPU         15.616  27.8478 

Full Device GPU         15.613  23.6246 

 
Table 3. Test Result for Cluster=2; Epoch=60; p=100 

Method Fitness Time 

CPU         15,611          46.346  

Full Device GPU         15,614          27.363  

 

 

In the same notion of presenting results, the 

results can be viewed through graphics 

visualization as in figure 4 and 5. 

 

 
Figure 4. Time Consumption Relative to the Number of 

Particle with Cluster=2, Epoch=60. 

 

Figure 4 shows the processing time used by PSO 

for image segmentation in GPU and CPU, 

relative to the number of the particles p. PSO for 

image segmentation that run in GPU is generally 

faster than that run sequentially in CPU. It is 

about 1.7 times as fast as that in CPU for a big 

enough number of the particles (p=100). 

However, in the case of a small number of the 

particles, PSO for image segmentation in GPU 

run slower than that in CPU due to the overhead 

of the parallel processing such as memory copies 

from CPU to GPU. This overhead time becomes 

the major portion of the whole processing time in 

small p while in CPU mode this overhead time 

does not exist.  

In the case of big p, CPU mode is getting worse. 

The sequential process takes place and fills up the 

most time of computation. On the other hand, 

time process in GPU mode relatively remains 

constants at its portion of the overhead time. It 

implies that the overhead time is likely not 

affected by the number of the particles in parallel 

mode. It shows that the bigger the p number, the 

clearer that the parallel mode (in GPU) win the 

competition over the sequential one (in CPU 

only). 

. 

 
Figure 5. Fitness Value Relative to the Number of Particle 

with Cluster=2, Epoch=60. 

 

Lastly, figure 5 shows the quality of the 

clustering of PSO for image segmentation that 
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runs in CPU and GPU, relative to number of 

particle. In general, the quality of the two only 

differs a little. In p=20, the difference does not 

exceed 0.1 while in p=60, and p=100 the 

difference is relatively none. This means the 

objective function is as well achieved in parallel 

mode as in ordinary one.  

 

7. CODE IMPLEMENTATION 

This section will only list code from basic data 

structure, digital image capturing, and PSO GPU-

related codes. A data structure is needed to 

represent data digital, particle, and GBest. This 

data structure resides on host only. First, we need 

to represent digital image data; which is a pixel. 

The data structure of image data is simply an 

array of three integer since pixel is composed 

from three colors; Red, Green and Blue. 

Moreover, we also need to represent Particle and 

GBest. Particle contains as many positions, 

pBests and velocities as clusters whereas GBest 

as another important structure consisting 

centroids and quantization error values. Here are 

the data structures: 
 

struct Data 

{ 

    int info[DATA_DIM]; 

}; 

struct Particle 

{ 

    Data *position; 

    Data *pBest; 

    Data *velocity; 

}; 

struct GBest 

{ 

    short *gBestAssign; 

    Data *centroids; 

    int *arrCentroids; 

    float quantError; 

}; 

 

The Digital image data should be saved in the 

host by an assignment. Since we have only Data 

which represents pixel then we need to create 

array of Data to accommodate all pixels of the 

image. The image data capturing code is as 

follows: 

 
IplImage* input = NULL; 

input = 

cvLoadImage(file_name.toStdString().c_st

r(), -1); 

 

arr_image_ = new char[w * h * c]; 

flat_datas_ = new int[w * h * c]; 

datas_ = new Data[w * h]; 

 

for (int i = 0; i < w * h; i++) 

{ 

    Data d; 

 

    for(int j = 0; j < c; j++) 

    { 

      arr_image_[i*c+j] = (unsigned 

char)input->imageData[i*c+j]; 

      flat_datas_[i*c+j] = (unsigned 

char)input->imageData[i*c+j]; 

      d.info[j] = (unsigned char)input-

>imageData[i*c+j]; 

    } 

   datas_[i] = d; 

} 

 

Clustering functions are needed by both methods; 

PSO CPU or PSO GPU. The following text is the 

clustering function header in host and device 

respectively: 

  
GBest hostPsoClustering(Data *datas, int 

data_size, int channel,int 

particle_size, int cluster_size, int 

max_iter); 

 

extern "C" GBest devicePsoClustering 

(Data *datas, int *flatDatas, int 

data_size,int channel, int 

particle_size,int cluster_size, int 

max_iter); 

 

There one extra parameter in the device side 

function header that is flatDatas. This 

parameter is needed since the PSO GPU 

functions needs the array 1-dimension data 

variabel.  

Next, the PSO GPU-related functions are listed in 

the next code. 
 

cudaMalloc((void**)&devPositions, size); 

cudaMalloc((void**)&devVelocities, 

size); 

cudaMalloc((void**)&devPBests, size); 

cudaMalloc((void**)&devGBest, 

sizeof(int) * cluster_size * DATA_DIM); 

cudaMalloc((void**)&devPosAssign, 

assign_size); 

cudaMalloc((void**)&devPBestAssign, 

assign_size); 

cudaMalloc((void**)&devDatas, 

sizeof(int) * data_size * DATA_DIM); 
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Like the implementation of PSO CPU, PSO GPU 

also allocates memory for the operating vaiables 

by using cudaMalloc function. The difference of 

the memory allocation between both methods is 

that in PSO GPU, all variables changed to be an 

array of 1-dimension types. This fits to the so 

called ‘coalesced memory access’ in CUDA 

where accessing consecutive memory is faster 

than not. 

 
cudaMemcpy(devPositions, positions, 

size, cudaMemcpyHostToDevice); 

cudaMemcpy(devVelocities, velocities, 

size, cudaMemcpyHostToDevice); 

cudaMemcpy(devPBests, pBests, size, 

cudaMemcpyHostToDevice); 

cudaMemcpy(devGBest, gBest, sizeof(int) 

* cluster_size * DATA_DIM,  

cudaMemcpyHostToDevice); 

cudaMemcpy(devPosAssign, posAssign, 

assign_size, cudaMemcpyHostToDevice); 

cudaMemcpy(devPBestAssign, pBestAssign, 

assign_size,  cudaMemcpyHostToDevice); 

cudaMemcpy(devDatas, flatDatas, 

sizeof(int) * data_size * DATA_DIM,  

cudaMemcpyHostToDevice); 

 

After allocating memory on the device side, the 

memory needs to be initialized with the data 

comes from the host. The initialization process is 

done by using function cudaMemcpy that 

resembles memcpy in C. The parameters of 

cudaMemcpy encompass the pointer of the 

destination memory, the pointer of the source 

memory,  the amount (bytes) of the memory 

needs to be copied and flag that determines the 

direction of copying process whether from the 

device to the host or vice versa. 

 
__global__ void kernelUpdateGBest (int 

*gBest, int *pBests, int offset, int 

cluster_size) 

{ 

    int i = blockIdx.x * blockDim.x  

    + threadIdx.x; 

    if(i >= cluster_size * DATA_DIM) 

        return; 

    gBest[i] = pBests[offset + i]; 

} 

 

__global__ void 

kernelUpdateGBestAssign(short 

*gBestAssign, short *pBestAssign, int 

offset, int data_size) 

{ 

    int i = blockIdx.x * blockDim.x  

       + threadIdx.x; 

    if(i >= data_size) 

        return; 

    gBestAssign[i] =    

       pBestAssign[offset + i]; 

} 

 

The code listed above displays that every single 

thread is used to update one single index of 

gBest. This means that we need as many thread as 

gBest index in the array. The final gBest that 

found on the last iteration will eventually become 

the solution itself. Lastly, the value of final gBest 

will be copied from the device back onto the host 

for presentation purpose.  

 

8. CONCLUSION 

From the experimental results, we can say that 

parallel PSO for image segmentation is more 

efficient than that run in CPU. In the case of the 

big number of particle (p=100), the speed in 

parallel mode is up to around 1.7 times as fast as 

that in CPU. This number is growing as the 

number of particle p gets higher. While in the 

case of the small number of particle, the 

application of the parallel PSO does not make any 

good. In addition, the quality between the two has 

no significant difference. 

For future research, the speed of PSO for image 

segmentation can be further improved by using 

faster and newer model of GPU. Moreover, PSO 

for image segmentation can also be developed in 

OpenCL.  

 

9. REFERENCES 

 
1. Poli, R., Kennedy J., Blackwell T.: Particle Swarm 

Optimization: An Overview, Springer Science (2007). 

2. Tasgetiren F., Sevkli M., Liang Y.C., Geneyilmaz G.:  

Particle Swarm Optimization Algorithm for Single 

Machine Total Weighted Tardiness Problem, 2004 

IEEE Congress on Evolutionary Computation, Volume 

2 (2004). 

3. Weiss, R.M.:  GPU-Accelerated Data Mining with 

Swarm Intelligence, Department of Computer Science 

Macalaster College, PhD Thesis (2010). 

4. Mudjihartono P., Gunawan W.T., Ai T.J.:  University 

Timetabling Problems With Customizable Constraints 

Using Particle Swarm Optimization Method, 

International Conference on Soft Computing, 

Intelligent System and Information Technology 

(ICSIIT), Petra University, Indonesia. ISBN: 978-602-

97124-0-7 (2010) 

5. Chen, X., Li Y.: Neural Network Training Using 

Stochastic PSO, ICONIP'06 Proceedings of the 13th 

International Conference on Neural Information 

Processing- Volume Part II (2006). 

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 134



 

 

6. Zhou, Y., Tan Y.:  GPU-based Parallel Particle Swarm

Optimization, 2009 IEEE Congress on Evolutionary

Computation, Volume 2 (2009).

7. Kennedy, J., Eberhart, R.C.: Swarm Intelligence,

Morgan Kauffman (2001).

8. Merwe V. D., Engelbrecht A.P.:  Data Clustering using

Particle Swarm Optimization, Proceedings of IEEE

Congress on Evolutionary Computation (2003).

9. Kirk, D.B., Hwu W.W.: Programming Massively

Parallel Processors: A Hands-on Approach, Morgan

Kauffman (2010).

10. NVidia CUDA C Programming Guide Version 3.2,

NVidia, pp. 9 (2010). 

ISBN: 978-0-9853483-5-9 ©2013 SDIWC 135




