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UNSTRUCTURED NODAL DISCONTINUOUS GALERKIN
SIMULATION OF SEISMC WAVE PROPAGATION IN
HETEROGENEOUS SOLID MEDIA

Pranowo' and A. Gatot Bintoro®

We present a study of elastic wave propagation in heterogeneous media. The Discontinuous Galerkin Method is applied to solve the
clastodynamic equations which represent seismic wave propagation. The elastodynamic equations are transformed nto a stress-velocity
formulation. The Discontinuous Galerkin Method is a finite element that allows a discontinuity of the numerical solution at element
interface. Through a proper choice of the flux computation points, the method only requires communication between elements that have
common faces. . The domains are discretized into unstructured straight-sided triangles that allow enhanced flexibility when dealing with
complex geometries. The stress and velocity fields are expanded into a high-order polynomial spectral approximation over each 1.IJ'II‘IL1I]'I[
element. We use perfectly matched layer (PML) as absorbing boundary conditions. The utilization of high-order Jacobi polynomials as s
functions has been shown to be more efficient in reducing the numerical dispersion and numerical dissipation. Temporal discretization
utilized explicit low-storage Runge Kutta 4™ order method. We compare the numerical results to the available exact solutions and the
comparison shows a good agreement.

Keyword: seismic wave propagation i galerkin, perfectly matched layer.

1 Introduction

Simulation of seismic wave propagation played an important role in geophysics for imaging
the structure of the earths interior and understanding the geodynamic phenomena. The
elastodynamic equations has been used intensively to model the seismic wave propagation in
the earths. Because of analytical solutions of the equations are rare. the equations are solved
numerically. The chalenge is to develop high performance numerical methods that are capable
of solving the elastodynamic equations accurately and that can deal with complicated
computational domain (Komatitsch & Villote ,1998)

Continuous cfforts have been devoted for developing numerical methods. During the last two
decadcs, finite-difference time-domain (FDTD) methods have used extensively in modeling a
large variety seismic wave propagation problems (Virieux, 1986). FDTD methods directly
simulate the physical systems by making discrete approximation for the time and spatial
derivatives via Taylor expansion to turn the partial differential equations into a system of
algebraic equations.  This methods compute wavefields that are staggered in space and time
and can be interpreted as standard leapfrog method. The FDTD methods suffer from poor
numerical dispersion, which makes it difficult to run simulation for long time without
introducing excessive errors and they have only second order accuracy in time and space.
Some new schemes have also started with FDTD scheme but were extended for greater
accuracy rather than for geometry. High-order staggered finite-difference schemes, including
compact schemes, are developed to improve the FDTD’s accuracy. Pranowo et al. (2003)
developed multiresolution time-domain (MRTD) methods to simulate elastic wave fields. In
the MRTD methods, the ficld components are expanded by using scaling and wavelet
function then tested with using scaling and wavelet function through Galerkin’s procedure.
They show that computational effort can be reduced via wavelet thresholding. It is found that
the implementation of MRTD on the boundaries is not easy task.
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Finite volume methods (FVM), intensively used to solve fluid dynamics problems, have been
adopted for elastodynamic equations (Dormy & Tarantola, 1996). Le Veque (2004) calculated
the flux of the wavefields based Riemann solver succesfuly. Contrary to the FDTD methods,
the FV methods allow one to deal with complicated geometries. The FV methods have second
order accuracy and it is difficult to increase the order accuracy.

Finite element methods (FEM), based on variational formulation, can handle complicated
geometries and heterogencous material properties easily. The FE method exhibit poor
dispersion properties for simulating wave propagation. Komatistsch & Vilotte (1998) used
Spectral element methods (SEM) simulating seismic wave propagation. SEM are high-order
Finite element methods which solve the variational formulations of the equations using
spectral functions as basis functions. The Spectral element methods generate large global
matrix from the elemental matrix, the methods require too much computer memory and CPU
time. Recently, Discontinuous Galerkin (DG) methods (Pranowo et al.. 2004; Dumbser &
Kaser, 2006) have been developed to overcome the dispersion problems.

In this paper, elastodynamic equations, which described sesismic wave propagation, are
solved using DG method. High order Jacobi polynomials are used as basis functions. The
clastodynamic equations will be discretized using triangular mesh and explicit low-storage
Runge-Kutta 4™ method is used as time integration method.

2 Elastodynamic Equations

Our approach of treating seismic waves numerically is based on the theory elastodynamics.
We use the velocity-stress formulation as the governing equations:
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In which v_and v, are the components of the velocity vector, 7 . 7, and 7 _are the elements
of the stress tensor and (f,./,) is body force vector. The medium is isotropic and described

by the density p(x.y) and the Lame coefficients A(x.y) and u(x.y).

3 Discontinuous galerkin methods

The spatial derivatives are discretized by using a discontinuous galerkin method. The
simplified of Eq.(1) according to Galerkin’s procedure using the same basis function ¢ within
each clement is defined below (Hesthaven & Warburton, 2002; 2004; 2008):
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Here () represents the normal L inner product, the second term is flux vector and (rz"_,n_]_)
are normal vector. The mathematical manipulation of the flux vector is as below:
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In this problem, the numerical flux vector is calculated by using central flux.
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Here, we took the Kornwinder Dubiner function on straight sided triangle as the basis written
in equation 5 (see Figs. 1 and 2):
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where. P*” is orthogonal Jacobi polynomial

All straight sided triangles are the image of this triangle under the map:

DARHERET e

{v,.vyJ L Fre ¥y ) (_1 ,-1) (‘:I‘-1)

Figure 1. Figure 2.
Coordinate Transformation Seventh order Gauss Lobatto Quadrature Nodes




The vector q = (rlw T, T, V. v_‘,)’ is expanded using equation (5), we take expansion of
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where V, and N are Vandermonde matrix dan the order of Jacobi polynomial respectively.

The semi discrete Eq. (3) is integrated in time marching by using five stages of fourth order
2N-storage Runge-Kutta scheme as developed by Carpenter & Kennedy (1994). The final
equations are found as written in Egs. (10) and (11) and the 5-stage of 2N-storage Runge-
Kutta algorithm respectively.

dq _
~ = Hra)] (10)

dq,=Adq,  +diLlq,)
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where dr is the time step. The vectors A and B are the coefficients that will be used to
determine the propertics of the scheme. The maximum time step is (Hesthaven and
Warburton, 2001):

2h

where ¢ is primary wave velocity and h is the smallest edge length of the element.

4 PML absorbing boundary condition

The Simulation osf seismic waves by discontinuous galerkin methods in unbounded domains
requires a specific boundary condition of the necessarily truncated computational domain. In
theis paper we propose an absorbing boundary condition called perfectly matched layer
(PML). The Elastodynamic Equations (eq.1) are split with respect to spatial coordinates for
PML absorbing boundary conditions and onc dimensional damping functions (o,.c,) are

applied to the split wavefields.
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5 Numerical results and discussion

5.1 Exact solution

We consider a problem defined on the unit square (0,1)x(0,1) wih (v v ) 0 on the boundary
We choose the body force and exact solutions as (Li, 1996)
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Plain strain condition is assumed and the parameters are taken as £=1.0,v=0.3, p=1.0, ® =

7, time step = 0.01, numbers of element = 16 and polynomial order varies from N = 3
Comparisons with the exact solutions are shown in figure 3 for v,

v profile, very good
agreements are found. Figure 4 shows that trends of DG maximum errors almost constant in

time, the growth of error (dispersive & dissipation error) in DG method can be reduced by
using high-order basis
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Figure 3.
Histories of v, responses at the point (0.25,0.25)
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5.2 Simulation with free surface topography

The model we consider is two layered elastic half-space with prescribed topography. The
medium has a horizontal internal boundary that divides it into two layers. The upper layer is
characterized by a P-wave velocity of 2600 m.s!, an S-wave velocity of 1400 m.s™', and a
mass density of 2200 kg.m™. The lower layer elastic parameters are a P-wave velocity of
5500 m.s™!, an S-wave velocity of 3200 m.s™!, and a mass density of 2500 kg.m>. A strong
contrast both in velocity is hence modeled. inside the upper layer. The domain has width of
3200 m and average height of 2700 m. The line of rececivers goes from x = 1500 m to x =
2500 m at y = 2500 m. The source is gaussian function in space and dirac delta in time and
the position is (x,)) = (2000,1200). The time step is Ar=025msec. PML absorbing
boundaries are used on left, right and bottom edges and free stress is used on top edge of the
domain. The mesh of the domain, including PML, is composed of 6489 triangular eclements.
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Figure 5. Two layered heterogeneous elastic media




Figure 6 shows the snapshots of P—SI” wave propagation in two-layered media at
1=0.2,1=03,1=04,1=0.5=0.7,andr=0.8s . The entire wavefields are composed of direct
phases (P,S). reflected waves from internal boundary (PPr, PSr,SPr, SSr or the free surface
(PP,PS,. Mode conversions of wave reflected at the internal boundary as well as at the top

free surface are clearly visible. From figure 6c. 6d, 6e and 6f we can see no reflection on the
left, right and bottom cdges. The PML absorbed outgoing waves well.
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Figure 7 shows the numerical time response of P —SI” waves in heterogeneous medium
recorded at 51 receivers placed horizontally inside the medium.
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6 Conclusion

We have presented high-order discontinuous galerkin method on unstructured mesh for
simulation of seismic wave propagation in complex medium. We demonstrated that DG
method can handle irregular heterogeneous domain easily. Wave phenomena, such as: mode
conversion, transmission and reflection can be captured well. We found good qualitative
agreement with exact solution. Future work will focus on applying the method to more
realistic structures, for instance regions with fault zones.
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