PERANCANGAN STASIUN KERJA DENGAN MEMPERTIMBANGKAN ASPEK ANTROPOMETRI UNTUK REVITALISASI USAHA UPT RAGAM METAL YOGYAKARTA

TUGAS AKHIR

Diajukan untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Teknik Industri

JESSICA ASTRELLA 13 06 07444

PROGRAM STUDI TEKNIK INDUSTRI
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2017

HALAMAN PENGESAHAN

Tugas Akhir berjudul

PERANCANGAN STASIUN KERJA DENGAN MEMPERTIMBANGKAN ASPEK ANTROPOMETRI UNTUK REVITALISASI USAHA UPT RAGAM METAL YOGYAKARTA

yang disusun oleh Jessica Astrella 13 06 07444

dinyatakan telah memenuhi syarat pada tanggal 18 Desember 2017

Dosen Pembimbing 1,

Dosen Pembimbing 2,

B. Laksito Purnomo, S.T., M.Sc

D.M. Ratna Tungga Dewa, S.Si., M.Sc.

Tim Penguji,

Penguji 1,

B. Laksito Purnomo, S.T., M.Sc

Penguji 2,

Penguji 3,

Maria Chandra Dewi K., S.T., M.T.

Kristanto Agung Nugroho, S.T., M.Sc.

Yogyakarta, 18 Desember 2017 Universitas Atma Jaya Yogyakarta

Fakultas Teknologi Industri

Dekan,

Dr. A. Teguh Siswantoro, M.Sc.

PERNYATAAN ORIGINALITAS

Saya yang bertanda tangan di bawah ini:

Nama

: Jessica Astrella

NPM

: 13 06 07444

Dengan ini menyatakan bahwa tugas akhir saya dengan judul "Perancangan Stasiun Kerja dengan Mempertimbangkan Aspek Antropometri untuk Revitalisasi Usaha UPT Ragam Metal Yogyakarta" merupakan hasil penelitian saya pada Tahun Akademik 2017/2018 yang bersifat original dan tidak mengandung *plagiasi* dari karya manapun.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku termasuk untuk dicabut gelar Sarjana yang telah diberikan Universitas Atma Jaya Yogyakarta kepada saya.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Yogyakarta, 18 Desember 2017

Yang menyatakan,

Jessica Astrella

D1CAEF7264953

iii

"The Phoenix Must Burn to Emerge"

to those who believe in me

KATA PENGANTAR

Puji syukur kepada Tuhan Yesus Kristus karena berkat dan karunia-Nya sehingga penulis dapat menyelesaikan penulisan Tugas Akhir yang berjudul "Perancangan Stasiun Kerja dengan Mempertimbangkan Aspek Antropometri untuk Revitalisasi Usaha UPT Ragam Metal Yogyakarta". Penulisan Tugas Akhir ini dilakukan guna memenuhi persyaratan memperoleh gelar Sarjana Teknik pada Program Studi Teknik Industri, Fakultas Teknologi Industri, Universitas Atma Jaya Yogyakarta. Penulis mengucapkan terimakasih kepada:

- Bapak Dr. Teguh Siswantoro, M.Sc. selaku dekan Fakultas Teknologi Industri Universitas Atma Jaya Yogyakarta.
- 2. Bapak V. Ariyono, S.T, M.T. selaku Kepala Program Studi Teknik Industri Universitas Atma Jaya Yogyakarta.
- Bapak B. Laksito Purnomo, S.T., M.Sc. dan Ibu D.M. Ratna Tungga Dewa,
 S.Si., M.Sc. selaku Dosen Pembimbing 1 dan Dosen Pembimbing 2 tugas
 akhir yang telah membimbing penulisan Tugas Akhir dari awal hingga akhir.
- 4. Bapak Suparno dan semua pihak UPT Ragam Metal yang telah membantu dalam proses penelitian.
- 5. Teman-teman penelitian di UPT Ragam Metal untuk kerjasama dan bantuannya dalam menyelesaikan tugas akhir ini.

Penulis menyadari bahwa terdapat kekurangan dalam penulisan Tugas Akhir ini. Oleh karena itu, penulis mengharapkan kritik dan saran. Akhir kata, semoga penulisan tugas akhir ini bermanfaat bagi semua pihak.

Yogyakarta, 18 Desember 2017

Penulis

DAFTAR ISI

JUDUL	HAL
Halaman Judul	i
Halaman Pengesahan	ii
Pernyataan Originalitas	iii
Halaman Persembahan	iv
Kata Pengantar	V
Kata Pengantar Daftar Isi Daftar Tabel	vi
Daftar Tabel	viii
Daftar Gambar Daftar Lampiran	ix
Daftar Lampiran	х
Daftar Singkatan	xi
Intisari	xii
BAB 1 Pendahuluan	
1.1. Latar Belakang	1
1.2. Rumusan Masalah	3
1.3. Tujuan Penelitian	3
1.4. Batasan Masalah	3
BAB 2 Tinjauan Pustaka dan Dasar Teori	Л
2.1. Tinjauan Pustaka	4
2.2. Landasan Teori	6
BAB 3 Metodologi Penelitian	
3.1. Tahap Pendahuluan	21
3.2. Tahap Studi Literatur	21
3.3. Tahap Pengumpulan Data	21
3.4. Tahap Pengembangan Metode Perancangan Stasiun Kerja	22
3.5. Tahap Penerapan Perancangan Stasiun Kerja	23
3.6. Tahap Akhir Penelitian	23
BAB 4 Data	
4.1. Data	26

BAB 5 Pengembangan Metode Perancangan Stasiun Kerja	
5.1. Metode Perancangan Stasiun Kerja	34
5.2. Validasi Algoritma Perancangan Stasiun Kerja	38
BAB 6 Penerapan Metode Perancangan Stasiun Kerja pada UPT	Ragam
Metal	
6.1. Evaluasi Kondisi Awal UPT Ragam Metal	44
6.2. Pengumpulan dan Penyesuaian Data	44
6.3. Penerapan Metode Perancangan Stasiun Kerja	44
BAB 7 Pembahasan	
7.1. Pembahasan Algoritma Perancangan Stasiun Kerja	59
7.2. Pembahasan Penerapan Perancangan Stasiun Kerja	60
7.3. Pembahasan Area Kerja Normal	62
7.4. Pembahasan Area Kerja Maksimum	63
7.5. Rencana Implementasi	67
	7 1
BAB 8 Kesimpulan dan Saran	7.1
8.1. Kesimpulan	75
8.2. Saran	75
Daftar Pustaka	7 6

DAFTAR TABEL

Tabel 3.1	Pendekatan Sistematis Penentu Parameter Stasiun Kerja	22
Tabel 4.1.	Data Mesin UPT Ragam Metal	25
Tabel 4.2.	Data Material	26
Tabel 4.3.	Tabel Data Antropometri Pria Indonesia oleh Chuan dkk	27
Tabel 4.4.	Tabel Data Antropometri Wanita Indonesia oleh Chuan dkk	28
Tabel 4.5.	Tabel Data Antropometri Pria Indonesia oleh PEI	29
Tabel 4.6.	Tabel Data Antropometri Wanita Indonesia oleh PEI	31
Tabel 4.7.	Posisi Kerja tiap Mesin	32
Tabel 4.8.	Dimensi Maksimal Material di Tiap Mesin	33
Tabel 4.9.	Sudut dalam Area Kerja Normal	33
Tabel 7.1.	Hasil Perhitungan Dimensi dan Luas Stasiun Kerja	65
Tabel 7.2.	Aplikasi Penentuan Dimensi SK	69
Tabel 7.3.	Hasil Perhitungan SK Gerinda dengan Aplikasi Workreamath	70
Tabel 7.4.	Hasil Perhitungan SK Roll dengan Aplikasi Workreamath	71
Tabel 7.5	Hasil Perhitungan SK Potong plat/pipa dengan Aplikasi	72
	Workreamath	,
Tabel 7.6.	Hasil Perhitungan SK Bending Besar pada Operator Wanita	73
	dengan Aplikasi Workreamath	/1

DAFTAR GAMBAR

Gambar 2.1.	Layout Stasiun Kerja (Metode Lama)	7
Gambar 2.2.	Perancangan Stasiun Kerja	8
Gambar 2.3.	Area Normal dan Maksimal pada Bidang Horizontal untuk	10
	Operator Pria dan Wanita dengan Konsep Farley	
Gambar 2.4.	Area Kerja Normal pada Bidang Horizontal untuk Operator	11
	Pria dengan Konsep Squires	
Gambar 2.5.	Area Kerja Normal pada Bidang Horizontal	12
Gambar 2.6.	Dimensi Antropometri Chuan	16
Gambar 2.7.	Dimensi Antropometri PEI	18
Gambar 3.1.	Diagram Alir Metodologi Penelitian	24
Gambar 5.1.	Algoritma Perancangan Stasiun Kerja	37
Gambar 5.2.	Perancangan SK Tanggem untuk Operator Pria	39
Gambar 5.3.	Perancangan SK Gerinda untuk Operator Pria	40
Gambar 5.4.	Perancangan SK Tanggem untuk Operator Wanita	42
Gambar 5.5.	Perancangan SK Bending Besar untuk Operator Wanita	43
Gambar 6.1.	SK Roll	45
Gambar 6.2.	SK Roll Variasi Satu Lekukan	46
Gambar 6.3.	SK Roll Variasi Dua Lekukan	47
Gambar 6.4.	SK Press	48
Gambar 6.5.	SK Potong Plat	49
Gambar 6.6.	SK Potong Pipa	50
Gambar 6.7.	SK Las Karbit	51
Gambar 6.8.	SK Bending Besar	52
Gambar 6.9.	SK Bending Kecil	53
Gambar 6.10.	SK Punching	54
Gambar 6.11.	SK Bor Tangan	55
Gambar 6.12.	SK Bubut	56
Gambar 6.13	SK Gunting Plat	57
Gambar 6.14	SK Potong Plat dan Pipa	58
Gambar 7.1.	Layout UPT Ragam Metal 2017	62

DAFTAR LAMPIRAN

Lampiran 1: Observasi dan Hasil Wawancara	79
Lampiran 2: Mesin-mesin dan Rancangan Stasiun Kerja UPT Ragam Metal	86
Lampiran 3: Layout UPT Ragam Metal 2017	100
Lampiran 4: Perhitungan Axis y	102
in lumine	

Daftar Singkatan

UPT Unit Pelaksana Teknis

SK Stasiun Kerja

SPHC Steel Plate Hot Rolled Coiled **SPCC** Steel Plate Cold Rolled Coiled SOP Standard Operating Procedure

NWA Normal Working Area

NFRF Normal Front Range as per Farley **NSRF** Normal Side Range as per Farley **NFRS** Normal Front Range as per Squires

NSRS Normal Side Range as per Squires

MWA Maximum Working Area

PEI Perhimpunan Ergonomi Indonesia

deg degree (derajat) P_{mesin} Panjang mesin

Lebar mesin L_{mesin}

Luas dasar/Luas mesin A_0

Tinggi mesin t_m

Tinggi ayng direkomendasikan t_R

 $P_{\text{meja}} \\$ Panjang meja Lebar meja L_{meja}

 P_0 Panjang awal SK Lebar awal SK L_0 P_{mat} Panjang material L_{mat} Lebar material Diameter material D_{mat}

 P_{F} Panjang maksimum SK dengan konsep Farley Lebar maksimum SK dengan konsep Farley L_{F} Luas maksimum SK dengan konsep Farley A_{MF}

R Radius

INTISARI

Unit Pelaksana Teknis (UPT) Ragam Metal yang sudah cukup lama berhenti beroperasi memulai upaya untuk memanfaatkan kembali fasilitas-fasilitas yang ada pada tahun 2016. Revitalisasi usaha ini memerlukan perancangan stasiun kerja untuk mendukung proses produksi saat UPT Ragam Metal kembali beroperasi. Proses revitalisasi ini dimulai dengan riset pasar mengenai produk yang diminati calon konsumen, penentuan material dan perancangan proses produksi untuk produk usulan tersebut. Selain itu, UPT Ragam Metal masih memerlukan penataan stasiun kerja untuk memfasilitasi proses operasinya.

Penelitian ini bertujuan menentukan dan menerapkan langkah-langkah perancangan stasiun kerja yang mempertimbangkan aspek dimensi tubuh manusia, material dan mesin di UPT Ragam Metal. Pengembangan metode perancangan stasiun kerja ini menggunakan kaidah-kaidah antropometri dengan perhitungan yang sudah ada sebelumnya. Hasil pengembangan metode tersebut adalah algoritma perancangan stasiun kerja yang bisa diterapkan sesuai dengan kondisi UPT Ragam Metal atau usaha sejenis dengan populasi manusia yang sesuai.

Perancangan algoritma ini menghasilkan sebuah aplikasi perhitungan sederhana bernama Workreamath. Workreamath merupakan langkah implementasi dari algoritma perancangan stasiun kerja agar perhitungan dimensi dan luas area stasiun kerja dapat dilakukan dengan lebih mudah. Perancangan yang dilakukan untuk 16 mesin di UPT Ragam Metal baik menggunakan algoritma perancangan secara sistematis maupun dengan Workreamath menghasilkan perhitungan luas area kerja yang sama untuk tiap stasiun kerja mandirinya. Total ruang yang dibutuhkan untuk 16 rancangan ini adalah 828.344 cm².

Kata Kunci : Antropometri, perancangan metode, stasiun kerja, algoritma