REDESIGN OF TRADITIONAL SICKLE HANDLE USING VALUE ENGINEERING TECHNIQUE

(Case Study of Sickle Type in Yogyakarta)

THESIS

This is Submitted to Fulfill Prerequisite of Industrial Engineer of International S-1 Program

Written By:
ARYA WIJAYA
02 14 03200

INTERNATIONAL CLASS PROGRAM
INDUSTRIAL ENGINEERING DEPARTMENT
INDUSTRIAL TECHNOLOGY FACULTY
ATMA JAYA YOGYAKARTA UNIVERSITY
YOGYAKARTA
2006
APPROVAL

Thesis of International S-1 Program
Title: REDESIGN OF TRADITIONAL SICKLE HANDLE USING VALUE ENGINEERING TECHNIQUE
(Case Study of Sickle Type in Yogyakarta)

Written by: Arya Wijaya
(Student's Number: 121402200)

Has been Examined and Approved
Date: September 13, 2006

Adviser
Hadi Santono S.T., M.T
Co Adviser
L. Trian Dewi S.T., M.T.

Examiners:
Chairman,
Hadi Santono S.T., M.T.

Member
Ir. B. Kristyanto, M.Eng, PhD
Baju Bawono S.T., M.T.

Yogyakarta, September 13, 2006
Dean of Faculty of Industrial Technology
Mujiartono, S.T., M.T.
DEDICATION

"IT'S BETTER TO BE THE LEADER OF ANT
THAN SOLDIER OF ELEPHANT."

(Anonymous)

This Thesis is Presented Special for My Mother Birthday's
August 7, 2006

THIS THESIS IS DEDICATED TO:

♥ MY LOVELY PARENTS, PAPA AND MAMA
♥ MY SISTER, WIDYA AND ATIKA
♥ MY BEAUTY GIRL, DIAN
♥ ALL OF MY BEST FRIEND

iii
ACKNOWLEDGEMENTS

Thanks to the Buddha that always direct and guide me, so that this thesis can be compiled and finished in time.

This thesis is one of the prerequisite to finish the undergraduate study program in Industrial Engineering Department, Industrial Technology Faculty, Atma Jaya Yogyakarta University.

I am so grateful to many people who encouraged me to finish this thesis and who helped me along the way. On this opportunity, I would like to thanks:

1. Mr. Paulus Mudjibartono, S.T., M.T., as the Dean of Industrial Technology Faculty, Atma Jaya Yogyakarta University.
2. Mr. Parama Kartika Dewa SP, S.T., M.T., as the head of Industrial Engineering Department, Industrial Technology Faculty, Atma Jaya Yogyakarta University.
3. Mr. Hadisantono, S.T., M.T., as the adviser, who had spent his time to give inputs, guidance, correction in writing this thesis.
4. Miss Luciana Triani Dewi, S.T., M.T., as the co adviser, who had spent her time to give inputs, guidance and correction in writing this thesis.
5. To my parents who always support and encouraged me to compile this thesis.
6. To all of my family who had given me a lot of advise and encouraged me to finish this thesis.
7. To my beauty girl Dian Kurniasari, who support me to finish this thesis.
8. To my beauty girl parents Aunt Yenny and Uncle Agus who support me to finish this thesis.
9. To my friend at TIKI batch 2002: Yonatan, William, Andre, Richie, Cristian, Alvin, Ronny, Raka, Putri, Anita, Etta, Dilla, Erika, Penny, Wool-an, Clara, And all of my friends that I can’t listing their names.

I realize that this thesis still has a lot of imperfections, so any criticize and inputs are really expected. Eventually, I hope this thesis can be useful and can be developed in a further research. And this little research can contribute to the science and technology development.

Yogyakarta

The Writer
Arya Wijaya, 3200/ IIIE
4.5. The Result of Questionnaire 38
4.6. Production Data 42

CHAPTER 5 DATA ANALYSIS AND DISCUSSION 43
5.1. Data Analysis and Discussion From
Anthropometry Side of View 43
5.2. Design Analysis and Discussion 55

CHAPTER 6 CONCLUSION AND SUGGESTION 72
6.1. Conclusion 72
6.2. Suggestion 72

References 73

Appendices 75
List of Tables

1. Table 2.1. The Comparison This Research and Previous Research 8
2. Table 3.1. The Confidence level 18
3. Table 3.2. Constants Used to Estimate Population Portion 19
4. Table 4.1. Data of Rice Field Area 31
5. Table 4.2. Palm Anthropometry 32
6. Table 4.3. The Summary of Question No.1 39
7. Table 4.4. The Summary of Question No.2 39
8. Table 4.5. The Summary of Question No.3 40
9. Table 5.1. Mean and Standard Deviation 43
10. Table 5.2. The Summary of Uniformity Test 48
11. Table 5.3. The Result of Sufficiency Test 48
12. Table 5.4. Percentile Value 49
13. Table 5.5. Application of Anthropometry Dimension on the Handle 50
14. Table 5.6. Function and Dimension Value 52
15. Table 5.7. Weight Criteria 57
16. Table 5.8. Material Score for Each Criteria 57
17. Table 5.9. Weight Criteria for Chosen Material 58
18. Table 5.10. Weight of Cheap Material 60
19. Table 5.11. Weight of Light Weight Material 60
20. Table 5.12. Weight of Strong Material 60
21. Table 5.13. Weight of Durability 61
22. Table 5.14. Weight of Ease To Be Formed 61
23. Table 5.15. Weight of Not Easy To Be Slippery 61
24. Table 5.16. Decision Table 62
25. Table 5.9. Weight of Material Cost 45
List of Figures

1. Figure 1.1. Working Position....................2
2. Figure 1.2. Flow Diagram of The Research......6
3. Figure 3.1. Various Postures of Hand...........21
4. Figure 4.1. Sickle Type 1.....................27
5. Figure 4.2. Sickle Type 2.....................28
6. Figure 4.3. Sickle Type 3.....................29
7. Figure 4.4. Sickle Type 4.....................30
8. Figure 4.5. Anthropometry Data Used...........30
9. Figure 5.1. Diagram of Uniformity Test for Later..44
10. Figure 5.2. Diagram of Uniformity Test for WPT..45
11. Figure 5.3. Diagram of Uniformity Test for WR..45
12. Figure 5.4. Diagram of Uniformity Test for WE..46
13. Figure 5.5. Diagram of Uniformity Test for WM..46
14. Figure 5.6. Diagram of Uniformity Test for WR..47
15. Figure 5.7. Diagram of Uniformity Test for WL..47
16. Figure 5.8. Operation Process Chart............64
17. Figure 5.9. Prototype Model A................66
18. Figure 5.10. Prototype Model B................66
19. Figure 5.11. Prototype Model C................67
20. Figure 5.12. Wrist Posture Prototype Model A....67
21. Figure 5.13. Wrist Posture Prototype Model B....68
22. Figure 5.14. Wrist Posture Prototype Model C....68
23. Figure 5.15. Wrist Posture Using Conventional Sickle69
24. Figure 5.16. X-Ray Photo For Conventional Sickle Handle69
25. Figure 5.17. Wrist Posture Using New Design
 Of Handle70
26. Figure 5.18. The X-Ray Photo For Redesign
 Sickle Handle71
List of Formula

1. Formula 3.1. Interval Estimation 13
2. Formula 3.2. Standard Error 13
3. Formula 3.3. Mean 14
5. Formula 3.5. Standard Deviation, N > 30 14
6. Formula 3.6. Calculating the range 15
7. Formula 3.7. Calculating class interval 15
9. Formula 3.9. z_a 15
10. Formula 3.10. z_1 15
11. Formula 3.11. Area 15
12. Formula 3.12. e_1 15
15. Formula 3.15. Calculating Mean from The Sub Group of Mean 17
16. Formula 3.16. Calculating Standard Deviation From The Distribution of Mean Sub Group 17
17. Formula 3.17. Lower Control Limit 17
18. Formula 3.18. Upper Control Limit 17
20. Formula 3.20. Percentile 19
List of Appendices

1. Appendix 1. Result of Data Normality Test.. 75
2. Appendix 2. Questionnaire Form............. 84
4. Appendix 4. Redesign Handle Drawing........ 94
ABSTRACT

Sickle is the agriculture traditional tools which made from hardness steel that usually used to cut grass, twig, clump, etc. In Yogyakarta many farmers still use sickle to cut the grass manually. This conventional sickle is made by small industry. The weakness of the conventional sickle is on the form and the size of handle. The form and the size of handle is different each other, because the form and the size of handle is measured based on hand of blacksmith. During the survey was found the problem on the existing design of sickle handle. The conventional sickle handle tends to make deflection on the user hand. After do some analyses is need to be developed the new design of sickle handle.

The result of this research is a new design of sickle handle which can reduce or eliminate the deflection on hand. The dimension of sickle handle is adjusted based on the anthropometry data which are measured from the farmer. So the new design of sickle handle can make the farmer work more comfortable.