ERGONOMICS APPROACHES ON QUALITY CONTROL OF NONCONFORMING PRODUCT
(Case Study at PT. Hitachi Construction Machinery Indonesia)

FINAL REPORT

This is Submitted to Fulfilled Prerequisite of Industrial Engineer of International 3-1 Program

Written by
ROBERTO CANIS HASCARIO
01 14 02932

INTERNATIONAL CLASS IN INDUSTRIAL ENGINEERING
INDUSTRIAL ENGINEERING DEPARTMENT
FACULTY OF INDUSTRIAL TECHNOLOGY
ATMA JAYA YOGYAKARTA UNIVERSITY
YOGYAKARTA
2006
APPROVAL

Final Report of International S-l Program
Title:

ERGONOMIC APPROACHES ON QUALITY CONTROL OF NONCONFORMING PRODUCT
(Case Study at PT. Hitachi Construction Machinery Indonesia)

Written by:
ROBERTO GWIS NARCARIYO
(Student's Number: 01 14 52032)

Has been Examined and Approved
date: January 20, 2005

Adviser,

L. TRIANI DEWI, S.T., M.T.

Co Adviser,

D.M. RATNA T.B., S.Si, M.T.

Examiners:
Chairman,

L. TRIANI DEWI, S.T., M.T.

Member,

IR. B. KRISTYANTO, M.Eng, Ph.D

Member,

JOSEF H.N., S.T., M.T.

Yogyakarta, January 20, 2006
Dean of Faculty of Industrial Technology
Jaya Yogyakarta University

[Signature]

Muddy Indra Purwanso, M.Sc
This Final Project is dedicated to God for all the wisdom He have Taught me and above all the love and Acer he have provide until this Day,

To MY Father In Heaven.
BeLOVED Mother and Brother
Who encouraged Me during all of my year and above all their countless love, and Finally to all my friends.

I know the plans I have for you," declares the Lord, "plans to prosper you and not to harm you, plans to give you hope and a future."
- Jeremiah 29:11

Now faith is being sure of what you hope for and certain of what you do not see.
- Hebrews 11:1
ACKNOWLEDGEMENTS

Thanks to God that has direct my paths so that this final report can be compiled.

This final report is one of the prerequisite to finish the undergraduate study program in Industrial Engineering Department, Industrial Technology Faculty, Atma Jaya Yogyakarta University.

I am so grateful to many people who encouraged me to finish this final report and who helped me along the way. On this opportunity, I would like to thanks:

1. Mr Ign. Lukdy Indrapurnama, S.T., M.Sc, as the Dean of Industrial Technology Faculty, Atmajaya Yogyakarta University.

2. Mr Baju Bawono, S.T., M.T., as the Head of Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.

3. Miss Luciana Triani Dewi, S.T., M.T., as the first adviser, who had spent his time to give guidance, direction, inputs and correction in writing this final report.

4. Mrs. DM. Ratna Tungga Dewa S.Si., M.T., as the second adviser, who had spent her time to give inputs, guidance and correction in writing this final report.

5. To Mr Michele Tana (Quality Assurance Manager of PT. HCMI), Mr Sutrisno, and all the Quality
Assurance staff thank you for the help during the research.

6. To my father in heaven, my mother and brother that always support and encouraged me to compile this final report.

7. To all of my family, My uncle Mr.Isa, aunt Tisni, Rendy, Wendy, Dendy, and ngentaxs mudika boy’s, Anton, Dhana, Mia, Nungki, Barz, Siaca, Rini who had give me a lot of advise and encouraged me to finish this final report.

8. To my friends, Renee, Lai_far far away, Rice, Amanda_way, Yunks-Q, Anton_8becne, Ari, and all of my friends that I can’t listing their names.

9. To my best friend Anton XL, I never forget you thank you for being my best friend.

The writer realize that this final report still has a lot of imperfections, so any criticize and inputs are really expected. Eventually, the analyst hopes that this final report can be useful and can be developed in a further research.

Yogyakarta January 10, 2006

The Writer

Roberto Ganis Hascariyo / IIE 02932
TABLE OF CONTENTS

TITLE ........................................ 1
APPROVAL .................................... ii
DEDICATION .................................. iii
ACKNOWLEDGMENTS ............................ iv
TABLE OF CONTENTS .......................... vi
LIST OF TABLES ................................ xii
LIST OF FIGURES .............................. xiv
LIST OF APPENDIX ............................ xxv
ABSTRACT ................................... xxxvii

CHAPTER 1 INTRODUCTION ..................... 1
  1.1. Problem Background .................... 1
  1.2. Problem Statements .................... 2
  1.3. Objective ................................ 2
  1.4. Limitation ............................. 2
  1.5. Research Methodology ................. 5
  1.6. Final Thesis Outlines ................. 10
  1.7. Research Methodology Flow Chart ...... 11

CHAPTER 2 STATE OF THE ART ................. 13

CHAPTER 3 BASIC OF THEORY ................. 17
  3.1. Machining Process .................... 17
    3.1.1. Reaming Process .................. 17
    3.1.2. Boring Process ................... 17
    3.1.3. Cutting Speed .................... 18
3.1.4. Depth Of Cut ...................................... 18
3.1.5. Feed ............................................. 18
3.1.6. Cutting Fluid ................................. 19
3.1.7. Insert Failure ............................... 19
3.2. Quality Regard To The Expert .......... 19
3.2.1. Nonconformity And Nonconforming
       Unit ............................................. 20
3.2.2 Specification .................................. 20
3.2.3. Statistical Process Control .......... 20
3.2.4. Control Chart Development
       Step ............................................. 21
3.2.5. Out Of Control Data
       Classification ............................... 22
3.2.6. Control Chart Pattern .................... 22
3.2.7 Cause Effect Diagram ..................... 27
3.3. Ergonomic .................................. 28
3.3.1. Biomechanics ............................... 29
3.3.2. Basic Concept Of Biomechanics
       Analysis ...................................... 29
3.3.3. Equation Of Equilibrium ................. 30
3.3.4. Free Body Diagram ......................... 31
3.3.5. Basic Concept Of Biomechanics
       Analytical Models ......................... 31
3.3.6. Work ........................................... 35
3.4. Kind Of Failure Modes Caused By
     Loading On Human body Segment
     By McGill (1997) ............................ 36
3.5. Cumulative Trauma Disorder ............... 37
3.5.1. Forms of Cumulative Trauma
   Disorder by Pulat (1992) ................ 40
3.5.2. Back Bones Pain And Injury (Spinal
       Injury) ............................... 40
3.5.3. Pain Intensity level, Contraction
       Time And Loading Correlation. ........ 42
3.6.  Posture Analysis .......................... 46
3.7.  Muscular Strength And Muscular
       Endurance .............................. 47
3.8.  Work Rest Cycles ......................... 50
3.9.  Static Strength Measurement ............ 51
3.9.1. Effect Of Posture On Strength ........ 51
3.9.2. Correlation Among The Activities Load
       On Each Segment Of Body To The Other
       Segment Of Body ....................... 52
3.10. Dynamic Strength Measurement .......... 53
3.10.1. Dynamics Experiment Exploration
       Referenced To The Static Measurement
       That Had Been Develop ................ 55
3.10.2. Factors Affecting Strength .......... 57
3.11. Metabolic Factors In Muscle Fatigue ... 58
3.12. Uniformity And Sufficient Test ........ 59

CHAPTER 4 COMPANY AND DATA PROFILE ................. 61
4.1.  Sort Historical Of Company .............. 61
4.2.  Product And Machining Process Of
       Boom XZ - 30 ........................... 62
4.2.1. Boom ZX-30 Product .................... 62
4.2.2. Machining process of Boom XZ - 30 .... 63
4.2.3. CNC Machining Facilities and Jig Of
Boom ZX - 30 .................................. 64
4.3. Human Aspect And Working Hour Of
Machining Process .............................. 66
4.3.1. Machining Process Activities .......... 66
4.3.2. Operator, Machining Time And Working
Hour ............................................. 68
4.3.3. Anthropometry Data ...................... 70
4.3.4. Medical History Data .................... 72
4.3.5. Human and Working Space Limitation Of
Jig Boom ZX-30 .................................. 73
4.4. Statistical Process Control Data ......... 77
4.5. Potential Defect Analysis ................... 77
4.6. Chart And R Chart Data Processing ...... 78
4.6.1. Control Limit Development Step ........ 78
4.7. Load Force Simulation On The Process
Of Tightening And Loosing
Screw Activities ............................... 79
4.7.1. Dimensional Of Device and Screw ....... 79
4.7.2. Calculation On Activities Force On
Activities D1 and D2 .......................... 83
   a. Number Of Sub Group .................. 83
   b. Subgroup Average Force Calculation. 83
   c. Sub Group Average ..................... 83
   d. Deviation Standard Force
      Calculation .............................. 84
   e. Deviation Standard Force From
      Distribution Average Of Subgroup
      Calculation .............................. 84
f. Upper Control Limit And Below
   Control Limit For Uniformity
   Test ........................................ 85
   g. Sufficient Data Test .................. 85
   h. Force Average Calculation .......... 86

4.7.3. Calculation On Activities Force
       On Activities A and C .................. 86
   a. Number Of Sub Group .................. 86
   b. Subgroup Average Force Calculation. 86
   c. Sub Group Average .................... 86
   d. Deviation Standard Force
       Calculation ........................... 87
   e. Deviation Standard Force From
       Distribution Average Of Subgroup
       Calculation ............................ 87

f. Upper Control Limit And Below
   Control Limit For Uniformity
   Test ........................................ 88
   g. Sufficient Data Test .................. 88
   h. Force Average Calculation .......... 89

4.7.4. Load Force Assumption on Climbing
       Up and Down The Jig activities ........ 89

4.8. Resting Time Calculation ............ 95

4.9. Posture Analysis Related To Over
     Flexion ................................. 95

4.9.1. Over Flexion Data Reference ....... 95
CHAPTER 5 DATA ANALYSIS AND DISCUSSION ................. 98

5.1. Quality Aspect Analysis .................. 98
5.1.1. Potential Nonconforming Analysis .... 98
5.1.2. Best Performance Analysis .......... 101
5.1.3. X Chart And R Chart Analysis .......... 104
5.1.4. Cause Effect Ishikawa Analysis ....... 115
5.2. Ergonomic Aspect Analysis .............. 118
5.2.1. Marking Position, Transitions
       Position Marking, And
       Activities Code .................. 119
5.2.2. Biomechanics Analysis ............... 147
5.2.3. Biomechanical Graph ................ 149
5.2.4. Posture Analysis Related To Over
       Flexion .......................... 172
5.2.5. Work Expenditure Calculation ....... 179
5.2.6. Resting Time ...................... 190
5.2.7. Correlation Analysis On Quality
       Aspect And Biomechanics Aspect
       (Ergonomics) .................. 191
5.2.8. Collaboration Analysis ............. 192

CHAPTER 6 CONCLUSION AND RECOMMENDATION ............ 201

6.1. Conclusion .......................... 201
6.2. Recommendation ....................... 203

REFERENCES .................................. 205

APPENDICES .................................. 207
| Table 2.1 | Differences of previous research with present research | 15 |
| Table 3.1 | Range of joint mobility values (adapted from Chaffin et al. [1999]) | 47 |
| Table 4.1 | Comparison among the members of Boom ZX-30 product machining operator of PT.KCMI. | 69 |
| Table 4.2 | The nonconforming sample data of frequency possible occurred on the problem | 77 |
| Table 4.3 | Subgroup average force calculation on Activities code d1 and d2 | 83 |
| Table 4.4 | Deviation standard force calculation on Activities code d1 and d2 | 84 |
| Table 4.5 | Subgroup average force calculation on Activities code A and C | 86 |
| Table 4.6 | Standard Deviation Of Force Calculation on Activities code A and C | 87 |
| Table 4.7 | Anthropometric Modelling Data. Adapted from Philips (2009) | 89 |
| Table 4.8 | Result of force on ground (RG), Py and Force of hip muscles Fm regard to the displacement (h) of each position of activities code of 15a 15b | 94 |
Table 4.9. Range of joint mobility values, corresponding to postures from Barter, Emanuel and Truett from references Chaffin et al (1999) ..........96
Table 4.10. Example of activities code 14b body segment joint rotation summary on Mannequin Pro Simulation ...............96
Table 5.1. Type of product nonconforming frequency that may possible happened to product ....99
Table 5.2. Resume of best performance analysis .....102
Table 5.3. Out of control analysis result on X chart. .........................105
Table 5.4. SPC result calculation on R chart and out of control analysis. .....................106
Table 5.5. Load result on each of human body segment on left and right side ..........156
Table 5.6. Grade of physical work based on energy expenditure level (on adult male) Taken from American Industrial Hygiene Association, 1971 .............189
Table 5.7. Collaboration analysis on their conclusion and fact on time line ......................194
LIST OF FIGURES

Figure 1.1. Research Methodology Flow Chart ........ 11
Figure 3.1. Change or jump in level (levelling or average) pattern (adapted from Besterfield (1979) ......................... 23
Figure 3.2. Trend or steady change in level pattern (adapted from Besterfield (1979) .......................... 24
Figure 3.3. Recurring Cycles pattern (adapted from Besterfield (1979) ......................... 25
Figure 3.4. Two Universes pattern (adapted from Besterfield (1979) ......................... 27
Figure 3.5. a. Approximate model of the shoulder and arm. b. Free Body diagram of the shoulder and arm .......................... 32
Figure 3.6. a. Approximate model of the elbow and forearm. b. Free Body diagram of the elbow and forearm ...................... 33
Figure 3.7. a. Approximate model of the Knee and Foreleg. b. Free Body diagram of the Knee and Foreleg .......................... 34
Figure 3.8. a. Person climbing a tall step. b. Alternate method for person climbing a tall step ...................... 35
Figure 3.9. Single overexertion event and Repeated sub maximal exertion (adapted from Chaffin et al. (1999) ...................... 37
Figure 3.10. Cumulative trauma disorder (CTD) chronic limitations result when the tendon and synovia are involved (adapted from Chaffin et al. (1999)) .................. 38

Figure 3.11. Force that required to damage low back bone on age factors (adapted from Nurmianto (2000)) ......................... 41

Figure 3.12. Mean time of appearances of various intensities of MVC on pain intensity (adapted from Chaffin et al. (1999)) ........... 43

Figure 3.13. Sequences of event producing muscle strain pain (adapted from Chaffin et al. (1999)) ......................... 44

Figure 3.14. Posture used for measurement of baseline values for young, health males (adapted from Chaffin et al. (1999)) ................. 46

Figure 3.15. Types of strength involved in static and dynamic tasks. (adapted from Chaffin et al. (1999)) ......................... 49

Figure 3.16. Strength on over flexion regard to the Moment of joint (adapted from Chaffin et al. (1999)) ......................... 52

Figure 3.17. The combination of some body segment to fulfilled the such full range of activities ........................................ 53

Figure 3.18. The relationship among dynamics aspect analysis (adapted from Chaffin et al. (1999)) .................................. 55

xv
Figure 3.19. The energy exchange in muscles (adapted from Pulat (1992)) ............... 59

Figure 4.1. a. Part description of Boom ZX-30 product, b. Hole area of Boom ZX-30 product, c. Example machining process description or hole area D .................. 62

Figure 4.2. a. Roughing cutting toll, b. Reaming cutting tool ....................... 63

Figure 4.3. a. Toshiba CNC machine facilities (front right side view), b. Dimensional of Jig facilities ....................... 64

Figure 4.4. a. Toshiba CNC machine facilities (front left side view), b. Dimensional of Jig facilities ....................... 65

Figure 4.5. Anthropometry data of South China (Mannequin pro 7 default data) .......... 71

Figure 4.6. Medical history of operator (Mr.Sutrisno) pain based the three days observations .................. 72

Figure 4.7. Side view of the interface with object on the 1st situation .................. 73

Figure 4.8. Top view of the interface with object on the 1st situation .................. 74

Figure 4.9. Side view of the interface with object on the 2nd situation ................. 74

Figure 4.10. Side view of the interface with object on the 3rd situation ............... 75

Figure 4.11. Top view of the interface with object on the 3rd situation ............... 75

xvi
Figure 4.12. Side view of the interface with object on the 4th situation .................. 76
Figure 4.13. Top view of the interface with object on the 4th situation .................. 76
Figure 4.14. Dimensional description of simulator device ......................... 79
Figure 4.15. a. Dimensional of cranks part of simulator device, b. Threads profiles on cranks device (Square), c. Dimensional details of threads on cranks device .......... 80
Figure 4.16. Side view of the human posture on the process tightening cranks ...... 81
Figure 4.17. Top side view on the process tightening cranks .......................... 81
Figure 4.18. Force load measurement on the process tightening and loosing cranks in 45° before death locking position .......... 82
Figure 4.19. Force load measurement on tightening and loosing on cranks (with dynamometer) on the death locking position .......... 82
Figure 4.20. a. Human model approximation of activities code 15a and 15b, B. Human free body diagram of activities code 15b ................. 90
Figure 5.1. Cutting speed (mm/min) graph on whole process .......................... 103
Figure 5.2. Rpm setting on whole process .................................. 103
Figure 5.3. Statistical process control analysis on X Chart. ......................... 111
Figure 5.4. Statistical process control analysis on R Chart. ......................... 111
Figure 5.5. I. Description of cutting failure, II. aggressive tooling .................. 113
Figure 5.6. a. Process description of unfresh cutting tool. b. Process description of fresh tooling .......................... 114
Figure 5.7. Plot result graph ........................................ 114
Figure 5.8. Ishikawa, Cause and Effect graph from nonconforming problem on Boom hole machining process ......................... 116
Figure 5.9. Marking position on activities of machining process on top side view ......................... 120
Figure 5.10. Marking position on activities of machining process on left side view ......................... 121
Figure 5.11. Description of human modelling on marking and transition position marking application. ......................... 122
Figure 5.12. Example of human posture on climbing up the jig activities. ......................... 124
Figure 5.13. Operator’s human modelling in climbing the jig activities. Activities Code of 15a on marking position of 13a. .... 127
Figure 5.14. Operator’s human modelling in climbing the jig activities. Activities Code of 13b (transition position marking) on marking position of 4. ..................128

Figure 5.15. Operator’s human modelling in standing on the coolant irrigation activities. Activities Code of 29b on marking position of 4. .........................129

Figure 5.16. Operator’s human modelling in climbing to the next level on jig activities. Activities Code of 17a on marking position of 4. ..........................130

Figure 5.17. Operator’s human modelling in climbing the jig activities. Activities Code of 17b (transition position marking) on marking position of 5a. ......................131

Figure 5.18. Operator’s human modelling in tightening 1st top screw. Activities Code of 21dl (transition position marking) and 21a on marking position of 5a ......132

Figure 5.19. Operator’s human modelling in tightening 2nd top screw. Activities Code of 24dl (transition position marking) and 24a on marking position of 6a. ..........133

Figure 5.20. Operator’s human modelling in climbing up the jig. Activities Code of 14a on marking position of 6. ............134

xix
Figure 5.21. Operator’s human modelling in climbing up to next level of the jig. Activities Code of 14b (transition position marking) on marking position of 6 ...... 135

Figure 5.22. Operator’s human modelling in tightening 3rd top screw. Activities Code of 13a (transition position marking) and 13d1 on marking position of 7 ...... 136

Figure 5.23. Operator’s human modelling climbing down to lower level of the jig. Activities Code of 4b (transition position marking) and 14a on marking position of 6 ...... 137

Figure 5.24. Operator’s human modelling in climbing down to lower level of the jig. Activities Code of 17b (transition position marking) and 17a on marking position of 4 .......... 138

Figure 5.25. Operator’s human modelling in climbing down to lower level of the jig. Activities Code of 15b (transition position marking) on marking position of 13a. ..................... 139

Figure 5.26. Operator’s human modelling in climbing down to lower level of the jig. Activities Code of 15a on marking position of 13a ..................... 140
Figure 5.27. Operator’s human modelling in tightening 4th top screw. Activities Code of 25d1 (transition position marking) and 25a on marking position of 3 ................ 141
Figure 5.28. Element of work at tightening and loosing screw activities and their assumption ..................... 144
Figure 5.29. Activities element of loosing screw motion. a. Figure of D2 activities element, b. figure of C activities element ......................... 146
Figure 5.30. Activities element of tightening screw a. Figure of A activities element, b. Figure of D1 activities element ...... 146
Figure 5.31. Input of Anthropometric data .............. 150
Figure 5.32. Example input amount of force load and direction on human model in activities code 29C .......... 151
Figure 5.33. Activities code 29c on human model and direction of force load regard on human segment. ..................... 151
Figure 5.34. Example Result of Biomechanics analysis on activities code 29C that generate to biomechanical graph ......................... 152
Figure 5.35. Step of develop the Biomechanical graph ........................................ 153
Figure 5.36. Figure Activities on climbing up and down the jig. Uncomforted dimensional of jig give high possibilities to operator to get injured ............... 157

Figure 5.37. a and b example of tightening and loosing screw, c and d example of climbing up and down the jig. .............. 158

Figure 5.38. The upper body part biomechanical on OPC 1 until OPC 4 ......................... 159

Figure 5.39. Description of spinal motion segment failure due to either a single overexertion event (top) frequent exertion and fatigue failure (bottom), as adapted from McGill (1997) ............ 161

Figure 5.40. Biomechanical Graph of lower body part on OPC 3 until 6. ......................... 163

Figure 5.41. Activities code of 21d2 (a figure), 34d2 (b figure), and 13d2 (c figure) .............. 164

Figure 5.42. Lower body part on Biomechanical graph of activities on climbing up and down jig (on circle) ...................... 166

Figure 5.43. Upper body part on Biomechanical graph of activities inspection and cleaning on product (quality control) .......... 167

Figure 5.44. Biomechanics graph of lower body part on OPC 13 to 27............................ 168

Figure 5.45. Biomechanical graph of lower body part on OPC 1 until OPC 5 ..................... 169
Figure 5.46. Lower body part biomechanical graph result on inspection (OPC 7 until 19) ... 170
Figure 5.47. Lower body part biomechanical graph result on inspection activities on OPC 19 until 28 ....................... 171
Figure 5.48. Correlation between exertions on over flexion condition, fatigue, pain, rest time on work, repeatedly work, and cumulative trauma (by Edward, Chaffin, Caldwell and Smith) .................. 174
Figure 5.49. Over flexion limit graph (in degree) and Mannequin figure that describe the over flexion posture .................. 175
Figure 5.50. Over flexion limit graph (in degree) and Mannequin figure that describe the over flexion posture .................. 176
Figure 5.51. Over flexion limit graph (in degree) and Mannequin figure that describe the over flexion posture .................. 177
Figure 5.52. Over flexion limit graph (in degree) and Mannequin figure that describe the over flexion posture .................. 178
Figure 5.53. Motion simulation of climb upper an lowering jig at example of activities code 15a (blue model), 15b (red model), 29b (green model) and 17a (yellow model) .................. 181
Figure 5.54. Assumption application for Energy Expenditure Calculation on activities element in tightening and loosing activities .......................... 184

Figure 5.55. Plot result graph and SPC identification result on 1st and 2nd ....................... 196

Figure 5.56. The general characteristic conclusion of overall analysis ....................... 199
LIST OF APPENDIX

APPENDIX A BOOM ZX-30 PROFILE
- Flow Process of Boom Product.
- Dimension table and specification from Inspection Sheet on Boom ZX-30 product.
- Part Process and Route Card of Boom ZX-30.
- Technical Drawing of Plate hole B, C, D.

APPENDIX B MACHINING FACILITIES AND INSPECTION PROFILE
- Reaming and Roughing for boring cutting tools on machining process.
- Specification of Toshiba CNC Machine.
- Measurement Unit in Quality Control.
- PT.HMI Technical Drawing of Screw Crank.

APPENDIX C PT.HMI'S Problem Identification Document
- Vibration Measurement result of Machining Facilities of PT HMI.
- Root Cause Identification of Nonconformity on hole of Boom ZX-30 by PT.HMI.

APPENDIX D QUALITY CONTROL ANALYSIS
- Factors For Constructing Variables Control Charts.
- Quality Control Data on B, C, D Hole 40 mm of diameter Boom ZX-30.
- Analysis Result of Best Performance of Machining Process.
APPENDIX E ERGONOMIC ANALYSIS

- Biomechanical Assumption Calculation Result on Climbing Up down Jig on Activities Code 14a, 14b, 15a, 15b, 17a, 17b, Mannequin Pro 7
- Biomechanics Over Flexion Indicator
- Result of Work Load on Each Body Segment
- Actual Timing on Each Activities Code
- Energy Expenditure Calculation.

APPENDIX F MANNEQUIN PRO 7 SIMULATION

- Figure of Mannequin Pro 7 Simulation on Each Activities Code.

APPENDIX ON POCKET:

- Over flexion data analysis on Each Body Part
- Force Load on Each of Lower Body Segment & Back in 1 Machining Process
- Force Load on Each of Upper Body Segment & Back in 1 Machining Process
- Data Plot Result Chart
- Operation Process Chart.
ABSTRACT

This study takes place in the manufacturing company in PT. Hitachi Construction Machinery Indonesia by the object of study is un conformity of 40 mm diameter of hole on ZX-30 Boom Product of Excavator in machining process. The objectives of this study are to analysing quality control aspect and human aspect on nonconformity problem, analysing human posture based on human capability and limitation (effect to human disorder and injured) and evaluating the relationship and potential causes of Quality control and Ergonomic that influenced on existing nonconformity problem. Quality control aspect will bring the assessment of nonconformity cause problem identification. By the Statistical process control on X and R chart that will focus on process stability analysis to reach specification on result. On the other hand human aspect will bring human working analysis assessment that based on human capability and limitation. Biomechanics analysis with mannequin pro software will discuss effect of working load and human body limitation to human disorder and injured.

Conclusions of this study are Energy expenditure analysis result very high total work load (769329.8692 Newton per day or 2927.0441 Newton per machining cycle). The high expenditure of energy (18.5924 Kcal / minute) classified as unduly heavy work that risk to occur the possible of fatigue quickly refer to human error and human body injured. Correlation of ergonomics and quality aspect on this case of study is situation of unergonomics of working environment cause high work load to body segment of operator in activity process its machinery and later then give the high expenditure energy. Fatigue and injured problems in some part of body had been occurred. Then become constraint to operator to done activities on quality control or quality operation like inspection and others, so some problems external influencing quality from process direct and influence the result from quality which in the end result the quality which is not expected.

xxvii