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Optimization overlap clustering based on the
hybrid rough discernibility concept and
rough K-Means

Djoko Budiyanto Setyohadi∗, Azuraliza Abu Bakar and Zulaiha Ali Othman
Data Mining and Optimization Research Group, Center for Artificial Intelligence Technology, Faculty
of Information Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor Darul
Ehsan, Malaysia

Abstract. Technically, the problem of overlap in a dataset is viewed as an uncertainty problem and is solved using a fuzzy
set theoretical approach, specifically, fuzzy clustering. This approach is powerful but has some problems associated with it, of
which the design of the membership function is the most serious. There are many different techniques for optimizing fuzzy
clustering, including those based on similarity decomposition and centroids of clusters. Furthermore, the problem of overlap
clustering is still being studied to improve its performance, especially with respect to the membership optimization. Rough
set theory (RST) is the complement of fuzzy set theory and evidence theory, which use different techniques to address the
uncertainty problem in overlap clustering. Considering the simplicity of the membership computation in RST, we propose an
overlap clustering algorithm, which involves the use of the discernibility concept of RST to improve the overlap clusters as an
existing variant of the overlap clustering algorithm. The experiment described here demonstrates that this new method improves
the performance and increases the accuracy of clustering while avoiding the time complexity problem. The experiment uses
five UCI machine learning datasets. The complexity of the data is measured using the volume of the overlap region and feature
efficiency. The experimental results show that the proposed method significantly outperforms the other two methods in terms
of the Dunn index, the sum of the squared errors and the silhouette index.

Keywords: Overlap clustering, discernibility, RK-means, uncertain, rough membership

1. Introduction

Clustering is a data mining (machine learning) technique used to assign data elements to related groups
without advance knowledge of the group definitions. The goal of clustering is to assign similar objects
to the same clusters and dissimilar objects to different clusters. Dissimilarities are assessed on the basis
of the attribute values that describe the objects; therefore, the characteristics of the data influence the
clustering process. Distance measures are utilized in most clustering methods.

Because clustering is an unsupervised learning technique, the original data are not labeled by classes.
The goal of most clustering methods is to partition an unlabeled dataset, e.g., {x1, x2, x3, . . . xn}, with
each object xi ∈ �n, where � is a real number clustered into. C subgroups so that objects in the same

∗Corresponding author: Djoko Budiyanto Setyohadi, Data Mining and Optimization Research Group, Center for Artificial
Intelligence Technology, Faculty of Information Science and Technology, University Kebangsaan Malaysia, Bangi, Selangor
Darul Ehsan 43000, Malaysia. E-mail: djokobdy@gmail.com.

1088-467X/15/$35.00 c© 2015 – IOS Press and the authors. All rights reserved
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cluster are characterized by the highest levels of similarity. Real-world data distributions often involve
ambiguous or overlapping structures, which require a clustering method that allows the objects to be
members of two or more clusters [2]. Previous studies have proposed a solution to the problem involving
viewing an ambiguous object located on an overlap cluster as an uncertain object. An ambiguous object
is one that can be a member of more than one cluster. The initial solution is implemented by using Fuzzy
C-Means (FCM) [16]. FCM uses membership to represent the probability that an object belongs to each
cluster, providing the flexibility to represent the probability of a data point belonging to more than one
cluster at the same time.

FCM is a well-known fuzzy clustering algorithm. Many fuzzy clustering algorithms have been de-
veloped and used in various applications that involve uncertainty caused by overlap data processing,
such as remote sensing and medical image processing [1]. However, FCM has two major drawbacks
that diminish its performance. First, FCM is sensitive to outlier values of the clusters, and second, FCM
can be easily trapped at local minima for both of these drawbacks reduce the algorithm performance to
produce a good partition cluster. In addition, centroid, prototype FCM, make inadequate algorithm to
deal with non spherical cluster. Therefore, several extensions of the FCM algorithm have been proposed
to improve its performance. Considering the purpose of clustering, the main goal of FCM is achieved
by a fuzzy function that is used for cluster formation or partition. Furthermore, the partition is reflected
by a membership value. Indeed, in the FCM, the objective of fuzzy clustering is to find the appropriate
partition based on the membership value. This objective can be achieved by developing a membership
function or optimization algorithm [31].

Several extensions of FCM have been developed, although the basic computation in FCM performed
by Euclidean distance is only suitable for clusters that are spherical in shape whereas many non spherical
datasets, which is geometrical overlap, are provided and required a good classification algorithm [36]. It
is naturally that the real world data is the cluster formation not only uncertain, incomplete but also can
have various different shapes, such as ellipsoids, lines, and quadratics and so on. Two important issues
associated with FCM are examined in this paper. The first issue is the optimization of the membership
value, which affects the performance of cluster partitioning especially by using initial seed to lead the
algorithm produce the good cluster [3,4]. The second issue is the development of an alternative approach
of membership computation to address various overlap shapes in the cluster partitions in the dataset. The
various overlap shapes are caused by geometrical complexity dataset. The second issue is important since
it will increase the level difficulties of classification, and reduce the performance of classification [21].

We propose a hybrid clustering algorithm to address these two issues, i.e., optimization and various
shapes of overlap clusters which are caused by characteristics of geometrical complexity dataset. The
more overlap dataset, the more ambiguous of objects assignment be. In ambiguous data processing
problems, a clustering algorithm must be able to address various shapes of the cluster partition. RST
is a soft-computing method that has been proven capable of addressing the problem of ambiguous data
processing [28]. The performance of RST depends on the approximation addresses, which are normally
associated with a set of attributes, depending on the granularity of knowledge, and are determined by
the indiscernibility relation. Problems arise because RST cannot be used directly to develop clustering
algorithms due to the complexity problem [32] however RST has been reported successfully to solve
problem in categorical clustering [14]. RST has the potential to be applied for clustering as a result
of certain advantages its features offer. RST can be used to extend the clustering algorithm such as
Rough K-Means (RKM) [29]. RKM is an extension of K-Means that employs RST to solve vague data
processing problems.

In contrast to FCM, RKM is performed by separating an overlap object from the crisp cluster only.
Indeed, RKM is specific to interval clustering, and RKM is not addressed to solve the overlap clustering;
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thus, in RKM, the membership concept should be extended within the boundary region to add a fuzzy
concept similar to FCM. In this paper, we propose a new hybrid overlap clustering algorithm, referred
to as Rough K-Means Discernibility (RKMD). This algorithm addresses both optimization and various
types of cluster formation issues by developing rough membership computation to produce better parti-
tion in overlap dataset. First, RKM is employed and optimized using the initial seed concept to generate
the appropriate interval cluster as the main outcome [4]. Second, using the discernibility computation,
we calculate rough membership degree as the probability of the uncertain object belonging to each clus-
ter. In addition, both the initial seed and the membership calculation are based on the discernibility
computation.

The rest of this paper is organized as follows. Section 2 reviews related research on the overlap cluster-
ing problem, focusing on variations of fuzzy clustering algorithms and hybrid soft-computing techniques
for clustering. Section 3 introduces important concepts of the RST and Rough K-Means clustering algo-
rithms. The proposed method, which consists of two main phases, is discussed in Section 4. Experiments
and concluding remarks are given in Sections 5 and 6, respectively.

2. Related research

Overlap measurement is a component of data complexity analysis, which concerns the study of the
degree to which patterns can be extracted from a dataset, and the performance of a classification al-
gorithm depends on the characteristics of the dataset [21,36]. In this context, recent research on data
complexity analysis was reviewed to characterize the relationship between the complexity of a dataset
and the performance of a classifier algorithm [18,21]. Based on this relationship, in our study, we refer to
the overlap and uncertainty as the complexity of the dataset. Although there are many ways to measure
the complexity of a dataset, these measures are limited to the geometric or topological properties of the
class distributions, such as the consideration of nonspherical shapes and uncertainty in the dataset, e.g.,
measures of the volume of the overlap region (F2) and feature efficiency (F3).

The volume of the overlap region (F2) of the cluster is calculated based on the maximum and minimum
values of each class feature. The computation can be defined using each feature (fi) and the maximum
max (fi, cj) and the minimum min (fi, cj) values for each class (cj), as shown in Eq. (1):

F2 =
∏
i

max (max (fi, c1) ,max (fi, c2))−max (min (fi, c1) ,min (fi, c2))

min (max(fi, c1),max (fi, c2))−min (min(fi, c1),min (fi, c2))
(1)

Overlap is found in almost every type of information, its multi-faceted form being the result of many
different factors, including empirical measurement error, inadequate computational methods, and cog-
nitive ambiguity. Overlap can be present in data at any point, potentially leading to serious inaccuracy
within data processing, as this situation results in uncertain membership object within a cluster, and the
cluster is not spherical in shape. In pattern recognition, dealing with overlap is a common problem be-
cause real data are frequently ambiguous. As a result, boundaries between many classes can be poorly
delineated (see Fig. 1).

From a different perspective, overlap feature efficiency (F3) focuses on feature/attribute overlap mea-
surement (see Fig. 2(a)). This situation emerges when the cluster is nonspherical. Cluster overlap can
form as shown in Fig. 1, when clusters are not fully separated, or, as shown in Fig. 2(a), when clusters
are fully separated. The value of F3 is calculated using the fraction of all remaining points of classes
that are separable by that feature. As a result, the efficiency of each feature is the ratio of the remaining
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Fig. 1. Overlap area as an uncertain/overlap
dataset of clusters c1 and c2.

Fig. 2. The comparison of datasets and datasets with (a) without a feature
overlap area (b).

non-overlapping points to the total number of points. Suppose p is all points of the same class; the largest
feature efficiency of all features is taken as F3, as shown in Eq. (2).

F3 =
∑
p

separable (p)

where separable (p) =

{
1 if p is separable by the feature
0 otherwise (2)

Because the complexity of the dataset can influence the performance of the overlap clustering al-
gorithm, both complexity measurements will be used to simulate the proposed method. Appropriate
real-life datasets and a validation index are used to validate the performance of the overlap clustering.
The details of the real-life dataset and the validation index used are described in Section 5 (experimental
setup).

2.1. Previous development

Significant work has been performed to develop overlap clustering. In this section, we first provide
a brief overview of the overlap problem and then follow recent developments in the improvement of
overlap clustering based on FST, including improved membership computation, combination with other
soft-computing approaches, and FCM optimization. The traditional FCM partitions a set of object data
into a number of c clusters based on the minimization of a quadratic objective function. The objective
function to be minimized is as follows:

JFCM =

c∑
i=1

n∑
k=1

(μik)
m ‖xk − vi‖2 (3)

where xk: input data (k = 1, . . . , n), vi: the centroid of cluster i (i = 1 . . . , c), and μik: the fuzzy
membership vector xk belonging to cluster i, m(m > 1): the weighting exponent of fuzzy membership.

The formula above is subject to the following constraint:

c∑
i=1

μik = 1
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Using the FCM approach, the overlap problem is solved because overlap clustering allows the condi-
tion in which an object belongs to two or more clusters. This approach is the main advantage of FCM,
compared to hard clustering. FCM improves partition performance and reveals the classification data
more reasonably. However, FCM has the well-known disadvantage of slow convergence [15]. In addi-
tion, the cluster formation characteristics may diminish the performance of the FCM algorithm. Several
scholars report that most algorithms fail to clearly distinguish separated clusters, and therefore, their
performance is often unpredictable when the degree of overlap of datasets is increased [18,21].

In FCM, the partition of the cluster is represented by the degree of membership. The following section
describes several improvements in partitioning capability that have been reported in the fuzzy cluster-
ing literature as a form of overlap clustering. We review the development of FCM clustering in three
subsections: extension of the function, FCM optimization, and hybrid optimization.

The appropriate partitioning, indicated by the best membership, is the objective of clustering. Many
scholars have developed membership functions to address the FCM problem. Several extensions have
been developed based on this method to address the problem of the data characteristics, which directly
influence the performance of clustering. For example, the classical approach to the outlier problem in
fuzzy clustering is to change probabilistic clustering to possibilistic clustering [27]. This approach is
effective; however, it increases the sensitivity of the initial center, which leads to coincident clustering.

Another extension that has been proposed to address the nonspherical cluster problem is kernel fuzzy
c-means [17,25]. Other improvements include the use of membership constraints [20] and changing the
distance metric used for measurement [5]. A nonspherical dataset can also affect the density within a
cluster. Therefore, the cluster might have different sizes and densities related to the cluster object. This
situation leads to the cluster center problem, for which several algorithms have been proposed [6,24]. The
RST has been used to extend clustering algorithm and has been reported in due to noisy, uncertainty [30,
33] and categorical problems [14].

In FCM, the objective optimization approach is used to avoid the local optima problem, which is
a common problem in the extension of c-means algorithms. The local minima problem can be avoided
using the initial centroid method [3]. This method is implemented by feeding the initial centroid. Because
this process involves complex computations, the use of an evolutionary algorithm (EA) is a common
approach to optimizing fuzzy clustering. An EA is used to maintain the simplicity of a fuzzy clustering
algorithm. The use of an EA has two advantages. First, an EA is able to learn the structure of the dataset
and improve the performance of fuzzy clustering. Second, an EA is able to avoid the local minima
problem in fuzzy clustering optimization. Indeed, an EA can be used to address complex optimization
problems [31].

In addition to EA optimization, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO)
have been developed as popular FCM optimization methods [31]. In most cases, an initial population
of randomly generated candidate solutions constitutes the first generation. A fuzzy membership fitness
function is applied to the candidate solutions and any subsequent off spring until the optimal solution
is achieved. Based on this characteristic, many optimizations of fuzzy clustering using PSO and GA
have been developed [9,10,13,23]. In comparing the performance of EA and PSO, several scholars have
shown that PSO is superior, especially in terms of the speed of convergence [31].

A hybrid approach to addressing multi-clustering problems is promising. A hybrid approach com-
bines the merits of multiple algorithms. Therefore, hybrid clustering may perform better than a single
clustering approach [30,31]. A hybrid approach may be developed as a sequential algorithm, with one
algorithm being applied after another algorithm is completed [13,26] or embedded in the objective func-
tion used [25].
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Several hybrid fuzzy clustering approaches based on PSO have been developed. These approaches can
increase the probability of finding the global optimum [31,35]. An example is Hybrid PSOKHM [13], a
hybrid data clustering algorithm based on PSO and KHM that minimizes the sum over all data points of
the harmonic average of the distance from each data point to all the centers using PSO and enables an
increase in speed to avoid the local optima problem.

Recently, a hybrid fuzzy clustering particle swarm optimization approach, namely, FCM-FPSO [13]
has been developed. This approach seeks to improve the convergence of FCM and the performance of
FPSO while avoiding the local optima problem. FCM-FPSO algorithm can be divided in two stages;
FPSO is aimed to find the best initial centroid than followed by FCM which is aimed to optimize over-
lap clustering using Eq. (3). The objective of this algorithm is that the process converge fast and produce
better partition. We can conclude that the developments of fuzzy clustering rely on the fuzzy set the-
ory to develop membership degree computation which is used to produce the best partition of dataset.
Therefore, the new model computation of overlap clustering algorithm is needed.

2.2. FPSO

Local optima problem is the common problem c-means clustering due to the use random initial seed.
Solving this problem, PSO is one of a population-based optimization. PSO has been used for many
optimization problems. In c-means PSO can be applied in order to avoid local optima problem. Let X is
position particle it can represented as matrix n× c of membership value μnc as below:

X =

∣∣∣∣∣∣
x11 . . . x1c

. . . . . . . . .
xn1 . . . xnc

∣∣∣∣∣∣
Iteration is performed to improve the partition by updating both positions and velocities as matrix

operation below:
V (t+ 1) = w × V (t) + (c1r1)× (par_best((t))−X(t) + (c2r2)× (glob_best((t))−X(t) (4)

X(t+ 1) = X(t)V (t+ 1) (5)
Due to the μnc = [0, 1] the result of updated membership is normalized. Moreover the updated result is

evaluated by objective function f(x) = K
Jm

. The process is repeated until termination value is achieved.
Let the dataset has n objects o = {o1, o2, . . . on} and j cluster c = {c1, c2, . . . cj}, P = particle of

PSO, c1 and c2 acceleration constants of PSO.
The algorithm of FPSO can be writen as below
1. Initialize P,w, c1 and c2.
2. Create swarm with P particles.
3. Initialize X,V , par_best for each particle and glob_best for the swarm.
4. Calculate cluster center using for each particle Eq. (6)

zj =

n∑
i=1

μm
ij oj

n∑
i=1

μm
ij

(6)

5. Calculate fitness for each particle using f(x) = K
Jm

.
6. Calculate par_best for each particle and glob_best the swarm.
7. Update velocity matrix each particle Eq. (4).
8. Update position matrix each particle Eq. (5).
9. If terminating condition is not achieved go to step 4.
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2.3. Hybrid FCM-PSO

Hybrid FCM-PSO [13] is an overlap clustering algorithm which is sequentially performed by FCM
and FPSO clustering. The FPSO produces the partition and its centroid, and these results are fed for
FCM. The use of centroid resulted by FPSO is quite similar with the use of initial seed approach in
c-means clustering for optimization [3,4]. The detail of the algorithm is described as below:

FPSO
1. Initialize P,w, c1 and c2.
2. Create swarm with P particles.
3. Initialize X,V , par_best for each particle and glob_best for the swarm.
4. Calculate cluster center using for each particle Eq. (6).
5. Calculate fitness for each particle using f(x) = K

Jm
.

6. Calculate par_best for each particle and glob_best the swarm.
7. Update velocity matrix each particle Eq. (4).
8. Update position matrix each particle Eq. (5).
9. If terminating condition is not achieved go to step 4 otherwise do FCM phase.
FCM
10. Calculate cluster centre for each particle using Eq. (6).
11. Calculate Euclidian distance for each particle using Eq. (5).
12. Update membership function μij using Eq. (7).

μij =
1

c∑
k=1

(
dij

dik

) 2

m−1

(7)

13. Calculate pbest for each particle and gbest the swarm.
14. Repeat FCM if terminating condition is not achieved otherwise do next.
15. Repeat from the beginning if Hybrid FCM-PSO terminating condition is not achieved.
According to the algorithm, initial seed approach is used to avoid local optima problem in FCM

(second phase). The applied concept is that initial seed should be closer to the final centroid. FPSO is
performed to get the best centroid by optimizing FCM. The expectation of this method is that the FCM
in the second phase will be able to get best partition and fast convergence.

3. Preliminaries

In this section, we review previous research i.e. RKM and discernibility RST which are used to develop
the new overlap clustering. RKM is an approach to separate the overlap dataset from the crisp dataset,
and discernibility is a concept associated with RST used to address the uncertainty problem in overlap
clustering.

3.1. Rough K-Means clustering

The most important issue addressed in rough set theory (RST) is the idea of imprecise knowledge. In
this approach, knowledge is considered imprecise if it contains imprecise concepts. Imprecise concepts
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can be defined approximately by employing two precise concepts: lower and upper approximations [28].
Using these concepts [29], Lingras proposed the Rough K-Means (RKM) algorithm, which addresses
the problem of vague data. RKM’s capability to cluster vague data comes from the integration of rough
set theory with K-Means clustering. Whereas in the original K-Means approach, the cluster is viewed as
a crisp cluster, in RKM, the cluster is viewed as an interval cluster. The object is divided into the lower
approximation, where the object is certainly a member of the cluster, and the boundary region, where
the object is a member of more than one cluster. In addition, if the dataset has an outlier, it will occur in
the boundary region. RKM is able to address the outlier problem [11].

In contrast to FCM clustering, RKM yields a distinct result. FCM assigns membership to define
whether an object belongs within a cluster, whereas RKM focuses on distinguishing between crisp and
vague objects. A crisp object x is assigned to the lower approximation of the cluster appr(cl), whereas a
vague object is assigned to the boundary region bnd(cl). The boundary region is the difference between
the lower approximation and the upper approximation of the cluster resulting from the RKM clustering
algorithm [29]. In this approach, the process of RKM clustering involves computing centroids based on
the centroid of the lower approximation (the crisp area) and the boundary region. The membership of
each area is determined by using a relative distance measure, which is useful for reducing the influence
of outliers [11].

Many researchers have successfully used the RKM algorithm to address vague data in various areas [7,
22]. The good performance of RKM is due to the capabilities of RST, especially when the algorithm
separates the crisp data from the vague data. Despite its advantages, RKM has two drawbacks: (1) a
problem with numerical stability, in which the RKM equation requires that each cluster must have at
least one member, and (2) the local optima problem, which is caused by the random initial seed used as
the initial centroid determining the clustering result. Several researchers have solved these problems by
improving the original RKM [4,8,11]. Peters [11] suggests the use of the ratio of distances instead of
the differences between distance similarities. The differences vary based on the values in input vectors.
Miao [8] uses angle measurements to determine the members of clusters and avoid empty clusters. With
respect to the local optima problem, in all of the extensions of the K-Means algorithm, the problem
can be avoided and the performance of the rough clustering algorithm can be enhanced by initial seed
computation [4].

However, considering the algorithm’s ability to separate vague data from crisp data, RKM is seen as
a powerful algorithm for clustering vague data, although it should be extended when RKM is used to
address overlap clustering, as with FCM. Based on the advantages of RST in uncertain data processing,
we enhance the capability of RKM by using discernibility computation. This extension addresses the
optimization problem and the inability of RKM to perform overlap clustering by adding membership
values to the objects.

3.2. Discernibility of rough set theory

The foundation of RST is that every object in the universe can be associated with some information.
The associations are performed by the indiscernibility concept which is defined relative to a specified
set of attributes. Furthermore, elementary set, composed by all indiscernible objects, forms the granule
of knowledge about the universe. The unification elementary set is referred to as crisp set and otherwise
is vague set as shown in Fig. 3.

Granularity comes from the rectangular grid and both crisp and vague set. It can be related by in-
discernibility concept, therefore, the indiscernibility relation is one of the important properties of RST.



D.B. Setyohadi et al. / Optimization overlap clustering based on the hybrid rough discernibility concept and RKM 803

Fig. 3. A rough set.

Suppose that IS = (U,A, V, f ) is an information system, where U =
{
U1, U2, . . . , U|U |

}
is a finite non-

empty set and universe object space, A =
{
a1, a2, . . . , a|A|

}
is the finite non-empty set of attributes.

V =
⋃

a∈A Va, Va is the domain of the attribute a, and f : U × A → V is an information function for
∀a ∈ A,∀x ∈ Uf (x, a) ∈ ∀a, which are points of the attribute value of each object in U . Each subset
B ⊆ A of attributes determines the indiscernibility IND(B), which can be defined as shown in Eq. (8)
below:

IND(B) = {(x, y) ∈ U × U : ∀a ∈ B, f (x, a) = f (y, a)} (8)

Indiscernibility forms the equivalence class set. The equivalence relations induce a partitioning of
the universe, meaning that all equivalence classes are disjointed and that their union is equal to the
full universe of the set, and a partition also induces an equivalence relation. The strong indiscernibility
relation with respect to B is denoted by IND(B). The two objects in U satisfy IND(B) if, and only if,
they have the same values for all attributes in B. The quantitative discernibility relation DIS(B)(xi, xj)
is defined as the complement of a quantitative indiscernibility, as shown in Eq. (9).

DIS (B) (xi, xj) = 1− IND (B) (xi, xj) (9)

To perform the above function, the decision/information table is discretized to construct the discerni-
bility matrix table.

3.3. Rough membership

Both fuzzy and rough set theory has been developed to deal with vagueness problem. Fuzzy set theory
uses fuzzy membership which represents of gradualness of knowledge whereas rough membership in
RST uses granularity of knowledge which is performed by the indiscernibility relation. The relation
among elements of the universe U and its equivalence class can be represented as a rough membership
value (μx). The rough membership is calculated by using a relative quantifies a membership objects into
a given set.

The value of (μx) reflects the approximation of the uncertainty property of the elements in a set.
Formally, the rough membership is more general, as it reflects subjective knowledge about elements of
the universe from fuzzy membership whereas the fuzzy membership indicates the conditional probability
of the object belonging to the set [28]. Depending on the purpose of the clustering, rough membership is
comparable to the membership degree value in fuzzy clustering, as (μx) can be interpreted as pertaining
to the degree to which the element belongs to cluster U . Let x ∈ X ⊆ U for any elementary granule
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I(x) in subset X, and let |.| be the cardinality. The probability that object x belongs to cluster X can be
expressed as shown in Eq. (10).

μX
x : U → [0, 1] (10)

where

μX
x =

|I(x) ∩X|
|I(x)|

Equation (10) shows that μX
x of the objects rely on the discernibility between objects in the cluster.

Thus μX
x is not equal with fuzzy membership. However it can be used to represent the degree of be-

longing objects. In a discernibility-based data analysis, the traditional method of handling an attribute
with a value set that is totally ordered is to partition its original value set into intervals and treat this dis-
cretized attribute as a categorical variable using the appropriate discretization approach. Furthermore,
the rough membership can be used to compute the probability and to decide the overlap objects into
proper classes [12,28,34].

In the computation of discernibility, the discernibility matrix stores the sets of attributes that discern
the values of the pairs of objects. Based on its characteristics, discernibility in rough set theory is seen
as being capable of handling overlap clustering even when RST is used for unsupervised classification.
The next section presents the proposed discernibility theory for overlap clustering, which is divided into
two phases, namely, initial seed optimization, RKM Clustering and the incorporation of uncertainty in
the vagueness area.

4. Proposed method

Currently, overlap clustering is only viewed as an uncertainty problem. In this section, we propose
an overlap clustering algorithm that incorporates the uncertainty property into the vagueness properties.
Vagueness properties are applied using RKM to separate the crisp from the vague objects. The uncer-
tainty properties of RST are used in the membership computation process when the algorithm addresses
the vague objects in the boundary region. Because the original RKM uses a random initial seed to de-
termine the initial number of clusters, it tends to stick at local optima. We overcome this problem by
using initial seed optimization [4]. We employ initial seed optimization based on RST to develop the
discernibility classification by using the uncertainty properties of RST. Figure 4 presents the design of a
complete overlap clustering of the proposed method.

4.1. Initial seed computation

K-Means and its extensions do not guarantee the optimization of clustering because the random se-
lection of initial clusters leads to the local optima problem. The initial seed plays an important role
in avoiding the local optima problem with this algorithm. In our proposed method, this concept is ap-
plied by using the concept of the area of the initial seed. Correct determination of the area of the initial
seed should avoid the local optima problem. To determine the area of the initial seed or initial centroid,
Boolean discretization is used to split the area into two parts in each dimension. The initial centroids
are determined, and both centroids must have a sufficient distance, as selected from the points that have
a high degree of discernibility. Figure 5 illustrates an example how the initial seed is performed in for
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Initial seed computation
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Lower 
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Fig. 4. The overlap clustering process.

Fig. 5. Area of the initial seed of a two-di-
mensional dataset. (Colours are visible in the
online version of the article; http://dx.doi.
org/10.3233/IDA-150746)

two dimensions and two clusters dataset. The area of the first and second initial centroids is used to
determine the selected area of the initial seed.

Suppose that X = {x1, x2, x3, . . . , xn} are objects in a dataset and that αA (xi, xj) is the discerni-
bility degree of objects xi, xj . The initial seed Si is the set of objects within the area dataset which has
appropriate discernibility degree. This condition reflects that objects are suitable for the initial centroid
in the RKM algorithm. This area has a high discernibility degree among the pairs of objects within the
dataset. Figure 5 shows an example of initial seeds Si and Si represented by pairs of objects in the first
initial seed area and the second initial seed area. For k clusters within dataset X, the Si can be calculated
as shown below:

Si = {(xi1 , xi2 , . . . , xik) |αA (xi1 , xi2 , . . . , xik) � θ ·max (αA (xi1 , xi2 , . . . , xik)) and xi ∈ X}
(11a)

where

αA (xi1 , xi2 , . . . , xik) =
⋃

xi∈X
{min (αim , αin)}

and

(αim , αin) = DIS (xm, xn) =
|{a ∈ A |Ia (xm) 	= Ia (xn)}|

|A| (11b)
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Si is a set that can be computed using Eq. (11). The largest possible value of the discernibility of two
objects is one (1), which means that the two objects are fully dissimilar, and the smallest possible value
is zero (0), which means that the two objects are fully similar. However, the higher the density of the
distribution is, the lower the discernibility values among objects will be due to the basic principle that
objects that are used as initial seeds should be discernible from each other. We can choose the objects
that have maximum discernibility. θ is a multiplication factor with a value between 0 and 1 that is used
to control the area of the initial seed. θ = 0 indicates the discernibility degree among objects which can
be used as an initial seed that started from zero. Thus, this condition is equal with random initial seed
since all of the objects can be used as an initial seed. For this purpose, θ can be chosen as 0.75 or more
to exclude distant objects.

4.2. RKM clustering

The initial seed computation (Eq. (11)) produces the pair of objects that can be used as an initial
centroid in the RKM algorithm [29]. The initial centroid is used to assign the membership of an object
based on a threshold parameter that indicates whether the object belongs to the lower approximation of
the cluster appr(cl) or the boundary region bnd(cl). Let xl be an object in the dataset, and let d (xl, vk)
and d (xl, vj) be the Euclidian distances between object xl and clusters ck and cj , respectively. The
membership of xl can be defined as follows:

i. If

max (d (xl, vk) , d (xl, vj))

min (d (xl, vk) , d (xl, vj))
� threshold

and min (d (xl, vk) , d (xl, vj)) 	= 0 then xl ∈ bnd (ck) and xl ∈ bnd (cj).
ii. If

max (d (xl, vk) , d (xl, vj))

min (d (xl, vk) , d (xl, vj))
> threshold

and min (d (xl, vk) , d (xl, vj)) = d (xl, vk) then xl ∈ appr(ck).
iii. If

max (d (xl, vk) , d (xl, vj))

min (d (xl, vk) , d (xl, vj))
> threshold

and min (d (xl, vk) , d (xl, vj)) = d (xl, vj) then xl ∈ appr(cj).
iv. If d (xl, vj) = 0 then xl ∈ appr(cj)
v. If d (xl, vk) = 0 then xl ∈ appr(ck)

It should be noted that the approximation space A is fully constructed based on the value assigned to
the threshold parameter. A is not defined on the basis of any predefined relation for the set of objects.
The outcome of the previous rule is the lower approximation and the boundary region of each cluster
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within the dataset. Next, the centroid of each cluster is refined based on all of the objects of both areas.

vl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωlow

∑
x∈appr(cl)

xl

∣∣appr (cl)
∣∣ + ωbnd

∑
x∈bnd(cl)

xl

|bnd (cl)| for appr (cl) 	= ∅ and bnd (cl) 	= ∅

ωlow

∑
x∈appr(cl)

xl

∣∣appr (cl)
∣∣ for appr (cl) 	= ∅ and bnd (cl) = ∅

ωbnd

∑
�x∈bnd(cl)

xl

|bnd (cl)| for appr (cl) = ∅ and bnd (cl) 	= ∅

(12)

The RKM algorithm described above depends on three parameters: ωlow, ωbnd, and threshold. These
parameters represent the rough treatment dataset and require some experimentation to obtain appropriate
results from rough clustering. However, we can use two important characteristics to guide the selection
of parameter values. The first characteristic is that the larger the threshold value is, the greater the
probability is that outliers will be located in boundary region; however, a large threshold can result
in a single cluster [11]. The second characteristic is represented by the weighting components ωlow and
ωbnd in Eq. (12). Both of weighting components can be used to control the centroid relocation vi.

The threshold value used in the membership assignment reflects how the RKM algorithm accommo-
dates the overlap of objects as an overlap area, which is represented by a boundary region bnd(cl). If
the ratio of the distances from objects l to cluster j and cluster k is greater than the threshold value,
then the object is considered similar to the closest cluster, whereas if the ratio is less than the threshold
value, then the object is vague or an overlap object because it is considered similar to both of the two
clusters. The threshold value will influence the width of the overlap space of the cluster. The result of
this phase is the lower approximation of cluster l appr(cl) and its boundary region bnd(cl). The details
of this computation are described in the complete example in the next section.

4.3. Incorporating uncertainty in the vagueness area

The crisp set is a set that has been previously labeled by the RKM process. Let S be a clustered
information system in U , the universe set, and let c be the number of clusters.

S = (U,A, V, f ) (13)

1. U is a non-empty finite set of objects.
2. A is a non-empty finite set of attributes. A is limited to the crisp cluster and is further classified

into two disjoint subsets of condition attributes C and decision attributes D. In this algorithm, D
is generated with the lower approximation that results from the RKM process.

3. V = ∪Va, where a ∈ A, Va is the domain of the attribute a.
4. f : U × A → V is an information function that associates a unique value of each attribute with

every object belonging to U .
In the RKM algorithm, D, the decision attribute in the information system S, is divided into two areas,

namely, the crisp object area and the vague object area. The vague object area is located in the boundary
region and has no decision attribute because the objects belong to more than one cluster. With respect
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to the result of x ∈ appr (cl) and x ∈ bnd (cl), given an information system, S = (U,A), X ⊆ U, and
B ⊆ A. The operation assigned to every X ⊆ U with respect to B as the lower approximation of X is
defined as follows:

B =
⋃
x∈U

{B(x) : B(x) ⊆ X} (14)

With respect to B ≈ appr (ci), Eq. (14) reflects the approximation in RST and represents association,
which is used as a foundation to perform rough membership computation. To perform rough membership
computation, we must make two assumptions.

(1) The crisp objects, the objects in the lower approximation, are viewed as trained data. This as-
sumption is valid because the data have been labeled by the RKM process.

(2) Each element in the boundary region has at least one indiscernibility attribute with respect to the
objects in the lower approximation/crisp cluster. This assumption is also valid because of the use
of the initial seed approach in RKM.

Because both assumptions are valid, the membership computation based on the discernibility rela-
tion can be performed. The discernibility concept required by the Boolean function is regarded as the
foundation of granular computation, which requires the discernibility matrix as a representation of the
atomic granules of a set. Conventionally, the discernibility matrix commonly requires Boolean computa-
tion characteristics only, whereas in our approach, the Boolean computation is required to accommodate
the distance concept. Combining both requirements, we propose the new discernibility matrix described
below. Let an information system have n objects and j attributes with {x1, x2, x3, . . . xn,} ⊂ Ax�.
Each object is discretized based on data characteristics. The discernibility matrix can be generated using
Eq. (11).

dikj =

{
1 if xij � cutjk
0 otherwise (15)

i: the number of objects; j: the total number of attributes in information system; k: the maximum parti-
tion of the attributes resulting from the discretization method; each partition will have a value partitioned
as dijk.

Using the above formulation, given a crisp cluster appr (ci) and an overlap cluster that contains object
x,∀x ∈ bnd (ci), the numerical characterization of the degree, to which an object x belongs in cluster ci,
relative to the knowledge represented by an attribute/feature set, is provided by the rough membership
function μci

x (see Eq. (10). After the discernibility matrix of all of the vectors in the universe is converted
using Eq. (15), ∀x ∈ appr (ci) can be used as the foundation of the calculation μci

x of x,∀x ∈ bnd (ci).
The classical membership fuzzy function and its extension use the point-to-point distance as a basis

for the computation (see Eq. (7). There are two main disadvantages to this approach. First, if the partition
shape of the dataset is nonspherical, the resulting partition will be forced to have a spherical shape, which
will lead to a misclassified cluster partition, although the algorithm is optimized by using well-known
global optimization approaches such as EA and PSO. When the cluster has more feature overlaps (see
Fig. 2(a)), the use of conventional distance measures, such as the Euclidian distance, will not capture a
nonspherical cluster caused by a feature overlap (F3). Second, the measurement similarity from point to
point based on the distance within the overlap cluster will replace the appropriate centroid, especially
in an overlap feature cluster [13,15,31]. Furthermore, the performance of the fuzzy clustering algorithm
will be diminished. Thus, we propose the use of membership based on RST. The proposed membership
function takes into account the relative similarity of each discerning object to the cluster. This function
can be performed after the crisp cluster is found, and it can be completed easily using the discernibility
calculation of the RKM process. Furthermore, discernibility is implemented to calculate the membership
degree of the boundary object using the equivalence class.
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Table 1
Example dataset (a) and the Boolean discernibility table (b)

(a) (b)

Object Attribute 1 Attribute 2 Attribute 1 Attribute 2
1 5.1 3.5 1 0 0 1
2 4.9 3 1 0 0 1
3 4.7 3.2 1 0 0 1
4 5.5 2.3 1 0 1 0
5 6.5 2.8 0 1 1 0
6 5.7 2.8 0 1 1 0
7 6.3 3.3 0 1 0 1
8 4.9 2.4 1 0 1 0
9 6.6 2.9 0 1 1 0

10 5.2 2.7 1 0 1 0
11 6.2 3.4 0 1 0 1
12 5.9 3 0 1 0 1

4.4. Rough membership computation

The membership of a vague object is related to the overlap measurement and the equivalence class.
Furthermore, the equivalence class object x (x∗) is represented by each discerning feature of the crisp
cluster, which has a similar approximation in a set. Let the discretization performed be the approximation
of feature f , and let fd∗ denote the interval to which the feature of dataset S belongs . This computation
can be performed using the discernibility matrix:

[s∗] =
{(

x, x′
) ∈ U2

∣∣fs∗(x) = fs∗
(
x′
)}

(16)

The membership of object x corresponding to the discerning lower approximation of cluster appr (ci)
is denoted by μci

x . Using the membership concept in RST, μci
x is computed as shown below:

μci
x (x) =

|[x∗c ] ∩ ci|
|[x∗c ]|

(17)

In rough set theory, μci
x reflects how discerning vector x is related to crisp cluster appr (ci). In the

membership concept, this value is comparable to the conditional probability of x belonging to cluster
appr (ci). Because this relation may violate the constraint of the uncertain membership concept, i.e.,∑n

c=1 μ
c1
x = 1, we should normalize μci

x as shown in Eq. (18).

μci
x =

μci
x

n∑
c=1

μci
x

(18)

The membership value represents the probability of an object being a member of a cluster. Because
of the influence of the crisp cluster, in the next iteration, the membership of the crisp cluster is changed.
Thus, we assign object x to the cluster ci that has the highest rough membership, as shown in Eq. (19)
below.

if μci
x = max (μci

x , i = 1, . . . c) then x ∈ ci (19)

Using the newer cluster, we repeat the process of rough membership computation until all of the
objects in the boundary region have the same rough membership value.
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Psedocode 1 shows how the proposed method is performed.
Input: unlabeled overlap dataset
Output: clustered dataset

Begin
Until all of the objects is discretize do

Assign 0 for objects below mean of attribute and otherwise
End Until

Calculate αA

Find Max_A = Max (αA)
Select objects to be member of Si using αA > 0.75 × Max_A

Select one of pair wise of set Si and use as an initial centroid
Until termination condition of RKM is achieved

Assign one of pair wise Si as an initial centroid
For i = 1 to object_number do
Assign object into boundary area or otherwise
End for
Calculate a new centroid using Eq. (12)
Check termination condition

End Until
For i = 1 to cluster_number of boundary_of region do

Calculate μci
x of object

Assign objects into the cluster which has the highest μci
x

End For
End

4.5. An example

We present below an example of how the proposed method addresses the vague data based on the crisp
cluster. In the first process, data is processed by using discernibility initial seed computation. This step
is used to measure discernibility degree of objects dataset. Moreover, the proper objects, which are used
as an initial seed, are selected based on discernibility degree.

4.5.1. Initial seed computation
Consider a dataset that contains two (2) clusters and two (2) attributes i.e., attribute 1 and attribute 2

(see Table 1(a). For initial seed purposes, Boolean discretization is performed to produce the discretiza-
tion (Table 1(b)).

Equations (11a) and (11b) are used to calculate the discernibility degree between object x1, x2, and
object x1, x3, as shown below:

αA (x1, x2) =
|0 + 0 + 0 + 0|

|4| = 0

αA (x1, x3) =
|0 + 0 + 0 + 0|

|4| = 0

Based on the example dataset, the discernibility degree among objects can be calculated. Thus the
discernibility table can generated as shown in Table 2.
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Table 2
Discernibility table based on Boolean discretization

αA (xi, xj) 1 2 3 4 5 6 7 8 9 10 11 12
1 0
2 0 0
3 0 0 0
4 0.5 0.5 0.5 0
5 1 1 1 0.5 0
6 1 1 1 0.5 0 0
7 0.5 0.5 0.5 1 0.5 0.5 0
8 0.5 0.5 0.5 0 0.5 0.5 1 0
9 1 1 1 0.5 0 0 0.5 0.25 0

10 0.5 0.5 0.5 0 0.5 0.5 1 0.5 0.5 0
11 0.5 0.5 0.5 1 0.5 0.5 0 0.5 0.5 1 0
12 0.5 0.5 0.5 1 0.5 0.5 0 0.5 0.5 1 0 0

There are many pairs of objects that have high discernibility values (greater than 0.75), i.e., 1. This
means that we can use one of the pairs of objects as in initial seed to replace the initial random seed
used in the RKM algorithm. The limitation on the initial seed space is intended to avoid zero-member
problems and optimize the RKM clustering algorithm.

Sinitial seed = {(1, 5), (1, 6), . . . (7, 8), . . . , (12, 10)}
4.5.2. RKM process

The result of the first process is the proper objects which fit into criteria of initial seed. More over these
objects are used as the initial seed of RKM. We believe that the proper initial seed able to lead RKM to
produce good cluster. In this step this example will show how RKM able to separate vague object from
boundary region by using proper initial seed. For example, object 7 (6.3, 3.3) and object 8 (4.9, 2.4) are
selected as an initial seed. Thus, the initial centroids in the RKM algorithm are v1 = object 7 and v2 =
object 8. Suppose that the values of the RKM parameters are threshold = 1.6, ωlow = 0.6, and ωbnd =
0.4. The following Euclidian distances between object x1 and each centroid are calculated:

d (x1, c1) = 1.2166, d (x1, c2) = 1.1180

To calculate the distance ratio, the shortest distance is selected as the divisor, i.e., d (x1, c2) = 1.1180:

1.2166

1.1180
= 1.0881 � 1.6

Because the ratio of the object is less than the threshold value, x1 is assigned to the boundary region of
cluster c1. The 1st object is a vague object, based on the membership rule, and is located in the boundary
region. This means that the similarity of the 1st object to cluster c1 is comparable to the similarity of the
1st object to cluster c2.

For the next object, i.e., x2,

d (x2, c1) = 1.4318, d (x2, c2) = 0.6000

To calculate the distance ratio, the shortest distance is selected as the divisor, i.e., d (x2, c2) = 0.6000,
and the membership rule is applied to locate object x2:

1.4318

0.6000
= 2.3863 � 1.8
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Fig. 6. The results of the RKM clustering algorithm.

Unlike the 1st object, the similarity of the 2nd object to cluster c1 is significantly different from the
similarity of the 2nd object to cluster c2. Because the 2nd object is closer to cluster c2, this object is
assigned to cluster c2.

As a result, the lower approximation and the boundary region after the 1st iteration are as shown in
Table 2.

The new centroid cluster c2 is calculated based on Eq. (12). For the second cluster, the centroid of
attribute 1 is as follows:

vattribut1 = 0.6
object2 + object3 + object8 + object10

|4| + 0.4
object1 + object4 + object6

|3|
vattribut1 = 0.6

4.9 + 4.7 + 4.9 + 5.2

|4| + 0.4
5.1 + 5.5 + 5.7

|3| = 2.955 + 2.1733 = 5.1283

Using similar calculations, the centroid of attribute 2 of the second cluster is vattribut2 = 2.83, and for
the first cluster, the new centroid vattribut1 = 6.07 and vattribut2 = 3.1.

Using the new centroids of cluster c1 (6.07, 3.1) and cluster c2 (5.1283, 2.83), the next iteration is
performed using the assignment membership rule, followed by Eq. (12). This iterative process continues
until convergence is achieved. We can also limit the number of iterations. After the final iteration, the
results are as shown as Table 1 and Fig. 6.

4.5.3. Assigning vague objects into crisp cluster
The RKM algorithm produces crisp cluster and its boundary region. Boundary regions represent the

overlap area of dataset. In fuzzy clustering membership degree is used to make partition or to assign
objects into cluster. Moreover, this process is aimed to calculate rough membership degree which is used
to assign objects of boundary region into proper cluster. Using Eq. (15), we generate the discernibility
matrix as the foundation of the membership computation.

Let the cut-offs of discernibility matrix conversion be as shown below.
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Attribute 1: cut11 = 0, cut12 = 5.1, cut13 = 5.7, cut14 = 6.1
Attribute 2: cut11 = 0, cut12 = 2.8, cut13 = 3.0, cut14 = 3.1, cut14 = 3.4
Using Eq. (14), each value attribute of each object is converted
1st attributes of the 1st object

5.1 are converted to 1 1 0 0 0
2nd attributes of the 1st object

3.5 are converted to 1 1 1 1 1

After all the records are converted, we have the discernibility matrix shown below.
Using a lower approximation or crisp clusters C1 and C2, the membership of the 1st record is calcu-

lated as follows:

C1 = {x2, x3, x8, x10}
C2 = {x5, x7, x9, x11, x12}
x∗1 = {x2, x3, x5, x7, x8, x9, x10, x11, x12}
x∗2 = {x5, x7, x9, x10, x11, x12}
x∗3 = {x5, x7, x9, x11, x12}
x∗4 = {x5, x7, x9, x11}
x∗5 = {x2, x3, x5, x7, x8, x9, x10, x11, x12}
x∗6 = {x2, x3, x5, x7, x9, x11, x12}
x∗7 = {x2, x3, x7, x11, x12}
x∗8 = {x3, x7, x11}
x∗9 = {x11}

μ
x∗
1

C1 =

∣∣[x∗1] ∩ [
C1

]∣∣
|x∗1|

=
|x2, x3, x8, x10,|

|{x2, x3, x5, x7, x8, x9, x10, x11, x12,}| =
4

9
= 0.4444

μ
x∗
1

C2 =

∣∣[x∗1] ∩ [
C2

]∣∣
|x∗1|

=
|x5, x7, x9, x11, x12|

|{x2, x3, x5, x7, x8, x9, x10, x11, x12,}| =
5

9
= 0.5555

μ
x∗
2

C1 =

∣∣[x∗2] ∩ [
C1

]∣∣
|x∗2|

=
|x10|

|{x5, x7, x9, x10, x11, x12,}| =
1

5
= 0.2

μ
x∗
2

C2 =

∣∣[x∗2] ∩ [
C2

]∣∣
|x∗2|

=
|x5, x7, x9, x11, x12|

|{x5, x7, x9, x10, x11, x12,}| =
4

5
= 0.8

Similarly, the rough membership values corresponding to all x∗ can be computed. The final approxi-
mation can then be calculated as follows:

f∗
1 f∗

2 f∗
3 f∗

4 f∗
5 f∗

6 f∗
7 f∗

8 f∗
9

∑∗

μc1
1 0.4444 0.2 0 0 0.4444 0.2857 0.4 0.3333 0 2.1078

μc2
1 0.5555 0.8 1 1 0.5555 0.7142 0.6 0.6666 1 6.8918
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After normalization, the membership values of the record can then be computed using Eq. (19), as
shown below:

μc1
1 =

2.1078

2.1078 + 6.8918
= 0.2342

μc2
1 =

6.8918

2.1078 + 6.8918
= 0.7657

Because the membership value of the 2nd cluster is larger, the 1st object is assigned to the 2nd cluster
to perform the subsequent processing of vague objects.

There are two important advantages of using this algorithm in real data processing. First, the basic
foundation of the proposed overlap clustering is hard k-means clustering. Thus, this method has less
complexity and requires less computation time. Second, the use of the approximation concept of RST in
the rough membership computation (see Eq. (14)) improves nonspherical overlap clustering performance
(see Figs 1 and 2(a)).

5. Experiments

In this section, we assess the performance of the proposed method based on three index measures. In
Section 5.1, the indexes and dataset used, based on the overlap characteristics, are described. Section 5.2
presents the results and discussion. We apply Eq. (15) using the entropy/MDL routine in the ROSSETA
software1 to obtain the cutoff of each partition of the dataset.

5.1. Experiment design

In this study, the proposed method is tested using five publicly available datasets obtained from the
UCI Machine Learning Data Repository. According to two issues of FCM, we select the UCI dataset
which has been investigated on the level of difficulty based on geometrical complexity [36]. The volume
of the overlap region (F2) and the feature efficiency (F3) are considered as geometrical complexity which
represents level of overlap problem. Furthermore, the datasets are chosen based on their varying overlap
and difficulty levels (low to high) in order to validate how overlap cluster influences the performance of
overlap clustering algorithm. The datasets used in this study are the Haberman, Iris, Pima, Wine, and
Wisconsin datasets.

Table 6 lists the geometrical complexity of each dataset used in this study that is taken from Ho [36].
The number of the attribute (#Attribute), the cluster (#Cluster), and the size of the dataset (#Data) are
recorded. As discussed in Section 2, we use F2 and F3 to measure both the volume of the overlap region
and the feature efficiency to determine the degree of overlap and the cluster complexity which represents
the difficulty level of classification. The lower F2 is or the higher F3 is the more separable the data. The
characteristics of the datasets used are shown in Table 3.

1The ROSETTA homepage [http://rosetta. sourceforge.net/] developed by Alexander ∅hm.
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Table 3
The first result of iteration of the RKM algorithm

Lower bound of cluster Boundary region of cluster
Cluster (1): object5, object7, object9, object11, object12 object1, Object4, object6
Cluster (2): object2, object3, object8, object10 object1, object4, Object6

Table 4
The results of the RKM clustering algorithm

Object Attr1 Attr2 Cluster
1 5.1 3.5 Vague
2 4.9 3 1
3 4.7 3.2 1
4 5.5 2.3 Vague
5 6.5 2.8 2
6 5.7 2.8 Vague
7 6.3 3.3 2
8 4.9 2.4 1
9 6.6 2.9 2

10 5.2 2.7 1
11 6.2 3.4 2
12 5.9 3 2

Table 5
Discernibility matrix of the example dataset

x∗
1 x∗

2 x∗
3 x∗

4 x∗
5 x∗

6 x∗
7 x∗

8 x∗
9 Cluster

1 1 1 0 0 1 1 1 1 1 Vague
2 1 0 0 0 1 1 1 0 0 1
3 1 0 0 0 1 1 1 1 0 1
4 1 1 0 0 1 0 0 0 0 Vague
5 1 1 1 1 1 1 0 0 0 2
6 1 1 1 0 1 1 0 0 0 Vague
7 1 1 1 1 1 1 1 1 0 2
8 1 0 0 0 1 0 0 0 0 1
9 1 1 1 1 1 1 0 0 0 2

10 1 1 0 0 1 0 0 0 0 1
11 1 1 1 1 1 1 1 1 1 2
12 1 1 1 0 1 1 1 0 0 2

5.2. Validity indices

The performance of the clustering algorithm is commonly focused on how separated and how compact
the result is. This validation is performed by evaluating the results of the clustering algorithm and using
information that involves the vectors of the datasets themselves. In addition to the visual inspection also
performed to show the resulted cluster. Due to the dimension of the data, PCA is used to transform the
data into two dimensions. The compactness and separation are measured by using Dunn Index while
homogeneity is validated by using Sum Square Error. Silhouette is used to measure the performance of
objects assignment. Rough membership is comparable with fuzzy membership but it is not equal [28].
Moreover these combinations are addressed on how the uses of rough membership of the proposed
overlap clustering are able to deal with overlap dataset. In addition, we add a visual inspection order to
assess how well an algorithm provides users with a clear and intuitive understanding of the cluster and
its structure [19]. Furthermore three internal validations and the purpose are described below:

i. The Dunn index (D) identifies the cluster sets that are compact and well separated. Ui,j is the
distance between cluster i and cluster j for 1 � i, j � c.

D = minj

{
mini �=j

{
d (Ui, Uj)

maxk S (Uk)

}}
(20)

Using this index, the inter-cluster separation should be maximized, whereas the intra-cluster dis-
tances should be minimized. The larger the value of the Dunn index is, the better the clusters are
separated. Dunn index is selected rather than Davies Bouldin Index since the inter-cluster separa-
tion of Dunn index relies on the minimum pair wise distance between objects in different clusters.
This condition make Dunn index provides a rich and very general structure for different types of
clusters.

ii. The homogeneity is considered, the second fitness evaluation is performed by using the sum of the
squared errors (SSE), as defined in Eq. (21). The homogeneity of the formed clusters is represented
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Table 6
Dataset complexity based on separability measures (F2 and F3)

Dataset #Attribute #Cluster #Data F2 F3
Wine 13 3 178 0.001 0.564
Iris 4 3 150 0.114 0.500
Wisconsin 9 2 683 0.217 0.350
Pima 8 2 768 0.251 0.651
Haberman 3 2 306 0.718 0.029

by the average Euclidean distance of the object to the centroid. The smaller the SSE is, the higher
the quality of the clustering is.

argminmin

k∑
j=1

∑
xj∈Si

‖xj − ci‖2 (21)

iii. The last validation is performed by using the Silhouette Index (SC), which measures the quality of
the clusters in terms of the object assignments in the cluster. SC is calculated as shown Eq. (22),
where a(x) is the average distance from x to all other objects in the similar cluster, and b(x) is the
average distance from x to the objects in other clusters.

SC =
1

N

N∑
i=1

s(x) (22)

where

s(x) =
b(x)− a(x)

max {a(x), b(x)}
Based on the properties of a(x) and b(x), s(x), the Silhouette Index (SC) represents how close an

object to its cluster compared to how far it is from other clusters. Using this characteristic, we can
evaluate whether x is clustered properly by the overlap clustering algorithm. If the Silhouette Index is
close to +1, x is close to its cluster; if s(x) is close to −1, x is misclustered.

The performance of the proposed clustering algorithm, called RKMD, is compared with that of two
fuzzy-based optimization algorithms, specifically, the FPSO algorithm and the Hybrid FCM-PSO hybrid
optimization algorithm [13]. To validate the algorithms, c the number of clusters is entered manually,
the value is taken from the characteristics dataset. The hybrid optimization FPSO and Hybrid FCM-PSO
is selected as a comparison. Hybrid FCM-PSO clustering algorithm is a two stage of overlap cluster-
ing. Integration PSO in FPSO of Hybrid FCM-PSO is used to produce initial centroid which is used
as an initial centroid of FCM. Therefore it is comparable with the proposed algorithm which deploys
indiscernibility computation for initial centroid. Shortly, these experiments are purposed to measure the
performance of overlap clustering especially on how initial seed and rough membership are able to deal
with various overlap dataset. The comparison of three algorithms is described as Table 4.

5.3. Results and discussion

The proposed method, RKMD, is implemented using Java Netbeans 6.8 and a computer with a 1.85-
Ghz Intel Core2Duo processor with 3 GB of RAM and the Windows XP operating system. In our ex-
periment, we use the previous result of or experiment [4], and we use threshold = 1.2, ωlow = 0.85 and
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Table 7
Comparison of FPSO, Hybrid FCM-PSO and RKMD

No FPSO Hybrid FCM-PSO RKMD
1 Initial seed technique Random FPSO Indiscernibility computation
2 Cluster prototype Point (centroid) Point (centroid) Subset (crisp cluster)
3 Membership computation Fuzzy set Fuzzy set Rough set

Table 8
Execution times of the RKMD, FPSO, and Hybrid FCM-PSO algorithms for the five datasets, in milliseconds (ms)

No Dataset FPSO Hybrid FCM-PSO RKMD
1 Wine 2652.50 2655.78 46
2 Iris 821.87 823.28 31
3 Pima 5063.26 5117.19 204
4 Wisconsin 4978.46 5023.28 157
5 Haberman 910.33 915.00 47

ωbnd = 0.15. The performance of RKMD is analyzed in terms of computation time and the results of
a visual inspection and internal validation. In the internal validation, the proposed method is compared
with two other algorithms, as explained in the previous section, namely, the FPSO and Hybrid FCM-PSO
algorithms whereas these parameter required is set as Izakian [13] and both FPSO and Hybrid FCM-PSO
run 100 times to produce independent experiments. The Dunn index, SSE, and silhouette index are used
to measure the performance of the algorithms with respect to the five datasets.

5.3.1. Time computation
Time computation is the main problem when global optimization is applied in any clustering algo-

rithm. The proposed algorithm relies on the use of proper initial seed addressed to reduce time com-
putation. In addition the use RKM is useful to avoid time computation problem. The purpose of this
experiment is addressed to validate the performance proposed algorithm with respect to the required
time computation as listed in Table 4.

Table 4 shows the processing time of each algorithm for each dataset. The Hybrid FCM-PSO algo-
rithm is developed by deploying the FCM algorithm in the FPSO algorithm. These characteristics can
be viewed as the implementation of the initial seed concept in the FCM algorithm, which improves the
performance of the entire c-means algorithm and its extension [3,4]. In this case, the initial seed is com-
puted by FPSO and then fed into the FCM algorithm. The differences in the running times between the
Hybrid FCM-PSO and FPSO algorithms are small (see Table 8), whereas the performance is improved
significantly (see Tables 9–11). RKMD outperforms the other two algorithms, especially in terms of the
execution time, without the clustering performance being diminished.

5.3.2. Visual validation
Visualization is considered to be one of the most intuitive methods of cluster detection and validation

and performs especially well in the representation of irregularly shaped clusters. Using visualization
techniques allows us to evaluate, monitor, and guide the inputs, products, and processes of data mining.
Therefore, the use of cluster visualization makes it possible to visualize the structure.

In many datasets, it is easy to become overwhelmed by the volume of measurements, which are repre-
sented by many features. Principal component analysis (PCA) can be used to reduce the dimensionality
of the data so that a visual inspection can be performed more easily. Given a set of data, PCA finds
the linear lower-dimensional representation of the data such that the variance of the reconstructed data
is preserved. Intuitively, PCA finds a low-dimensional hyperplane such that, when we project our data
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Table 9
Comparison of the Dunn index values

FPSO FCM-FPSO RKMD
Average Std dev. Average Std dev. Average Std dev.

Wine 0.0359 0.0268 0.0313 0.0238 1.7345 0.0000
Iris 0.0605 0.0502 0.0521 0.0437 2.1542 0.0072
Wisconsin 0.0402 0.0205 0.0286 0.0146 1.5367 0.0000
Pima 0.0392 0.0243 0.0330 0.0208 2.0890 0.0008
Haberman 0.0580 0.0323 0.0558 0.0325 1.7796 0.0923

Table 10
Comparison of the SSE values

FPSO FCM-FPSO RKMD
Average Std dev. Average Std dev. Average Std dev.

Wine 46099.94 306.44 43427.61 1589.39 16739.34 0.0000
Iris 289.73 1.68 275.10 8.93 102.03 0.2091
Wisconsin 5205.79 6.09 5145.17 52.27 3145.83 0.0000
Pima 74517.79 63.43 73470.86 804.57 54536.98 54.1013
Haberman 3557.94 4.88 3497.92 38.24 2734.11 197.1969

Table 11
Comparison of the silhouette index values

FPSO FCM-FPSO RKMD
Average Std dev. Average Std dev. Average Std dev.

Wine −0.0333 0.0120 0.4296 0.0121 0.5632 0.0000
Iris −0.0276 0.0091 0.4671 0.0688 0.5465 0.0000
Wisconsin 0.0030 0.0025 0.4383 0.1335 0.5192 0.0000
Pima 0.0025 0.0014 0.4084 0.0900 0.5099 0.0002
Haberman 0.0061 0.0030 0.3508 0.0649 0.4089 0.0135

on to the hyperplane, the variance of our data is changed as little as possible. We visually inspect the
RKMD and Hybrid FCM-PSO results as shown in Figs 7(a)–(j) below.

The clustered data of the five datasets are illustrated in Figs 7(a)–(j), in which the clusters are indicated
by different colors. We used PCA, which preserves the data variance, to visualize the cluster distribu-
tions. The cluster distributions show that both of the algorithms are able to separate the overlap clearly,
although they result in different clustering formations.

The Iris dataset is perhaps the clearest visualization of the overlap clustering problem. In the pattern
recognition literature, Iris is a well-known dataset that is used to test classification algorithms. One of
the clusters contains Iris setosa, and the other cluster contains both Iris Virginica and Iris Versicolor and
is not separable without the species information Fisher used. Both algorithms perform well in separating
the vague cluster (Iris virginica and Iris versicolor) and the crisp cluster (Iris Setosa), however the size of
partition, which is produced by both of clustering algorithm, is different. However, in the visualization,
the Hybrid FCM-PSO algorithm yields more unbalanced results (in the Iris dataset, each of the clusters
include 50 data points).

5.3.3. Internal validation
5.3.3.1. Compact and separateness

Table 5 presents a comparison of the Dunn index value for the proposed RKMD algorithm and the
FPSO and Hybrid FCM-PSO algorithms. The results show that RKMD outperforms the other two meth-
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Fig. 7. (a) Haberman data RKMD (b) Haberman data Hybrid FCM-PSO (c) Iris data RKMD (d) Iris data Hybrid FCM-PSO
(e) Pima data RKMD (f) Pima data Hybrid FCM-PSO (g) Wine data RKMD (h) Wine data Hybrid FCM-PSO (i) Wisconsin
data RKMD (j) Wisconsin data Hybrid FCM-PSO. (Colours are visible in the online version of the article; http://dx.doi.org/
10.3233/IDA-150746)

ods, as indicated by the significantly higher values for each dataset. This indicates that RKMD separates
the clusters better than FPSO and Hybrid FCM-PSO. The clustering will be better if objects within one
cluster are similar whereas objects in different clusters should dissimilar. As the results in Table 9 show,
the RKMD algorithm achieves the best Dunn Index values for all of the datasets. These results indicate
that the clustering results of the RKMD algorithm are more compact and more separable than those of
the other algorithms.

5.3.3.2. Homogeneity

The SSE presented in Table 10 show that the RMKD yields lower SSEs than FPSO and Hybrid FCM-
PSO, which indicates that the clusters obtained are more compact. Initial seed is important in both
c-means clustering. The homogeneity is one of important characteristics of the cluster. It represents the
quality of clustering algorithm. Regarding the homogeneity problem, initial seed should be located in the
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Fig. 8. The performance of clustering based on the silhouette in-
dex and F2. (Colours are visible in the online version of the arti-
cle; http://dx.doi.org/10.3233/IDA-150746)

Fig. 9. The performance of clustering based on the sil-
houette index and F3. (Colours are visible in the online
version of the article; http://dx.doi.org/10.3233/IDA-
150746)

region of each cluster. This condition enable clustering algorithm to produce cluster more homogeneous.
SSE index can be used to measure this experiment and the results can be seen in Table 10.

The homogenization cluster is important since the homogeneous cluster means it contains more pre-
cise knowledge which useful when indiscernibility computation is performed. The lower SSE values of
RKMD algorithm indicate that all of the objects within a cluster are closer to the centroid. This con-
dition can also be resulted from location of the initial seed. The proper seeds should be relevant to the
characteristics of clusters and it should be located at the homogeneous inner objects. If the initial seed
is not located in the similar partition with original centroid then the partitioning process will not able to
produce partition which equal with original partition.

5.3.3.3. Objects assignments

Our main goal is to improve overlap clustering, we measure the proper assignment of the objects
using the silhouette index. The clustering is better when the value of this index is closer to +1. This
value indicates that the object is assigned properly based on similarity of the attributes. Based on the
index and complexity measurements (F2 and F3) obtained, the proposed method is shown to be able to
address the overlap clustering problem by assigning the object to the correct cluster even when the com-
plexity is increased, as shown in Figs 8 and 9. This experiment shows that the use of rough membership
outperform objects assignment compared with fuzzy membership when it deals with overlap data. The
performance comes from the use boundary region and discernibility computation. The aim of boundary
region is to reduce the overlap data processing problem in two ways. First, set is divided into region
crisp and vague regions. The valid crisp region is easier resulted by RKM. In addition, the use of initial
seed improves the compactness of the crisp cluster [4]. Secondly, the indiscernibility enables RKMD to
assign vague objects in boundary region into crisp cluster precisely. This performance comes from the
provided knowledge which is contained in valid crisp cluster. Thus the similarities of the objects in over-
lap clustering are is better since they are located into appropriate cluster accurately. This phenomenon is
represented by silhouette index in Table 11.

An interesting result of the experiment is also shown in Figs 8 and 9. Both figures represent the
influence of the overlap condition on the performance of the algorithm, especially on the capability to
assign objects. This condition can be interpreted as the capability of the proposed clustering to limit the
influence that the overlap of the dataset has on performance. In other words, the proposed method is
more stable or robust than the other methods. An anomaly is evident for the Pima dataset, as shown in
Fig. 9. This anomaly might be due the complexity computation for the Pima dataset, which is different



D.B. Setyohadi et al. / Optimization overlap clustering based on the hybrid rough discernibility concept and RKM 821

in terms of F2 and F3, as shown in Table 3. Based on the silhouette index values, it can be concluded
that the proposed method is able to address the overlap clustering problem and assign objects to the
correct clusters. A silhouette index value closer to 1 indicates that the objects are clustered correctly, as
the members of the cluster are close to each other.

Figures 8 and 9 indicate that the improvement in the clustering performance is also due to the use of
the boundary region. In RKMD, Eq. (12) can be used to define the vague area as well as to reduce the
outlier/noise problem. The capability to reduce the outlier problem enables the algorithm to appropri-
ately separate the crisp cluster (lower approximation). Logically, a well-separated lower approximation
directly affects the ability to address the uncertainty problem in an overlap area, i.e., the calculation of
rough membership. In summary, the use of the hybrid approach in RKMD results better performance
than that achieved by the other two algorithms. The clustering performances come from the advantages
of RKMD characteristic. We highlight three advantages as shown below:

(1) Initial seed computation relies on the distant concept among the seed. Initial seed is taken from the
distant object which is measured by using indiscernibility computation. Since this computation is
performed by using binary computation, it requires discretization that is a binary discretization.
Moreover it is able to sufficiently select objects as initial seed especially with respect to homo-
geneity problem. This approach is capable to separate and to restrict area, and to select objects
using the discernibility degree. The performance of initial seed computation is indicated by the
homogeneity of cluster.

(2) The boundary region defined by RKMD indicates whether an object is vague. This characteristic
is useful in some cases as membership does not significantly differentiate objects (for example,
indicating which object is closer to the centroid). Therefore, the membership value of the object
will be one (+1), or a crisp cluster, whereas in the FPSO and Hybrid FCM-PSO algorithms, all
of the objects are viewed as uncertain objects. This characteristic is also advantageous when the
algorithm must avoid coincident clusters. The algorithm’s advantage comes from Eq. (12). By
reducing ωbnd in our experiment (we use ωbnd = 0.15), the effect of vague objects and outliers on
the centroid calculation is decreased.

(3) Based on Eqs (18) and (19), the rough membership indicates the belonging of the object. The
foundation of the rough membership calculations is granular computation where the lower ap-
proximation of RKMD is used as the cluster prototype r. Therefore, the closeness of the object
represented by the rough membership is better than by fuzzy clustering since the similarity of the
objects is measured based on similarity of the granular knowledge within the set.

6. Conclusions

The overlap clustering problem has been studied primarily as it relates to the optimization of member-
ship in fuzzy clustering which represents the partitioning of overlap clustering. We suggest to process
vague objects by using an appropriate method via rough set theory. The main contribution of this work to
clustering analysis is its novel approach to overlap clustering based on rough membership computation.
This approach is a hybrid of rough K-means and discernibility rough set theory. This hybrid method
incorporates the merits of both methods. RKM is performed to find the crisp cluster, which is applied as
the foundation to calculate the degree of membership in the overlap cluster. Using our method, clustering
performance is improved without increasing the computation time. Additionally, because the method is
designed based on discernibility RST, it has advantages in the applications for overlapping classes or
naturally occurring partial memberships in the object data.
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More efficient use of the information contained in the fuzzy membership function has also been proven
by comparing the proposed method using three (3) validation indexes. All of the index values calculated
show that the proposed method outperforms the two other algorithms to which it was compared in the
optimization overlap clustering.
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