ISBN: 978-602-50913-0-8

Proceedings

The 18th Asia Pacific Industrial Engineering and Management System Conference

(APIEMS2017)

3 - 6 December 2017 Hyatt Regency Yogyakarta, Indonesia

organized by:

Industrial Engineering Study Program Faculty of Industrial Technology Bandung Institute of Technology

co-organizer :

The Indonesian Association of Industrial Engineering Higher Education Institution

Universitas Atma Jaya, Yogyakarta

Sepuluh Nopember Institute of Technology, Surabaya

Proceedings of the 18th Asia Pacific Industrial Engineering and Management System Conference 2017 Yogyakarta, 3-6 December 2017

Organized & Published by: Industrial Engineering Program Faculty of Industrial Technology Bandung Institute of Technology

Co-Organizer: Indonesian Association of Industrial Engineering Higher Education Institution Atma Jaya University Yogyakarta Institut Technology Sepuluh Nopember

ISBN: 978-602-50913-0-8

apiems2017.org

Table of Contents

MESSAGE FROM THE APIEMS PRESIDENT	i
MESSAGE FROM RECTOR OF BANDUNG INSTITUTE OF TECHNOLOGY	ii
MESSAGE FROM THE GENERAL CHAIR	iii
COMMITTEE	iv

Production Planning & Control 1

ID289: A Comprehensive Analysis of an Operator Assignment Model on Reconfigurable	A 1 1
Manufacturing Cells	A1-1
ID206: A Flow Shop Batch Scheduling and Operator Assignment Model to Minimise Actual Flow Time	A1-7
ID140: Batch Scheduling in the First Stage for Hybrid Assembly Differentiation Flow Shop to Minimize Total Actual Flow Time	A1-13
ID002: Designing Standard of Belt Alignment Kit as Teaching Aid	A1-20
ID088: Cellular Bucket Brigades with Worker Collaboration on U-Lines with Discrete	
Workstations	A1-25

Production Planning & Control 2

ID052: Design Production Schedule and Simulation of D Minus 1 Production Scenario	
Using Heaviside Function and Classical Control Theory: A Case Study of Hospital	
Beds Production	B1-1
ID345: Non-Permutation Flowshop Scheduling with Dual Resources	B1-7
ID284: Assemble to Order (ATO) Scheduling Problem in Backend of Precision Machine Manufacturing	B1-14
ID305: Iterative Algorithms for Loading and Scheduling for Flexible Manufacturing Systems with Controllable Processing Times	B1-18
ID274: An Inventory Decision Model of Two Products with Vector Autoregressive Demand	B1-24

Operation Research

ID161: A Statistical Model for Analyzing Fuel Efficiency Using Vessel Operation Data	C1-1
ID155: Applying An Optimization Model to Bus Scheduling Problems in Ho Chi Minh City, Vietnam	C1-8
ID089: Disease Prediction Considering Time Series Data of Health Examination	C1-22
ID010: Multi-period Optimization Model for Retirement Planning with Private Pension and Life Insurance	C1-26
ID165: Hand Posture Classification using Depth Image Data with Convolutional Neural Networks	C1-32

Logistics & Supply Chain Management 1

ID278: Human Aspect on Chain of Custody (CoC) System PerformanceD1-
ID311: Retailer Supply Networks: An Analysis and Research PerspectiveD1-
ID110: Determine Optimal Nutritional Medicine Convenient Store Location with Consideration of Competitions and Consumer Walking Distance Using Set CoveringD1-1
ID203: Design of Closed-Loop Supply Chain Model with Various Transportation MethodsD1-1
ID212: Vendor-Buyer Integrated Inventory Model for Deteriorating Items with Imperfect Quality Considering Carbon EmissionD1-2

Logistics & Supply Chain Management 2

ID239: Development of Modified Particle Swarm Optimization Method for Multi-objective	
Logistics Problem Combined with Inventory Control in Multi-periods under	
Unsteady Demand	E1-1
ID062: Location Routing Problem with Transportation Mode Options	E1-7
ID039: Optimal Operation of Supply Chain with a Hybrid Production Mode considering	
Customers Utility for Product Prices	E1-13
ID187: Efficient Stowage Plan of Loading and Unloading Operations for Shipping Liners	E1-19

Quality 1

ID048: Measuring Sustainable Service Quality (SUSSERV) of Malaysian Water and Sewerage Companies	F1-1
ID332: Evaluating Government Policies on Technical Barrier To Trade: A Case Study In Indonesia	F1-7
ID362: Application Of Equipment Automatic Time Study For Uph Improvement of Orthodyne 7200 and 7200+ Aluminum Wire Bonder	F1-13
ID058: Automated Visual Inspection of Multicrystalline Solar Wafers Using Wavelet Discrimination Measure	F1-17
ID057: Proposition of A Continuous Improvement Activity Support System Using Iot for Small-To-Medium-Sized Enterprises	F1-24

Operation Research & Optimization 1

ID246: Effect of Simulation Cooperation on Optimal Placement Using Queuing Network	A2-1
ID306: Optimisation of Processing Conditions for Multi-Product Batch Production Lines with Series-Parallel Operations under Uncertainty on Demands for Finished	
Products	A2-7
ID173: Developing An Order Batching Procedure in Bucket Brigades Order Picking System with On-Line Order Arrivals	A2-13
ID136: Applying Data Clustering on Determining the Number of Hidden States of Hidden Markov Model	A2-19

Operation Research & Optimization 2	
ID011: Ant Colony Optimization with Function of Autonomously Switching Rules of Route Selection	B2-1
ID172: A New Selection Criterion Considering Both Diversity and Accuracy in Ensemble Pruning	B2-7
ID008: Estimating Forward Looking Return Distribution with Generalized Recovery Theorem	B2-14
ID323: Formulation of Outbound-Vehicle in Traffic System Using Maximum Flow Technique	B2-20
Operation Research & Optimization 3 and Product Design 1 ID018: Development of a Lost Sales Inventory Policy for the Growth Stage of Short Life	C2 1
Upo28: Collaborative Blanning between Supply Chain Members Considering Eraczing MBS	C2-1
1D058. Conadorative Planning between Supply Chain Members Considering Fleezing MPS	
ID 317: Design Framework of Reverse Engineering (RE) and Rapid Prototyping (RP) for Development of Broken or Damaged Parts	C2-13
ID127: The Development of Sleep Support System for Children with Developmental Disorders	C2-19

Maintenance 1

ID112: A Framework for Constructing Control Chart for Unsupervised Data-driven	
Condition Monitoring	D2-1
ID091: Replacement First, Last and Overtime Policies with Shortage and Excess Costs	D2-8
ID302: Preventive Maintenance Considering OEE Threshold for Lease Equipment	D2-13
ID035: Optimal Preventive Maintenance Strategy for Leased Equipment under Limited	
Number of Maintenance Alternatives	D2-19

Modelling 1

ID195: Modeling and Simulation of Baggage Handling System in a Large Airport	E2-1
ID007: Generating the Dynamic Life Tables Modified by Subjective Indices for Retirement Planning	E2-7
ID233: A Mathematical Model for Flight to Carousel-based Unloading Zone Assignment Problem	E2-13
ID204: Simulation Application In Healthcare Services: A Case Study Of The Outpatient Clinic In The Hospital	E2-18

Sustainability 1

ID134: A Regional Initiative among Third	Sector in Japan F	72-1	1
--	-------------------	------	---

ID267: Development of Energy Saving Fountain Device Based on Archimedean Pump	F2-7
ID268: Basic Properties of Small Spiral Pump and its Application as Fountain Device	F2-13
ID132: Applying Least-Squares Support Vector Regression for Electricity Output	
Forecasting	F2-18

Product Design 1

ID198: Application of Experimental Design Method to Design Antenna	A3-1
ID254: The Ideation Effectiveness of a TRIZ-based Feature Extraction Design Approach	A3-7
ID263: Design and Development of Office Sports Seat	A3-12
ID190: Development of A Robot Based Rehabilitation Tool Which Can Estimate The Movement and Intent of The User	A3-17
ID357: A Low Cost 3D Object Scanning System	A3-21
ID271: A Study on Sound Positioning for Three Vehicle Types : Luxury, Compact, and	12.05
Sporty	A3-25

Logistics & Supply Chain Management 3

ID245: Development of A Simulation Model for the Operations of Automated Container	
Transporter (Acts) Between Container Ports To Support Intermodal Transportation	B3-1
ID307: A Study of Napier Pakchong-1's Supply Chain Management in Northeast Thailand	B3-7
ID063: Multi-type Electric Vehicle Relocation Problem with Consideration of Required	
Battery Charging Time	B3-13
ID028: Study on Collaborative Bargaining Solution for Contract Problem in Tandem Supply	
Chain Consisting of Three Members	B3-19
ID179: Designing of the Supply Chain of Purple Sweet Potatoes in Vietnam	B3-25
ID337: On a Vendor-Buyer Supply Chain Model for Cold Items	B3-30

Maintenance 2

ID235: New Lease Contracts for New and Remanufactured Fleet of Dump Trucks	C3-1
ID070: Application of Object-Oriented Petri Net in Developing an Industry 4.0 Cyber Physical Production System	C3-7
ID276: Product Lease Contractual Agreement: An Exploratory Study	C3-14
ID211: Extended Maintenance Overtime Policies for Database System with Notification of Maintenance.	C3-17
ID104: Cumulative Backup Policies for Database Systems with Oblivious Failures	C3-22
ID154: A Computing Method for System Signatures of A Connected-(r,s)-out-of-(m,n):F Lattice System	C3-28

Information System 1

ID051: Hybrid Indoor Positioning Method Using Both BLE and PDR	D3-1
ID174: Relational Analysis Model of Weather Conditions and Sales Patterns Based on Nonnegative Matrix Factorization	D3-7
ID163: A Model For Relational Analysis of Recommendation Articles and Reactions on Gourmet Service Site	D3-13
ID171: Disease Trend Clustering Based on The Big Data of National Health Insurance Service	D3-19
ID196: A Decision Support System for Cloud Computing Adoption	D3-26
ID024: Cloud Based Manufacturing Systems- Issues, Challenges and Applications	D3-32

Optimization 2

ID026: Improvement of Statistical Mechanics Model for Markovian Queueing Systems	
with Balking	E3-1
ID073: Traffic Line Analysis at Grooming Shops for Pets	E3-7
ID210: An Algorithm for Principal Points Considering External Criterion for Multivariate	
Binary Distributions	E3-15
ID354: Active Control of Base Pressure and Wall Pressure Flow Field at Supersonic Mach	
Numbers	E3-22
ID145: An optimized Time Series Model of Bioelectric Potential Dataset	E3-28
ID023: Modeling Cross-Docking Using Probabilistic Discrete Event Simulation	E3-33

Engineering Economics 1

ID138: DCF Approach to Multi-Period Capital Budgeting Decision Making under Contingent Projects for Electricity Capacity Expansion	F3-1
ID215: Impact of Technological Knowledge Diversification within A Group of Inventors on Patent Value	F3-7
ID093: Analysis of The Correlation between Group Affiliates' Returns in The Financial Market of South Korea	F3-12
ID180: Penalized Variable Selection and Its Application in Credit Risk Management	F3-17
ID009: Asset Allocation Model with Tail Risk Parity	F3-23
ID004: Study on Product Quality Design under The Effects of Feature Fatigue And Price Fairness Concerns: A Modeling Approach	F3-29

Logistics & Supply Chain Management 4

ID234: Goal Programming Approach for Multiple Objective Fresh Fruits Supply Chain	
Network Design in Southern of Vietnam	A4-1
ID099: A Variable Neighborhood Descent Algorithm for the Location of Logistics Facilities	
with Mobile Resources	A4-13

ID153: The Bayesian Prediction Algorithm Using Logistic Regression	A4-19
ID096: A memetic algorithm for the Multi-Level Lot Sizing Problem	A4-25
ID188: Post-disaster Debris Logistics Network under Collection Time Minimization	A4-31

Logistics & Supply Chain Management 5

ID017: Bidirectional Option Contract: The Case of Allowing Retailer to Order Higher than	
the Total of Initial Order Quantity and Option Quantity	B4-1
ID019: Optimal Production Quantity Under Bidirectional Option Contract	B4-7
ID217: A Method to Determine Manufacturing Allocation in a Global Supply Chain	B4-13
ID247: Design of a Framework for Strategic Supplier Evaluation Decision	B4-19
ID107: A Reactive GRASP Metaheuristic for the Capacitated Single Allocation p-Hub	
Median Problem with Multiple Capacity Levels	B4-25

Logistics & Supply Chain Management 6

ID086: Lean, Agile and Leagile in Military Inventory Management	C4-1
ID318: Design A Supply Chain Network for Dalat Persimmon in Lam Dong Province	C4-7
ID209: Supply Chain Risk Analysis on Oil and Gas Companies	C4-15
ID192: A Comparative Study of Interaction Performance in Head Mounted Display and Stereoscopic Wide Screen Display	C4-20
ID072: Partial Backorder Method to Determine the Optimal Lot Size with Exchangeable Imperfect Quality Item	C4-26

Information System 2

ID066: Development of a Video Chat System Enabling Space Sharing and Haptic	
Communication	D4-1
ID071: Steganalysis against Stego Image with Different Rates of Message Bits in Two	
Least-Significant Bit Planes	D4-6
ID141: Characteristics of a Word Segmentation Method Based on a State-transition Model	D4-12
ID325: Using A Data-Analytic Approach to Identify The Key Determinants of User	
Satisfaction in Adopting CRM Systems	D4-18
ID042: Information-based Discretization for Mining Rare Association Rule in	
Cerebrovascular Disease Dataset	D4-24

Technology Management 1

ID060: Organization Development through Value Chain and Technometric Model	E4-1
ID170: Learning And Forgetting Model in Identical Parallel Machines with Multiple	
Product Considering Product Changeover And Set-Up Times Under Demand	
Uncertainty: A Research Framework	E4-6

ID199: Empirical Study on Technology Transfer from Japan to Indonesia	E4-13
ID283: Technology Transfer Model in Business Framework of Global Production Networks	E4-19
ID269: Lifting Property of Tube Type Archimedean Pump	E4-26

Engineering Economics 2

ID160: Optimal Multi-Criterion Contracting Framework for System-Support Service under Risk-Transfer Effect	F4-1
ID012: Dynamic Optimal Execution Models with Transient Market Impact And Downside Risk	F4-7
ID122: Optimizing Sectional Device Investment in The Power Distribution System of Electricite Du Laos	F4-13
ID014 : Method for Measuring Brand Image Using Reaction Time and Hierarchical Bayesian Model	F4-20
ID353: Proposal of A Low Cost Energy Control in A Meeting Room	F4-26

Modelling 2

ID205: Specific Energy Consumption in Plunge-cut Surface Grinding of a Ductile Material	
with a Conventional Abrasive Grinding Wheel	A5-1
ID207: On Modelling Surface Roughness in Plunge-Cut Surface Grinding of a Ductile	
Material with a Conventional Abrasive Grinding Wheel	A5-7
ID175: Smart Factory in Industry 4.0	A5-14
ID049: Hybrid Air Navigation System for Unmanned Aerial Vehicles using a BLE Beacon	A5-21

Optimization 1

ID006: The Deep Neural Network Based Small Cap Stock Price Forecasting Model	B5-1
ID285: Tabu Search for Major League Baseball Scheduling	B5-7
ID295: Optimal Scheduling of Airport's Operations A Case Study in Tan Son Nhat International Airport	B5-13
ID280: A Particle Swarm Optimization-based Clustering for NonMetric Data	B5-18
ID065: A Comparison of Hyper-parameter Optimization Methods	B5-23

Quality 3

ID077:	Using Model Selection In Mixture Polynomials To Construct The Nonlinear Profile	
	Monitoring	25-1
ID300:	The Study Of The Average Run Length (Arl) For Bivariate Normal Process Under Varied Variances	25-6
ID277:	Remanufacturing Quality Control Strategies: A Literature Review and Proposed	
	Conceptual Framework	5-12

ID097: Optimal Process Parameter Selection And Quality Improvement Under Price And	
Quality Dependent Demand	C5-19
ID087: Data Ming for Cell Process Monitoring in TFT-LCD Manufacturing with An	
Empirical Study	C5-25

Information System 3

ID164: A Study on Extraction of Important Items Focused on Customer Growth Based on Network Analysis	D5-1
ID124: Behavioral-Understanding Support System for Children with Developmental Disorders Using "Radio Frequency Identifier" and "Global Positioning System"	D5-7
ID015: Activity Recognition Using Wearable Accelerometers	D5-11
ID227: The Collaborative Knowledge-Management ICT System for People with Developmental Disorders	D5-15
ID238: Exploration of Consumer Online Buying Behavior on Online Shopping Platforms by extended TAM Theory	D5-20

Logistics, Supply Chain Management & Service System

ID084: Optimal Sales Strategies for Dual Channel under Cooperation and Competition considering Customers' Purchasing Preference and Delivery Lead Time of Product	E5-1
ID083: Optimal Operation and Supply Chain Coordination in a Closed-Loop Supply Chain	£3-1
with Loss Averse Attitude	E5-7
ID266: Logistics Network Design: A case of Agricultural Products in Mekong Delta	E5-13
ID111: Design of Lightweight Intelligent Walker	E5-22
ID130: The Prevalence of Musculoskeletal Disorders' Symptoms and Work Posture	
Improvement Efforts Using Participatory Ergonomics Approach on Health Care	E5-27

Ergonomics 1

ID279: Events And Sounds That Hearing Impaired Persons Feel Dangerous	F5-1
ID162: Evaluation of Interactions Techniques and User's Performancesin Virtual Environments	F5-6
ID261: Promoting Imagination, Creativity, And Innovative Thinking Of Design Graduate Students After A Course Training	F5-12
ID075: A Study on Grip Span Measurement and Handle Profile Construction of Hand Tools	F5-18
ID159: Design and Development of Mobile Luggage Case	F5-24

Maintenance 2 & Optimization 2

ID034: Optimal Group Preventive Maintenance Policy for Multiple Non-identical Lease	ed
Devices with Weibull Lifetime Distributions	A6-1

ID055: Multivariate Weibull Distribution for Reliability Analysis Considering Common Cause Failures	A6-7
ID223: The Customer Purchase Model of Cross-Buying Behaviors Based on Information	A 6 12
ID158: A Study on Prediction Model of Selling Prices of Second-Hand Fashion Items	A6-13
ID150: A Noise-Resistant K-Means Algorithm Based on Local Density Ratio	A6-23
ID241: Solving an Aircraft Parking Scheduling Problem an Analytical and Simulation Approach	A6-29

Quality 2

ID030: Process Controlling through Standardization	B6-1
ID344: Data Mining Approach to Selection of Critical Steps for Semiconductor Wafer Fabrication	B6-8
ID027: Variable Stage-Independent Double Sampling Plan with Screening for Acceptance Quality Loss Limit	B6-14
ID051: Hybrid Indoor Positioning Method Using Both BLE and PDR	B6-20
ID350: Developing Information System Based on Internet of Things and Persuasive Technology to Increase Users' Awareness of Electricity Usage	B6-26
ID312: A Six Sigma User Template for the Implementation in Services	B6-32

IE Education 1

ID202: Development of Online Materials for Web Designing Lecture on ResponsiveWeb	
Design	C6-1
ID340: Waste Reduction Using Lean Manufacturing Approach to Improve Flow of Production Line (Case Study at PT. X)	C6-6
ID114: Analysis of The Relationship between Student 's Academic Performance and	
Practice Performance: A Case Study of Industrial Engineering and Management in	
Technology University	C6-12
ID125: Behavioral Understanding Support System for Children with Developmental	
Disorders Using Natural Language Processing	C6-15
ID230: Inventory Model Design Of Raw Material With Economic Order Quantity –Vendor	
Management Inventory - Consignment Approach	C6-20
ID194: Detection and Classification of Dots in Braille Book by Image Processing Technique	C6-27

IE Education 2

ID270: Promotion of The Human Resources Ecosystem of Inclusive Society for Engineers	D6-1
ID214: Universal Design Mind Cultivation through Support System Development for	
Disabilities	D6-6

ID129: Educational Support System of Switching Emotional Gears from Gustatory Organ	D6-10
ID128: Teaching Materials to Generate Behaviour and Cognitive Profiles by IoT	D6-14
ID094: A New Framework of Karakuri System in Japanese Automobile Industry	D6-19
ID092: Braille Translation System in Japan -Past and Now	D6-24

Ergonomics 2

ID040: Safety Climate Investigation of Metal Manufacturing Workers	E6-1
ID324: A User-Defined Gesture Vocabulary for Controlling a Treadmill System	E6-7
ID333: The Effects of Acute Exercise and Task Load on Cognitive Performance during Simulated Night Shift Work	E6-12
ID050: Supportive Bedroom Design for the Elderly	E6-17
ID044: A Critical Study, on Human Factors Leading to Stresses, in Women at a Typical Garment Industry	E6-20
ID146: Integration of Sound and Image Data for Detection of Sleep Apnea using Convolutional Neural Network	

Sustainability 2

ID355: Green Manufacturing in Industries: A Review	F6-1
ID264: Basic Property of Flow Distribution around Archimedean Pump	F6-7
ID032: A Conceptual Framework for Manufacturing Organization to Implement Green Manufacturing	F6-12
ID167: An Empirical Study of Optimizing Multi-Chiller Operations via Big Data Analytics for High-Tech Industries	F6-18
ID046: E-Quality in C2C Online Buy and Sell Websites: Customer Differentiation Using	
Discriminant Analysis	F6-24

Ergonomics 3

ID085: Effects of Leg Raise Angles in Supine Position on Blood Pressure and Heartbeat	
Rate	A7-1
ID258: Predicting Exercise Intensity with Number of Squat Movement	A7-7
ID320: Accident Causes For Fatal Occupational Falls In The Construction Industry	A7-11
ID080: Physical Ergonomics of Brand X, Y, and Z E-bikes: A Comparative Analysis and Product Re-design	A7-17
ID189: Fundamental study of concentration using Electroencephalography and Electromyography	A7-25
ID224: A Multi-year Field Study to Identify Contributing Factors for Neck and Back Postures of Workers in Automobile Assembly	A7-30

Ergonomics 4

B7-1
B7-5
B7-9
B7-15
B7-22
B7-28

Logistics & Supply Chain Management 7

ID296: Design and Management Fruit and Vegetable Supply Chain in Mekong Delta of	
Vietnam: A Holistic Research Framework	C7-1
ID342: Vehicle Routing and Dock Scheduling in A Cross-Docking Platform for Fresh	
Grocery Distribution Center in Vietnam	C7-11
ID329: Supplier Selection Method Using Analytic Hierarchy Process for A Car Seat	
Manufacturer in Thailand	C7-20
ID216: Multi Objective Optimization Using Genetic Algorithm of a Pneumatic Connector	C7-26

Service System 1

ID281: Scheduling Outpatients in a Hospital with Multiple Service Points	D7-1
ID358: Design of Bandung Zoo Visitor Service Improvement	D7-7
ID334: Competitive Advantages of Hair Salons in Japan for Foreign Residents	D7-12
ID297: Integration of Lean Service and the Theory of Constraints to Reduce The Throughput Time: A Testing Laboratory Case in The Public Service of Indonesia	D7-18
ID090: Applications of Energy Usage Data : A Literature Review	D7-24
ID043: e-Learning for Preventive Machine Maintenance Process of Toshiba BMC 80.5 Using SECI Method and ADDIE	D7-30

Service System 2

ID351: Value in Online C2C Marketplace Construct Identification and Scale Development	E7-1
ID142: Integrating Omni Channel and Artificial Intelligence to Achieve Precision Marketing – A Case Study of Sharing Economy Platform	E7-7
ID 298: Measuring Organizational Competencies	E7-13
ID133: Development of A Human Sensor Using Living Plant and Bioelectric Potential	E7-19
ID213: Research on Self-Awareness of One's Aptitude for A Job by Means of Event-	
Related Potential	E7-23

ID116: Analysis of Facebook Group Buying Services Quality Using Kano Model	E7-25
Special Session 1- Tourism	
ID105: Tendency of foreign visitor in Kaga City	F7-1
ID068: A Tour Recommendation System Based on Text Mining of Online Personal Reviews	F7-7
ID067: Intelligent Image Resizing of Travel Photos to Proper Aspect Ratio	F7-12
ID143: Function of Tourism Associations in Japan	F7-17
ID256: Comparing People's Intention to Visit Tourist Destinations	F7-22
ID286: A Methodological study on Institutions of Tourism in Japan	F7-28
ID113: Towards Online Marketing In Tourism	F7-33

Production Planning & Control 3

ID242:	: Determining Number of Workers for Front Office Using Shift Scheduling Considering Workload	A8-1
ID249:	: A Study on The Seat Setting of the Production Seat Booking System for the Make- To-Stock Manufacturing Process "In case of the Fixed Lot Size Production"	A8-7
ID253:	: Worker Coordination Policy for Self-Balancing Production Line with Worker and Station Dependent Speed	A8-13
ID265:	: The Research of Current Signal Analysis for Overall Equipment Effectiveness in Cyber-Physical System	A8-19
ID243:	: Development of Algorithm based on Particle Swarm Optimization for Process Design to Promote Levelization and Productivity on Large scale-Mix Production	
	Line	A8-25

Ergonomics 5

ID117: Sedentary Chair Design	B8-1
ID020: Risk Analysis for Information Technology in Financial Industry	B8-6
ID021: Improvement Method of Taguchi Quality Engineering for Loss Function using	
Reliability Engineering	B8-10

Technology Management 2

ID047: Mutualism Effects between e-Commerce and Convenient Store Industries
ID328: Current State of BIM Adoption in the Chinese Architectural, Engineering and
Construction Industry
ID037: Developing a Social Life Cycle Assessment Tool for Workers of Micro and Small
Scale Jewelry Industry in the Philippines: in the Case of Meycauayan City, Bulacan

Other

ID349: Demand Originated Reversible Lane Design for Transportation Networks	D8-1
ID137: Improving AdaBoost by A Sliding Window Scheme	D8-7
ID121: Management of Shared Learning Using Social Media Services	D8-13
ID248: Consignment Stock in a Three-Level Supply Chain System with Multiple-Suppliers and Multiple-Retailers with Deteriorating Item	D8-18
ID 359: System design of Raspberry Pi-Based cluster for building camera 360 degree	D8-24

Author Index	21
--------------	----

COMMITTEE

Conference Chair:

Andi Cakravastia, Bandung Institute of Technology, Indonesia

Conference Co-chair:

Abdul Hakim Halim, Bandung Institute of Technology, Indonesia I Nyoman Pujawan, Institut Teknologi Sepuluh Nopember, Indonesia

Program Chair:

Anas Ma'ruf, Bandung Institute of Technology, Indonesia

Local Organizer:

Bermawi Priyatna Iskandar, Bandung Institute of Technology, Indonesia Iwan Inrawan Wiratmadja, Bandung Institute of Technology, Indonesia Dradjad Irianto, Bandung Institute of Technology, Indonesia Sukoyo, Bandung Institute of Technology, Indonesia TMA Ari Samadhi, Bandung Institute of Technology, Indonesia Wisnu Aribowo, Bandung Institute of Technology, Indonesia Muhammad Mi'radj Isnaini, Bandung Institute of Technology, Indonesia Fariz Muharram Hasby, Bandung Institute of Technology, Indonesia Yosi Agustina Hidayat, Bandung Institute of Technology, Indonesia Titah Yudhistira, Bandung Institute of Technology, Indonesia Rully Tri Cahyono, Bandung Institute of Technology, Indonesia The Jin Ai, Atma Jaya University Yogyakarta, Indonesia Deny Ratna Yuniartha, Atma Jaya University Yogyakarta, Indonesia Parama Kartika Dewa, Atma Jaya University Yogyakarta, Indonesia

International Advisory Board:

- Anthony Shun Fung Chiu (De La Salle University, Philippines)
- Baoding Liu (Tsinghua University, China)
- Bernard C. Jiang (Taiwan Tech, Taiwan)
- Byung-In Kim (POSTECH, Korea)
- Che-Fu Chien (National Tsing Hua University, Taiwan)
- Chi-Hyuck Jun (POSTECH, Korea)
- Chin-Yin Huang (Tunghai University, Taiwan)
- David M.C. Wu (National Chiao Tung University, Taiwan)
- Du-Ming Tsai (Yuan Ze University, Taiwan)

- Erhan Kozan (Queensland University of Technology, Australia)
- Guo Quan (George) Huang (University of Hong Kong, Hong Kong)
- Hark Hwang (KAIST, Korea)
- Hidetaka Nambo (Kanazawa University, Japan)
- Hing Kai Chan (Nottingham University Business School China, China)
- Hirokazu Kono (Keio University, Japan)
- Ho Thanh Phong (International University, Vietnam)
- Huynh Trung Luong (AIT, Thailand)
- Ilkyeong Moon (Seoul National University, Korea)
- Jaewook Lee (Seoul National University, Korea)
- Jin Peng (Tsinghua University, China)
- JinWu Gao (Renmin University of China, China)
- Kai Ling Mak (The University of Hong Kong, Hong Kong)
- Kanchana Sethanan (Khon Kaen University, Thailand)
- Kap Hwan Kim (Pusan National University, Korea)
- Katsuhiko Takahashi (Hiroshima University, Japan)
- Kazuyoshi Ishii (Kanazawa Institute of Technology, Japan)
- Kenichi Nakashima (Kanagawa University, Japan)
- Kim Hua Tan (Nottingham University, Malaysia)
- Kin Keung Lai (City University of Hong Kong, Hong Kong)
- Kinya Tamaki (Aoyama Gakuin University, Japan)
- Kuo-Ming Wang (Yuan Ze University, Taiwan)
- Kwang-Jae Kim (POSTECH, Korea)
- Mao Jiun Wang (National Tsing Hua University, Taiwan)
- Mitsuo Gen (Waseda University, Japan)
- Mooyoung Jung (UNIST, Korea)
- Nyoman Pujawan (Institut Teknologi Sepuluh Nopember, Indonesia)
- Richard Y.K. Fung (City University of Hong Kong, Hong Kong)
- Shanlin Yang (Hefei University of Technology, China)
- Sha'ri bin Mohd Yusof (Universiti Teknologi Malaysia, Malaysia)
- Takashi Irohara (Sophia University, Japan)
- Takashi Oyabu (Kokusai Business Gakuin College, Japan)
- Voratas Kachitvichyanukul (AIT, Thailand)
- Yiming Wei (Beijing Institute of Technology, China)
- Young Hae Lee (Hanyang University, Korea)
- Zahari Taha (Universiti Malaysia Pahang, Malaysia

Determining Number of Workers for Front Office Using Shift Scheduling Considering Workload

Alvera Antarika, Deny Ratna Yuniartha†, Ign. Luddy Indra Purnama

Department of Industrial Engineering

Universitas Atma Jaya Yogyakarta, Yogyakarta, Indonesia Tel: (+62) 24,487711 Email: alveranta@yahoo.com.dena@mail.uaiy.ac.id‡.luddy.indra@staff.uaiy.ac.i

Tel: (+62) 24-487711, Email: alveranta@yahoo.com, dena@mail.uajy.ac.id[†], luddy_indra@staff.uajy.ac.id

Abstract. This research is motivated by conflicting condition of satisfying forward rotation shift allocation and available workers constraint. Shift scheduling generally considers number of workers as input parameter that represents the demand especially for service industry. As consequence, shift workers will apply short rest time because of violation of forward rotation shift allocation to satisfy number of workers constraint. This condition could decrease workers satisfaction of their schedule and also influence workers performance. The proposed model has develop 2 stages procedure, i.e. (1) Shift schedule development using initial number of workers, (2) adjusting number of workers to minimize violation of soft constraint. Numerical example shows that the developed shift schedule results global optimal solution for small problem. It is better to adjust the number of workers by decreasing female worker and increasing male workers, because flexibility of male workers to maintain the advantages of female workers.

Keywords: shift scheduling, number of workers, forward rotation shift allocation, workload

1. INTRODUCTION

Service industries compete in competitive environment caused by demand fluctuation. Service demand varies as function of time in day, week, or seasonally, with random arrivals. Moreover, service industry has to deal with the variability of customers requirements. There is direct interaction between customers and workers so that generally work activity in service industry is oriented toward people rather than toward things (Fitzsimmons & Fitzsimmons, 2004). Service industry operation strategy has to manage its workers in order to supply the fluctuating demand. Shift scheduling is an important staffing problem for many service organizations. The working time is arranged using shift scheduling to meet the demand. However, poor working arrangement in shift scheduling may influence workers performance (Chiang et al., 2010; Puttonen et al, 2010; Lee et al., 2011; Wittmer et al., 2015), and it will endanger the service delivery to the customers.

Researches in shift scheduling have been conducted by many researchers. The researches have focused on shift arrangement of workers to meet the demand. Therefore commonly procedure in developing shift scheduling is demand forecasting, demand to number of workers requirement conversion, and shift arrangement based on number of workers requirement. Conversion of demand to number of workers generally also has considered the labor cost. This approach is base on manager viewpoint. On the other hand, shift workers sometimes have problem with their social requirement because of unregular working hours. So that managing shift workers needs to consider working-life balance.

Shift scheduling developing has to consider fairness schedule to all workers by balancing the workload among workers. Researches in shift scheduling considering workload balance have been conducted in many parameters workload. Shift scheduling considering workers of workload balance in parameter of working hours or working days has been conducted by Kassa & Tizazu (2013), Rocha et al. (2014), Han & Li (2014), Todovic et al. (2015), and van Veldhoven (2016). Some of researches have considered shift allocation as workload balance, founded in Rocha et al. (2013), Dahmen & Rekik (2015), van der Veen (2015), Jafari & Salmasi (2015), Todovic et al. (2015), and Smalley & Keskinocak (2016). Besides the workload balance, many researches in shift scheduling have considered workers' preference to accommodate schedule flexibility maintaining workers social life requirement, such as in Han & Li (2014), Labidi et al. (2014), Jafari & Salmasi (2015), Todovic et al. (2015), Jafari & Salmasi (2015), and van Veldhoven (2016).

Jockvom *et al* (2016), Silvania *et al*. (2017), and Herawati *et al* (2017) have developed shift scheduling

^{† :} Corresponding Author

model for different departments in hotels, motivated by weakness identification of applied shift schedule of 20 observed hotels in Yogyakarta, Indonesia (Purnama & Yuniartha, 2014). The developed models have considered physical workload balance and workers' preference. The workers physical workload has been measured using rating of perceived exertion (RPE) Borg's Scale. Weaknesses of long working hours and inadequate rest hours in Purnama & Yuniartha (2014) has been eliminated by Jockvom et al (2016), Silvania et al. (2017), and Herawati et al (2017) using forward rotation shift allocation constraint. But this constraint may not be fully satisfied because of limited by available workers constraint. The objective of proposed model in this research is to determine number of workers as adjustment of available workers obtaining ideal schedule by considering workload balance and forward rotation.

2. MATHEMATICS MODEL

The proposed model in this research is modified the mathematics model in Silviani et al. (2017) to determine number of workers requirement for front office. Silviani el al. (2017) has developed shift scheduling model considering workers physical workload and worker's preference in 0-1 Goal Programming. The Goal Programming model has 2 constraints, i.e. hard constrain and soft constraint. The hard constraint is not violated constraint, while soft constraint may be violated in minimum. The hard constraints in Silviani el al. (2017) have concerned the management rule to meet the demand and maintain labor cost, as well as maintain workers performance. The hard constraints of management rule have been minimum and maximum number of workers in each shift to meet the demand, minimum working days in a week, and number of available workers. The hard constraints to maintain the workers performance by giving adequate rest have been one shift allocation in a day and forward rotation shift allocation, i.e. not assign to morning shift after night shift the day before. The soft constraints in Silviani el al. (2017) have been forward rotation shift allocation, i.e. not assign to morning shift after afternoon shift the day before and not assign to afternoon after night shift the day before. These constraints have been considered as soft constraint because conflicting condition between the forward rotation against minimum workers requirement in each shift and number of available workers. The forward rotation will tend to require more workers compare to number of available workers. Other soft constraints in Silviani el al. (2017) have been balancing the physical workload and workers' preference fulfillment. Balancing the physical workload will give fairness arrangement among workers to create workers satisfaction to their schedule. Considering workers' preference will give

schedule flexibility to accommodate workers social life requirement. The objective function of Silviani *el al.* (2017) shift scheduling model is to minimize violation of the soft constraints.

The objective of the proposed model is to determine the number of workers using the shift scheduling. The procedure consists of 2 stages; (1) Shift schedule development using initial number of workers, (2) adjusting number of workers to minimize violation of soft constraint. In the first stage, the proposed model has modified the shift scheduling model in Silviani el al. (2017). The soft constraints of forward rotation in Silviani el al. (2017) will be considered as hard constraints in the proposed model to generate more ideal shift arrangement for all workers by giving adequate rest time during the working period. Same as in Silviani el al. (2017), the proposed model has considered balancing physical workload and workers preference as soft constraints, in order to prioritize the manajement rule of minimum number of workers in a shift and minimum working days in a week.

The objective of the shift scheduling model in the first stage is to minimize violation of balancing the physical workload and workers' preference fulfillment.

$$\operatorname{Min} Z = \sum_{j=1}^{J} \left(d1_{j}^{+} + d1_{j}^{-} \right) + \sum_{k=1}^{K} \left(d2_{k}^{+} + d2_{k}^{-} \right) + \sum_{i=1}^{I} \sum_{j=1}^{J} \left(d3_{i,j}^{+} + d3_{i,j}^{-} \right) + \sum_{i=1}^{I} \sum_{k=1}^{K} \left(d4_{i,k}^{+} + d4_{i,k}^{-} \right) +$$

$$(1)$$

Notations, parameters, and variables:

- $PY_{i,j}$: 1 if male worker *j* is assigned in morning shift of day *i*, 0 otherwise
- $SY_{i,j}$: 1 if male worker *j* is assigned in afternoon shift of day *i*, 0 otherwise
- $MY_{i,j}$: 1 if male worker *j* is assigned in night shift of day *i*, 0 otherwise
- $PX_{i,k}$: 1 if female worker k is assigned in morning shift of day i, 0 otherwise
- $SX_{i,k}$: 1 if female worker k is assigned in afternoon shift of day i, 0 otherwise

 P_{min} : minimum number of workers in morning shift

- S_{min} : minimum number of workers in afternoon shift
- M_{min} : minimum number of workers in night shift
- P_{max} : maximum number of workers in morning shift
- S_{max} : maximum number of workers in afternoon shift
- M_{max} : maximum number of workers in night shift
- i : index for day, $i = 1, 2, \dots, I$
- j : index for male worker, j = 1, 2, ..., J
- k : index for female worker, k = 1, 2, ..., K
- l : maximum number of working days in a month
- *n* : working days in a week
- t : working day at the beginning of week
- *w* : consecutive working days

- *a* : RPE scale for morning shift
- *b* : RPE scale for afternoon shift
- c : RPE scale for night shift
- *FY*_j : physical workload of male worker in a month
- FX_k : physical workload of female worker in a month
- g : average physical workload among all workers
- $QY_{i,j}$: 1 if male worker *j* ask for assigned in morning shift, 0 for ask off-day
- $RY_{i,j}$: 1 if male worker *j* ask for assigned in afternoon shift, 0 for ask off-day
- $OY_{i,j}$: 1 if male worker *j* ask for assigned in night shift, 0 for ask off-day
- $QX_{i,k}$: 1 if female worker k ask for assigned in morning shift, 0 for ask off-day
- $RX_{i,k}$: 1 if female worker k ask for assigned in afternoon shift, 0 for ask off-day

Constraints:

$$\sum_{j=1}^{J} PY_{i,j} + \sum_{k=1}^{K} PX_{i,k} \ge P_{\min} \quad \forall_{i}$$
(2)

$$\sum_{j=1}^{J} SY_{i,j} + \sum_{k=1}^{K} SX_{i,k} \ge S_{\min} \quad \forall_{i}$$
(3)

$$\sum_{j=1}^{J} MY_{i,j} \ge M_{\min} \qquad \forall_i \qquad (4)$$

$$\sum_{j=1}^{J} PY_{i,j} + \sum_{k=1}^{K} PX_{i,k} \le P_{\max} \quad \forall_{i}$$
(5)

$$\sum_{j=1}^{J} SY_{i,j} + \sum_{k=1}^{K} SX_{i,k} \le S_{\max} \quad \forall_{i}$$
(6)

$$\sum_{j=1}^{J} MY_{i,j} \le M_{\max} \qquad \forall_i \tag{7}$$

$$PY_{i,j} + SY_{i,j} + MY_{i,j} \le 1 \qquad \forall_{ij}$$
(8)

$$PX_{i,k} + SX_{i,k} \le 1 \qquad \forall_{ik} \tag{9}$$

$$MY_{i,j} + PY_{(i+1),j} \le 1 \qquad \forall_{ij} \qquad (10)$$

$$SY_{j,i} + PY_{j,(i+1)} \le 1 \qquad \qquad \forall_{ij} \tag{11}$$

$$MY_{j,i} + SY_{j,(i+1)} \le 1 \qquad \qquad \forall_{ij} \qquad (12)$$

$$SX_{k,i} + PX_{k,(i+1)} \le 1 \qquad \qquad \forall_{ik} \tag{13}$$

$$MY_{i,j} + MY_{(i+1),j} + MY_{(i+2),j} \le 2 \quad \forall_{ij}$$
 (14)

$$\sum_{i=t}^{i+n} PY_{j,i} + \sum_{i=t}^{i+n} SY_{j,i} + \sum_{i=t}^{i+n} MY_{j,i} = n$$
(15)

$$\sum_{i=t}^{t+n} PX_{k,i} + \sum_{i=t}^{t+n} SX_{k,i} = n$$
(16)

$$\sum_{i}^{w+i} PY_{j,i} + \sum_{i}^{w+i} SY_{j,i} + \sum_{i}^{w+i} MY_{j,i} = w$$
(17)

$$\sum_{i}^{w+i} PX_{k,i} + \sum_{i}^{w+i} SX_{k,i} = w$$
(18)

$$\sum_{i=1}^{I} aPY_{j,i} + \sum_{i=1}^{I} bSY_{j,i} + \sum_{i=1}^{I} cMY_{j,i} = FY_j$$
(19)

$$\sum_{i=1}^{K} aPX_{k,i} + \sum_{i=1}^{K} bSX_{k,i} = FX_k$$
(20)

$$\frac{\sum_{j=1}^{J} FY_j + \sum_{k=1}^{K} FX_k}{J + K} = g$$
(21)

$$FY_{j} - g + d1_{j}^{+} + d1_{j}^{-} = 0$$
(22)

$$FX_k - g + d2_k^+ + d2_k^- = 0$$
 (23)

$$QY_{j,i} - PY_{j,i} + d3^{+}_{j,i} + d3^{-}_{j,i} = 0$$
(24)

$$RY_{j,i} - SY_{j,i} + d3^{+}_{j,i} + d3^{-}_{j,i} = 0$$
(25)

$$OY_{j,i} - MY_{j,i} + d3^+_{j,i} + d3^-_{j,i} = 0$$
⁽²⁶⁾

$$QX_{k,i} - PX_{k,i} + d4_{k,i}^{+} + d4_{k,i}^{-} = 0$$
⁽²⁷⁾

$$RX_{k,i} - SX_{k,i} + d4_{k,i}^{+} + d4_{k,i}^{-} = 0$$
⁽²⁸⁾

Constraints (2) to (7) are management rule of minimum and maximum number of workers in each shift to meet the demand. Constraint (8) and (9) ensure ideal working hours, a shift in a day. Constraints (10) to (13) guarantee the forward shift allocation. Constraints (11) to (13) have been modified into hard constraints. Constraint (14) limits consecutive night shift allocation to avoid negative effect in health of working in night shift.

Constraints (15) to (18) arrange shift allocation to maintain working days according management rule. Constraints (19) to (21) calculate the individual and total physical workload. Constraints (22) and (23) balance the physical workload among workers. Constraints (24) to (28) are workers' preference fulfillment.

In the second stage of proposed model, violation of soft constraint and number of workers allocation in each daily shift become the basis in adjusting number of workers by gender. Number of workers allocation in each daily shift will be compared to maximum number workers in each shift. The model will consider as excess workers if the number of workers allocation if in the shift equal to maximum workers in a shift. If the number of workers adjustment is only based on violation of soft constraints then the model will tend to increase number of workers until no violation. Increasing number of workers will decreasing violation of soft constraints but also increasing daily shift excess workers. It means that increasing number of workers only results in increasing labor cost and not for the schedule quality. The model will stop increasing number of workers when there is no significant improvement in violation of soft constraints and number of shift in maximum workers.

3. NUMERICAL EXAMPLE AND DISCUSSION

The proposed model has been evaluated using real data of shift scheduling parameter identified in Purnama & Yuniartha (2014). Table 1 shows shift scheduling parameter of the 3 hotels as numerical example to evaluate the proposed model. Table 2 to Table 4 shows results of the proposed model for the 3 hotels, respectively.

Table 1. Shift Scheduling Parameter of 3 Hote

Parameter	Hotel A	Hotel B	Hotel C	
Workers	Male 4	Male 3	Male 3	
	Female 1	Female 1	Female 3	
Minimal				
worker in a	1	1	1	
shift				
Maximal				
worker in a	2	2	2	
shift				
Workstretch	6-1	5-1	No	
Period	30	30	30	
RPE scale of				
morning	7.1	8.0	8.9	
shift				
RPE scale of				
afternoon/	7.4	7.8	8.2	
night shift				

Table 2. Results for Hotel A					
Workers	4 Male 1 Female	4 Male	5 Male		
Physical	Balance	Balance	Balance		
workload	Average of	Average of	Average of		
	187	187,63	187, 32		
Workers' preference fulfillment	Ok	Ok	Ok		
Number of shift in maximum workers	39 shifts	13 shifts	39 shifts		

Table 2 Results for Hotel A

Table 2	Degulta	for Hotal D	

Table 5. Results for noter D			
Workers	3 Male 1 Female	4 Male	3 Male 2 Female
Physical	Balance	Balance	Balance
workload	Average of	Average of	Average of
	196,8	196,8	196,8
Workers' preference fulfillment	Not Ok	Ok	Not Ok
Number of shift in maximum workers	10 shifts	10 shifts	35 shifts

Table 4. Results for Hotel C				
Workers	3 Male	3 Male	3 Male	4 Male
	3 Female	2 Female	1 Female	
Physical	Balance	Balance	Balance	Balance
workload	Average	Average	Average	Average
	of 212	of 211,3	of 211,3	of 211,3
Workers' preference fulfillment	Ok	Ok	Ok	Ok
Number of shift in maximum workers	60 shifts	36 shifts	10 shifts	10 shifts

Adjustment of decreasing number of male workers less than 4 results no feasible solution because violation of forward rotation, minimum consecutive night shift, and minimum consecutive working days (workstretch) constraint. For Hotel B and C, with male workers of less than 4 may result improving because number of consecutive working days is shorter or no workstretch. Adjustments of Hotel A by eliminate the only female workers results improving in number of shift with maximum workers. But increasing number of male workers into 5 workers results no improvement of shifts in maximum workers. The same condition is shown in Hotel B when adjustment by eliminate the female workers. Decreasing male worker to increase female workers results no improvement as shown in Hotel B. It means that it is better for increasing male workers because of the flexibility of male workers to assign in night shift to satisfy minimum consecutive night shift allocation. However, the proposed model has capability to recommend male and female workers composition to maintain advantages of female workers, as shown also by numerical example of Hotel C.

The proposed model has been evaluated by varying the values of RPE scale and workers' preference. The proposed model will always satisfy physical workload balance. Satisfying workers' preference will be limited by the work stretch pattern. Longer consecutive working days will limit flexibility to satisfy the preference. Model evaluation for developing shift scheduling shows global optimum solution for simple problem but it will be time consuming for increasing number of workers and complex scheduling parameters, such as the workers' preference.

4. CONCLUSION AND SUGESTION

The proposed model can result optimal number of workers base on the improvement of schedule quality in term of violation of workers' preference and excess workers. It is better to adjustment the number of workers by decreasing female worker and increasing male workers, because flexibility of male workers to assigned in all shifts. However, the proposed model can recommend the composition of male and female workers to maintain the advantages of female workers. Satisfying workers' preference is limited by workstretch pattern. More deeply investigation of workers' preference, especially for worker on leave, need to be considered, as well as determining casual workers for increasing demand in high season.

REFERENCES

- Chiang, F. F.T., Birtch, T. A., Kwan, H. K. (2010) The moderating roles of job control and work-life balance practices on employee stress in the hotel and catering industry, *International Journal of Hospitality Management*, **29**, 25–32.
- Dahmen S., Rekik M. (2015) Solving multi-activity multiday shift scheduling problems with a hybrid heuristic, J Sched, 18:207–223, DOI 10.1007/s10951-014-0383-z
- Han A. F., Li E. C. (2014) A constraint programming-based approach to the crew scheduling problem of the Taipei mass rapid transit system, *Ann Oper Res*, **223**:173–193 DOI 10.1007/s10479-014-1619-1

- Herawati, A., Yuniartha, D. R., Purnama, I. L.I, Dewi, L. T. (2017) Shift Scheduling Model Considering Workload and Worker's Preference for Security Department, *Proceeding of The 1st International Conference on Industrial Engineering and System Engineering*
- Jafari, H., Salmasi, N. (2015) Maximizing the nurses' preferences in nurse scheduling problem: mathematical modeling and a meta-heuristic algorithm, *J Ind Eng Int*, **11**:439–458 DOI 10.1007/s40092-015-0111-0
- Jockvom, Yuniarha, D. R., Purnama, I. L. I, Dewi, L. T. (2016) Shift Scheduling Model Considering Workload for Housekeeping Department, *Proceeding of The 17th Asia Pacific Industrial Engineering and Management Systems Conference*
- Kassa B. A., Tizazu A. E. (2013) Personnel scheduling using an integer programming model- an 2013 application at Avanti Blue-Nile Hotels, SpringerPlus, 2:333, http://www.springerplus.com/content/2/1/333
- Labidi M., Mrad M., Gharbi A., Louly M. A. (2014) Scheduling IT Staff at a Bank: A Mathematical Programming Approach DOI: http://dx.doi.org/10.1155/2014/768374 ProQuest document ID: 1566537001, an open access article distributed under the Creative Commons Attribution License
- Lee, G., Magnini, V. P., Kim, BC. P. (2011) Employee satisfaction with schedule flexibility: Psychological antecedents and consequences within the workplace, *International Journal of Hospitality Management*, **30**, 22–30.
- Purnama, I. L. I., Yuniartha, D. R. (2014) Shift-scheduling characteristic identification of non-star hotels industry in Yogyakarta Indonesia, *Proceeding of The 15th Asia Pacific Industrial Engineering and Management Systems Conference*, 1442-1448.
- Puttonen, S., Härmä, M., Win, C. H. (2010) Shift work and cardiovascular disease – pathways from circadian stress to morbidity, *Scandinavian Journal of Work*, *Environment & Health*, **36**, 96-108.
- Rocha M., Oliveira J. F., Carravilla M. A. (2013) Cyclic staff scheduling: optimization models for some real-life problems, *J Sched*, 16:231–242, DOI 10.1007/s10951-012-0299-4
- Rocha M., Oliveira J. F., Carravilla M. A. (2014) A constructive heuristic for staff scheduling in the glass industry, *Ann Oper Res*, **217**:463–478 DOI 10.1007/s10479-013-1525-y
- Silviani, H., Yuniartha, D. R., Purnama, I. L.I, Dewi, L. T, (2017) Shift scheduling model considering workers' workload for front office department of hotel in Yogyakarta Indonesia, *Journal of Global Tourism*, under review

- Smalley H. K., Keskinocak P. (2016) Automated medical resident rotation and shift scheduling to ensure quality resident education and patient care, *Health Care Manag Sci*, **19**:66–88, DOI 10.1007/s10729-014-9289-8
- Todovic D., Makajic-Nikolic D., Kostic-Stankovic M., Martic M. (2015) Police officer scheduling using goal programming Policing, An International Journal of Police Strategies & Management, 38 2 295-313 DOI 10.1108/PIJPSM-11-2014-0124
- van Veldhoven S., Post G., van der Veen E., Curtois T. (2016) An assessment of a days off decomposition approach to personnel shift scheduling, *Ann Oper Res*, 239:207–223 DOI 10.1007/s10479-014-1674-7
- van der Veen E., Hans E. W., Post G. F., Veltman B. (2015) Shift rostering using decomposition: assign weekend shifts first, *J Sched*, **18**:29–43, DOI 10.1007/s10951-014-0385-x
- Wittmer, J. L. S., Shepard, A. K., Martin, J. E. (2015) Schedule preferences, congruence and employee outcomes in unionized shift workers, *American Journal* of Business, 30, Issue: 192-110 https://doi.org/10.1108/AJB-01-2014-0001