RAPID PROTOTYPING PROCESS OF BOROBUDUR STUPPA CHOCOLATE MOLD

THESIS

Submitted as Partial Fulfill of the Requirements to Obtain the Bachelor of International Industrial Engineering Degree

Arranged by:

PANDU DAMARDJATI
Student Number: 06 14 04902

INTERNATIONAL INDUSTRIAL ENGINEERING PROGRAM
FACULTY OF INDUSTRIAL TECHNOLOGY
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2011
STATEMENT OF WORK’S ORIGINALITY

I honestly declare that this thesis which I wrote does not contain the works or parts of the works of other people, except those cited in the quotations and bibliography, as a scientific paper should

Yogyakarta, February 2011

Pandu Damardjati
A BACHELOR OF
INTERNATIONAL INDUSTRIAL ENGINEERING THESIS
On
RAPID PROTOTYPING PROCESS OF BOROBUDUR STUPPA
CHOCOLATE MOLD

Has been Examined and Approved
On February 2011

Adviser,
T.B. Hanandoko, S.T., M.T.

Board of Examiners,
Chairman,
T.B. Hanandoko, S.T., M.T.

Member,
Ir. B. Kristyanto, M.Eng., Ph.D.
Ag. Gatot Bintoro, S.T., M.T.

Yogyakarta, February 2011
Dean of Faculty of Industrial Technology
Universitas Atma Jaya Yogyakarta

Ir. B. Kristyanto, M.Eng., Ph.D.
ACKNOWLEDGEMENT

Dedicated for:

MY BELOVED FATHER AND MOTHER
Thanks for your passion, commitment and love
to always provide the best education
for your sons and daughters

MY BELOVED BROTHERS AND SISTERS
All of you are the spirit which enlighten my life

MY ALMAMATER: MINOR CANISII SEMINARIUM OF MERTOYUDAN
You who change the way of my thinking,
Prepare me for the next level.

The Most Special Dedication:

MY BELOVED GOD
YOU who provides me the unbelievable strength
by providing many good people around me, the sinner.
 As St. Paul said,
 “But we have this treasure in earthen vessels, that the
 excellency of the power may be of God, and not of us.”
 (II Corinthians 4:7)
FOREWORD

This final report is one of the prerequisite to finish the undergraduate study program in Industrial Engineering Department, Industrial Technology Faculty, Atmajaya Yogyakarta University.

I am so grateful to many people who encouraged, and help me to finish this final report. On this opportunity, I would like to thank:
1. Jesus Christ, for His blessing and guidance.
2. Mr. Ir. B. Kristyanto, M.Eng., Ph.D, as the Dean of Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta.
3. Mr. The Jin Ai, D.Eng., as the Head of Industrial Engineering Department, Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta.
5. Mr. Theodorus B. Hanandoko, S.T., M.T., as my adviser, who had spent plenty of time to give guidance, direction, inputs and correction in writing this final report.
6. My beloved parents, brothers and sisters. Thank you for your support. Your love makes me able to pass this step.
7. Lecturers in Production Process Laboratory: Mr. Wisnu Anggoro, S.T., M.T., and Mr. Tonny Yuniarto, S.T., M.Eng., also the Laboratory Assistant, Mas Budi Purwanto. Thanks for the experience with all of you, it makes me happy everytime I enter the lab.
8. Lecturer in Modeling and Optimization Laboratory: Mr. Baju Bawono, S.T., M.T., and the Laboratory Assistant, Mbak Yuli. Thanks a lot for the experience when I became a lecturer assistant. Thanks also for so much help I received.

9. Friends in building up a thermoforming machine: Bayu Purwa and Dicky Mahendra. Finally I catch you up, guys.

10. Friends in Production Process Laboratory: Jimmy, Adit, Nuno, Aristo, Wida, Sammy. Sorry guys, it’s the time to leave you all. But, I believe this friendship will not over.

11. Friends in Modeling and Optimization Laboratory: Amel, Ryan, Gombong, Wienda, Dhani, Meme, Tatat, Indah, Iren, Teteph, Monica, Kezia. Thanks guys for the experience with you all.

12. UAJY’s Cleaning Service, especially for Pakdhe. Thanks for accompany me at night. And, also for the security who always make a warm welcome.

13. Friends in IIE batch 2006, Meme, Pieter, Sanjaya, Rio. Finally, I catch you up guys. Alex, you’ll be the last but I pray for you.

14. Friends in everyday life, Lisa Olivia, Angela Fani, Elisa Hanan, and much more which I have not mentioned yet. Thanks to you guys.

15. All kind people which supporting my life till today: My uncles and aunties in Jakarta, nephews, cousins, Mr. Rudy Hertayono, Mas Kris, Mas Oka, Mas Hussen. They who always care of me. Thanks a lot guys.

16. All those who haven’t mentioned, thank you.
I realize that this final report has not perfect but I hope that this final report can be useful and can be developed in a further research.

Yogyakarta, January 2011
CONTENTS

COVER ... i
STATEMENT OF WORK’S ORIGINALITY ii
AUTHORIZATION .. iii
ACKNOWLEDGEMENT .. iv
FOREWORD ... v
CONTENTS ... viii
TABLE CONTENTS .. xii
FIGURE CONTENTS .. xiii
APPENDIX CONTENT ... xx
ABSTRACT .. xxi

CHAPTER 1 BACKGROUND
1.1. Background .. 1
1.2. Problem Statement 2
1.3. Research Objectives 3
1.4. Scope of Research 3
1.5. Research Methodology 4
1.6. Report Outline ... 6

CHAPTER 2 LITERATURE REVIEW 7

CHAPTER 3 BASIC THEORY
3.1. Rapid Prototyping Concept and Technology 9
 3.1.1. Rapid Prototyping Concept 9
 3.1.1.1. Prototyping 9
 3.1.1.2. Roles of Prototype 11
 3.1.1.3. Rapid Prototyping 12
 3.1.2. Rapid Prototyping Technology 15
3.2. Computer-Aided-Design (CAD) and Computer-Aided-Manufacturing (CAM) 40
 3.2.1. Delcam PowerShape 42
 3.2.2. Delcam PowerMill 47
3.3. Thermoforming 69
3.4. Plastic Characteristic 74
 3.4.1. Polyethylene (PE) 76
 3.4.2. Polyvinyl Chloride (PVC) 77
 3.4.3. Polystrene (PS) 78
 3.4.4. Polytetrafluoroethylene (PTFE) 78
 3.4.5. Polypropylene (PP) 79
3.5. Rapid Prototyping Cost 80
 3.5.1. Design Cost (DC) 80
 3.5.2. Mastering Cost (MC) 80
 3.5.3. Thermoforming Cost (TC) 81
 3.5.4. Overhead Cost (OC) 82

CHAPTER 4 DATA AND COMPANY PROFILE
4.1. 2D Drawing ... 83
4.2. Roland MDX-40 Technical Specification 84
4.3. Cutting Tools, Collet Data and Speed Parameter 84
4.4. Vacuum Thermoforming Machine Technical
 Specification 86
4.5. Material Cost 87
4.6. Operator Cost 87
4.7. Company Profile 87
 4.7.1. CV Anugerah Mulia History 87
 4.7.2. Employee 88
 4.7.3. Distribution Area 88
 4.7.4. Products 89
 4.7.5. Production Process 90
CHAPTER 5 ANALYSIS AND DISCUSSION

5.1. Estimating Model Dimension 92
 5.1.1. Considering Available Material 93
 5.1.2. Considering Machinable Area 93
 5.1.3. Considering Available Cutting Tool ... 93
 5.1.4. The Stuppa Estimated Dimension 94
5.2. Creating 3D CAD Model on Delcam PowerShape ... 95
 5.2.1. Creating 3D Stuppa CAD Model 95
 5.2.2. Creating 3D Stuppa Master Mold CAD Model 107
 5.2.3. Model Analysis and Verification 111
5.3. Creating CAM Data on Delcam PowerMill 116
 5.3.1. Defining Parameters 116
 5.3.2. Creating Cutting Tools 120
 5.3.3. Creating Boundaries 128
 5.3.4. Creating Toolpaths 130
 5.3.5. Toolpath Verification 138
 5.3.6. Creating NC Programs 139
 5.3.7. Estimating Machining Time 142
5.4. Analysis of Rapid Prototyping Estimation Cost 144
 5.4.1. Design Cost (DC) 144
 5.4.2. Mastering Cost (MC) 144
 5.4.3. Thermoforming Cost (TC) 145
 5.4.4. Overhead Cost (OC) 146
 5.4.5. Total RP Estimation Cost 146
5.5. Creating Vacuum Holes on the Stuppa Master Mold 146
5.6. Customer Feedback on the Chocolate Mold 147
5.7. Creating New 3D CAD Model on Delcam PowerShape 148
 5.7.1. Creating New 3D Stuppa CAD Model 148
 5.7.2. Creating New 3D Stuppa Master Mold CAD Model 164
 5.7.3. Model Analysis and Verification 168
5.8. Creating CAM Data on Delcam PowerMill 170
 5.8.1. Redefining the Block and Creating Ball Nose 2 170
 5.8.2. Editing Boundaries 173
 5.8.3. Recreating Toolpaths 175
 5.8.4. Toolpath Verification 183
 5.8.5. Recreating NC Codes 184
 5.8.6. Machining Time Estimation 187
5.9. Analysis of Rapid Prototyping Estimation Cost 189
 5.9.1. Design Cost (DC) 189
 5.9.2. Mastering Cost (MC) 189
 5.9.3. Thermoforming Cost (TC) 190
 5.9.4. Overhead Cost (OC) 190
 5.9.5. Total RP Estimation Cost 190
5.10. Creating Vacuum Holes on the New Stuppa Master Mold 191
5.11. Customer Feedback on the New Stuppa Chocolate Mold 192
5.12. Discussion on Rapid Prototyping Process 192

CHAPTER 6 CONCLUSION AND SUGGESTION
 6.1. Conclusion 194
 6.2. Suggestion 195

REFERENCES
APPENDIX
TABLE CONTENTS

Table 2.1 Comparison of Current Research and Previous Research 8

Table 3.1 Comparison Over 6 Popular RP Technologies 39

Table 4.1 Roland Modela MDX-40 Technical Specification 84
Table 4.2 End Mill and Ball Nosed Specification ... 85
Table 4.3 Single Lips Data ... 85
Table 4.4 Collet Data ... 85
Table 4.5 Cutting Feeds and Speeds Parameter ... 86
Table 4.6 Vacuum Thermoforming Technical Specification 86
Table 4.7 Material Cost ... 87
Table 4.8 Operator Cost ... 87

Table 5.1 List of Cutting Tools Used ... 120
Table 5.2 Total Rapid Prototyping Estimation Cost 146
Table 5.3 New Stuppa Chocolate Mold Rapid Prototyping Estimation Cost 190

Table 6.1 Rapid Prototyping Cost ... 194
Figure 1.1	Research Methodology	4
Figure 3.1	Prototype Classification	10
Figure 3.2	Data Flow of the Basic RP Purpose	13
Figure 3.3	Stereolithography Process Step-by-step	16
Figure 3.4	A Laser Sintering Process	20
Figure 3.5	The Contour-Cutting Process	22
Figure 3.6	A Contour-Cutting Process	25
Figure 3.7	FDM Drive System	27
Figure 3.8	Titan Dual Nozzles and a Part Being Built	28
Figure 3.9	An Extrusion-based Process	30
Figure 3.10	(a) Spread a Layer of Powder and (b) Print Binder on the Cross Section	33
Figure 3.11	PowerShape 8.2.14 Initial Screen	42
Figure 3.12	8 Main Creation Icons	43
Figure 3.13	Analytical Tools Icons	46
Figure 3.14	PowerMill 8.0 Initial Screen	47
Figure 3.15	PowerMill Main Toolbar	48
Figure 3.16	Block Creation	48
Figure 3.17	Feeds and Speeds Dialog Box	49
Figure 3.18	Cutting Tools Movement Diagram	50
Figure 3.19	Rapid Move Heights Dialog Box	51
Figure 3.20	Start and End Point Dialog Box	52
Figure 3.21	Leads and Links Concept Diagram	53
Figure 3.22	Z Heights Tab in Lead and Links Dialog Box	54
Figure 3.23	Lead-In and Lead-Out Dialog Box	54
Figure 3.24	Links Dialog Box	56
Figure 3.25 Toolpath Concept 58
Figure 3.26 Tolerance Concept 59
Figure 3.27 Sign of Verified Toolpaths 62
Figure 3.28 Cutting Tools Creation Icon 62
Figure 3.29 Tip Dialog Box 63
Figure 3.30 Shank Dialog Box 64
Figure 3.31 Holder Dialog Box 64
Figure 3.32 User-defined Boundary Dialog Box 66
Figure 3.33 Machining Time Estimation 67
Figure 3.34 NC Programs Creation 68
Figure 3.35 NC Codes Creation 69
Figure 3.36 Pressure Thermoforming 70
Figure 3.37 Vacuum Thermoforming Method for Female Mold 71
Figure 3.38 Vacuum Thermoforming Method for Male Mold 72
Figure 3.39 Second Thermoforming Method 72
Figure 3.40 Mechanical Thermoforming 73
Figure 3.41 Hybrid Method 74

Figure 4.1 Stuppa 2D Drawing 83
Figure 4.2 Several Taste of Chocolate Monggo 89
Figure 4.3 Chocolate Monggo in Java Box Packaging 90
Figure 4.4 CV Anugerah Mulia Production Process 91

Figure 5.1 Estimation of Master Mold Layout 92
Figure 5.2 Stuppa Master Mold Estimated Dimension 95
Figure 5.3 Stencil View 96
Figure 5.4 Tracing Result 96
Figure 5.5 Moving and Copying the Curves 97
Figure 5.6 Aligning Rhomb Curves Center 98
Figure 5.7 Selection Information 98
Figure 5.8 Scaling the Curves 99
Figure 5.9 Surface of Stuppa Base, Body and Top 99
Figure 5.10 Creating Inner Surface of Stuppa Body 100
Figure 5.11 Rhomb Curves Arrayed 101
Figure 5.12 Extruded Rhomb Curves 101
Figure 5.13 Arraying Rhomb Surfaces on Circular Pattern 102
Figure 5.14 Rhomb Surfaces Arrangement 102
Figure 5.15 Limit Selection Result 103
Figure 5.16 Solid Stuppa 104
Figure 5.17 Solid Block of Stuppa’s Neck 105
Figure 5.18 Creating Fillets 106
Figure 5.19 Finished 3D Stuppa CAD Model ... 106
Figure 5.20 Splitting Solid Stuppa 107
Figure 5.21 Stuppa Rotation Result 108
Figure 5.22 Moving Half Rotated-Stuppa 108
Figure 5.23 Plain Surface Created 109
Figure 5.24 Master Mold CAD Model 110
Figure 5.25 Finished Borobudur Stuppa Master Mold CAD Model 111
Figure 5.26 Undercuts Shading View 112
Figure 5.27 Perpendicularity Checking Example ... 113
Figure 5.28 Surface Smoothness Shading View 114
Figure 5.29 Minimum Radius Shading View 115
Figure 5.30 Creating Workplane 116
Figure 5.31 Defining Block 117
Figure 5.32 Defining Rapid Move Heights 118
Figure 5.33 Defining Start and End Point 119
Figure 5.34 Defining Feeds and Speeds 120
Figure 5.35 End Mill 6 Tip 121
Figure 5.36 End Mill 6 Shank 121
Figure 5.37 End Mill 6 Holder 122
Figure 5.38 Ball Nose 5.5 Tip 122
Figure 5.39 Ball Nose 5.5 Shank 123
Figure 5.40 Ball Nose 5.5 Holder 123
Figure 5.41 Ball Nose 3 Tip 124
Figure 5.42 Ball Nose 3 Shank 124
Figure 5.43 Ball Nose 3 Holder 125
Figure 5.44 End Mill 4 Tip 125
Figure 5.45 End Mill 4 Shank 126
Figure 5.46 End Mill 4 Holder 126
Figure 5.47 Single Lip 4 Tip 127
Figure 5.48 Single Lip 4 Shank 127
Figure 5.49 Single Lip 4 Holder 128
Figure 5.50 Ball Nose 5.5 Boundaries 129
Figure 5.51 Ball Nose 3 Boundaries 129
Figure 5.52 Single Lip 4 Boundaries 130
Figure 5.53 Roughing Raster Area Clear Model 131
Figure 5.54 Semifinishing Optimized Constant Z .. 132
Figure 5.55 Finishing Optimized Constant Z 133
Figure 5.56 Finishing Offset Flat 134
Figure 5.57 Finishing Raster Finishing 135
Figure 5.58 End Mill 6 Roughing Simulation 136
Figure 5.59 Ball Nose 5.5 Semifinishing Simulation 136
Figure 5.60 Ball Nose 3 Finishing Simulation 137
Figure 5.61 End Mill 4 Flat Finishing Simulation 137
Figure 5.62 Single Lip 4 Finishing Simulation ... 138
Figure 5.63 Toolpath Verification Result 139
Figure 5.64 Creating End Mill 6 Roughing NC Code 140
Figure 5.65 Creating Ball Nose 5.5 Semifinishing NC Code 140
Figure 5.66 Creating Ball Nose 3 Finishing NC Code 141
Figure 5.67 Creating End Mill 4 Flat Finishing NC Code 141
Figure 5.68 Creating Single Lip 4 Finishing NC Code .. 142
Figure 5.69 Roughing EM6mm Duration ... 142
Figure 5.70 Semifinishing BN5.5mm Duration .. 143
Figure 5.71 Finishing BN3mm Duration ... 143
Figure 5.72 Flat Finishing EM4mm Duration ... 143
Figure 5.73 Finishing SL4mm Duration ... 144
Figure 5.74 Stuppa Master Mold with Vacuum Holes ... 147
Figure 5.75 Stuppa Chocolate Mold ... 147
Figure 5.76 New Stuppa Technical Drawing ... 148
Figure 5.77 Stuppa Technical Drawing ... 149
Figure 5.78 Tracing Result .. 149
Figure 5.79 Moving and Copying Curves .. 150
Figure 5.80 Selection Information ... 151
Figure 5.81 Scale the Curves .. 151
Figure 5.82 Surface of Stuppa Base and Body ... 152
Figure 5.83 Offset the Stuppa Body .. 153
Figure 5.84 Rhomb Curves Arrayed ... 153
Figure 5.85 Extruded Rhomb Curves ... 154
Figure 5.86 Arrayed Rhomb Surfaces .. 155
Figure 5.87 Rhomb Surfaces Arrangement .. 155
Figure 5.88 Limit Selection Result .. 156
Figure 5.89 Creating Circle ... 157
Figure 5.90 Rotated Circle ... 158
Figure 5.91 Offset Result .. 159
Figure 5.92 Moving Inner Wireframe ... 159
Figure 5.93 Creating Surface from Wireframe and Point 160
Figure 5.94 Solid Created from Surfaces 161
Figure 5.95 Solid Block of Stuppa’s Neck 162
Figure 5.96 Creating Fillets 163
Figure 5.97 Finished New 3D Stuppa CAD Model 163
Figure 5.98 Splitting Solid 164
Figure 5.99 Stuppa Rotation Result 165
Figure 5.100 Moving Half Rotated-Stuppa 165
Figure 5.101 Plain Surface Created 166
Figure 5.102 New Master Mold CAD Model 167
Figure 5.103 Finished New Stuppa Master Mold CAD Model 167
Figure 5.104 Undercuts Shading View 168
Figure 5.105 Surface Smoothness Shading View 169
Figure 5.106 Minimum Radius Shading View 169
Figure 5.107 Recalculating the Block 170
Figure 5.108 Ball Nose 2 Tip 171
Figure 5.109 Ball Nose 2 Shank 172
Figure 5.110 Ball Nose 2 Holder 172
Figure 5.111 Ball Nose 5.5 Boundaries 173
Figure 5.112 Ball Nose 2 Boundaries 174
Figure 5.113 Single Lip 4 Boundaries 175
Figure 5.114 Roughing Raster Area Clear 176
Figure 5.115 Semifinishing Optimized Constant Z .. 177
Figure 5.116 Finishing Optimized Constant Z 178
Figure 5.117 Finishing Offset Flat 179
Figure 5.118 Finishing Raster 180
Figure 5.119 End Mill 6 Roughing Simulation 181
Figure 5.120 Ball Nose 5.5 Semifinishing Simulation 181
Figure 5.121 Ball Nose 2 Finishing Simulation 182
Figure 5.123 Single Lip 4 Finishing Simulation ... 183
Figure 5.124 Toolpath Verification Result 183
Figure 5.125 Creating End Mill 6 Roughing NC Code 184
Figure 5.126 Creating Ball Nose 5.5 Semifinishing NC Code 185
Figure 5.127 Creating Ball Nose 2 Finishing NC Code 185
Figure 5.128 Creating End Mill 4 Flat Finishing NC Code 186
Figure 5.129 Creating Single Lip 4 Finishing NC Code 186
Figure 5.130 Roughing EM6mm Duration 187
Figure 5.131 Semifinishing BN5.5mm Duration 187
Figure 5.132 Finishing BN2mm Duration 188
Figure 5.133 Flat Finishing EM4mm Duration 188
Figure 5.134 Finishing SL4mm Duration 188
Figure 5.135 New Stuppa Master Mold 191
Figure 5.136 New Stuppa Chocolate Mold 192

Figure 6.1 Final Rapid-Prototyped Borobudur Stuppa Master Mold 194
Figure 6.2 Final Borobudur Stuppa Chocolate Mold 194
APPENDIX CONTENTS

Appendix 1 2D Stuppa Technical Drawing
Appendix 2 New 2D Stuppa Technical Drawing
ABSTRACT

Chocolate Monggo’s requirement to create the biggest Borobudur stuppa chocolate mold has challenged Universitas Atma Jaya Yogyakarta to rapidly develop the chocolate mold. This problem can be easily approached by implementing rapid prototyping (RP) method.

This paper presents the RP process to create the biggest Borobudur stuppa chocolate mold, conducted in Production Process Laboratory in Industrial Engineering Program, Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta. The RP process in this research is initiated by 2D drawing from CV Anugerah Mulia, Chocolate Monggo’s firm. Because the fixed dimension is not determined yet, there are steps to determine machinable dimension. After the dimension is determined, the 2D drawing is then traced and built up to 3D drawing in Delcam PowerShape until a master mold CAD model is ready. The master mold CAD model is analyzed and verified to check its machinability. After being verified, the CAM data is then prepared. The outputs of the CAM data preparation are machine simulation, NC codes, and estimation of machining time. These outputs facilitates user (UAJY) to estimate the Rapid Prototyping cost. Therefore, CV Anugerah Mulia, as the customer, is able to make a decision whether to continue or to stop the process based on the cost quoted and the CAD model.

By the end of the research, a rapid-prototyped master mold with dimension 170 x 110 x 35 mm and a chocolate mold are obtained. The Rapid Prototyping cost becomes Rp 1,273,700.00.