MANUAL MATERIAL HANDLING FLEET SIZING USING SIMULATION MODEL

A THESIS

Submitted in Partial Fulfillment of the Requirement for the Bachelor Degree of Engineering in Industrial Engineering

Eleonora Maria Pribadi 14 06 07724

INDUSTRIAL ENGINEERING PROGRAM FACULTY OF INDUSTRIAL TECHNOLOGY UNIVERSITAS ATMA JAYA YOGYAKARTA YOGYAKARTA 2018

IDENTIFICATION PAGE

A THESIS ON

MANUAL MATERIAL HANDLING FLEET SIZING USING SIMULATION MODEL

Submitted by : Eleonora Maria Pribadi

14 06 07724

Was examined and approved on 17 October 2018

Faculty Supervisor,

The Jin Ai,S.T.,M.T.,D.Eng

Board of Examiner

Chair,

The Jin Ai, S.T., M.T., D.Eng

Member,

Member,

Shrak

Ririn Diar Astănti, S.T., M.MT., D.Eng

Dr. Parama Kartika Dewa, S.T., M.T

Yogyakarta, 17 October 2018 Universitas Atma Jaya Yogyakarta Faculty of Industrial Technology Dean,

Dr. A. Teguh Siswantoro, M.Sc.

DECLARATION OF ORIGINALITY OF THE RESEARCH

I certifity that the research entitled "Manual Material Handling Fleet Sizing using Simulation Model" in this thesis has not be submitted for any other degree.

I certify that to the best of my knowledge and belief, this thesis which I wrote does not contain the works of parts of the works of other people, except those cited in the quotation and bibliography, as scientific paper should.

In addition, I certify that I understand and abide the rule stated by the Ministry of Education and Culture of The Republic of Indonesia, subject to provisions of Peraturan Menteri Pendidikan Nasional Republik Indonesia Nomor 17 tahun 2010 tentang Pencegahan dan Penanggulangan Plagiasi di Perguruan Tinggi.

Signature

Student Name : Eleonora Maria Pribadi Student ID : 14 06 07724 Date : 17 October 2018

ACKNOWLEDGEMENT

This thesis is written as the partial fulfilment of the requirement for the Bachelor Degree of Industrial Engineer from Universitas Atma Jaya Yogyakarta. This thesis based on the research in a manufacturer.

I would like to express my deepest gratitude to the God Almighty, who gave me strength during this thesis completion. I would like to deliver appreciaton and gratitude to :

- 1. Mr. The Jin Ai, S.T., M.T., D.Eng. as the faculty supervisor who guide me during this research
- 2. Mr. Dr. A. Teguh Siswantoro, M.Sc. as the Dean of Faculty of Industrial Technology, Universitas Atma Jaya Yogyakarta
- 3. Mrs. Ririn Diar Astanti, S.T., M.MT., D.Eng. as the Head of Industrial Engineer Program Universtas Atma Jaya Yogyakarta
- 4. Mrs. Bening Parwitasuci, S.Pd., M.Hum. for her guidance during my study at Universitas Atma Jaya Yogyakarta
- 5. Mr. Drs. Luddy Indra Purnama, M.Sc. as academic supervisor during my study at Universitas Atma Jaya Yogyakarta
- 6. All parties that helped me during this thesis completion and study in Universitas Atma Jaya Yogyakarta

Last but not least, I realised that this research is still far from the perfection. I would like to received criticisism and suggestion to boost motivation for my next research.

Yogyakarta, October 2018

Eleonora Maria Pribadi

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	Title Page	i
	Identification Page	ii
	Statement of Originality	iii
	Acknowledgement	iv
	Table of Contents	v
	List of Tables	viii
. 0	List of Figures	×. ×
N	List of Appendices	xi
5	Abstract	xii
\sim		
1.	Introduction	1
	1.1. Background	1
	1.2. Problem Formulation	2
	1.3. Objectives	3
	1.4. Scope and Limitation	3
2.	Literature Review	5
	2.1. Material Handling	5
	2.2. Simulation Analysis	5
	2.3. Statistical Analysis	7
	2.4. Time Study	8
	2.5. Lead Time	9
	2.6. Transportation Simplex Method	9
	2.7. Previous Study in Fleet Sizing	10

	3.	Research Methodology	15
		3.1. Problem Identification	15
		3.2. Literature Review	16
		3.3. Data Collection	17
		3.4. Model Development and Simulation	17
		3.5. Evaluation	18
		Umin	
	4.	Data Collection	20
		4.1. General Assesment	20
		4.2. Transportation from Process F until Process Testing I	24
	1	4.3. Transportation from Process Testing I until Process Testing L	27
	à l	4.4. Transportation from Process Testing L until Process M	29
	പ്പ്പ		
	5.	Decision Variable using Lead Time	31
		5.1. Transportation Model	31
1		5.2. Lead Time and Trolley Requirement	35
11			
	6.	Simulation Modelling	44
		6.1. Model Development in ARENA	44
		6.2. Simulation Running and Result	51
		6.3. Cost Benefit of Trolley Fleet Sizing	56
	7.	Conclusion	57
		7.1. Conclusion	57
		7.2. Suggestion	57
		References	59

vi

LIST OF TABLES

	Table 2.1.	Previous Research Comparison	12
	Table 4.1.	Operator Speed Summary	21
	Table 4.2.	Demand for Quarter 1, 2017	23
	Table 4.3.	Process Time of each Product on Stage 1	25
	Table 4.4.	Distance and Number of Machine Station Process G-H and	
		Process F	26
	Table 4.5.	Distance and Number of Machine Station Process G-H and Machine X	26
	Table 4.6.	Distance and Number of Machine Station Process G-H and	26
	Table 47		20
		Process Time of Station in Loop 2	28
	Table 4.8.	Broccess LK	20
	Table 4.0	Distance and Number of Machine on Process I K and Process	20
		Tosting L Station	20
	Table 4.10	Distance between Process Testing L. Station and Process M	23
١		Station	20
	Table 5 1	Transportation Model for Average Demand : Process E to	23
		Process G-H	32
	Table 5.2	Transportation Model for Average Demand : Process G-H to	
1	10010 0.2.	Process Testing I	33
	Table 5.3.	Transportation Model for Average Demand : Process Testing I to	
		Process J-K	33
	Table 5.4.	Transportation Model for Average Demand : Process J-K to Proces	SS
		Testing L	33
	Table 5.5.	Transportation Model Maximum Demand : Process F to P	33
	Table 5.6.	Transportation Model Maximum Demand : Process G-H to Process	6
		Testing I	34
	Table 5.7.	Transportation Model Maximum Demand : Process Testing I to	
		Process J-K	34
	Table 5.8.	Transportation Model Maximum Demand : Process J-K to	
		Process Testing L	34
	Table 5.9.	Transportation Model Minimum Demand : Process F to	
		Process G-H	34

Table 5.10. Transportation Model for Minimum Demand : Process G-H to	
Process Testing I	35
Table 5.11. Transportation Model for Minimum Demand : Process Testing	to
Process J-K	35
Table 5.12. Transportation Model for Minimum Demand : Process J-K	
to Process Testing L	35
Table 5.13. Trolley Requirement Stage 1 – 1 st Alternative	36
Table 5.14. Trolley Requirement Stage 2 – 1 st Alternative	37
Table 5.15. Trolley Requirement Stage 3 – 1 st Alternative	37
Table 5.16. Trolley Requirement Stage 1 – 2 nd Alternative	38
Table 5.17. Trolley Requirement Stage 2 – 2 nd Alternative	39
Table 5.18. Trolley Requirement Stage 3 – 2 nd Alternative	40
Table 5.19. Trolley Requirement Stage 1 – 3rd Alternative	40
Table 5.20. Trolley Requirement Stage 2 – 3rd Alternative	41
Table 5.21. Trolley Requirement Stage 3 – 3 rd Alternative	42
Table 5.22. Summary of Trolley Requirement	43
Table 6.1. ARENA Modules in this Model.	44
Table 6.2. Create Modules Input for Stage 1	46
Table 6.3. Create Modules Input for Stage 2	48
Table 6.4. Create Modules Input for Stage 3	50
Table 6.5. Summary of Lead Time	51
Table 6.6. Number of Trolley Summary	52
Table 6.7. Utilization for Stage 1 Average Demand	52
Table 6.8. Utilization for Stage 1 Maximum Demand	53
Table 6.9. Utilization for Stage 1 Minimum Demand	53
Table 6.10. Utilization for Stage 2 Average Demand	54
Table 6.11. Utilization for Stage 2 Maximum Demand	54
Table 6.12. Utilization for Stage 2 Minimum Demand	54
Table 6.13. Utilization for Stage 3 Average Demand	55
Table 6.14. Utilization for Stage 3 Maximum Demand	55
Table 6.15. Utilization for Stage 3 Minimum Demand	55
Table 6.16. Cost Difference	56

LIST OF FIGURES

	Figure 2.1. General Type of System	6
	Figure 2.2. Using Simulation for Prescriptive Analysis	6
	Figure 2.3. General Simulation Methodology	7
	Figure 2.4. The Transportation Simplex Model	10
	Figure 3.1. Research Methodology Flowchart	15
	Figure 3.2. Problem Formulation Flowchart	16
	Figure 3.3. Literature Review Flowchart	17
	Figure 3.4. Data Collection Flowchart	17
	Figure 3.5. Model Development and Simulation Flowchart	18
1	Figure 3.6. Evaluation Flowchart	19
	Figure 4.1. Input Analyzer Result	21
	Figure 4.2.Dolly Trolley	22
	Figure 4.3. Process F Process until Process Testing I	24
	Figure 4.4. Process Testing I until Process Testing L	27
	Figure 4.5. Process Testing L until Process M	30
	Figure 5.1. TORA Software Transportation Module Input	32
	Figure 6.1. Create Module	45
	Figure 6.2. Run Setup Box	51

LIST OF APPENDICES

A	ppendix	1 : Operator Movement Time Observation	61
A	ppendix	2 : Operator Movement Speed	62
A	ppendix	3 : Load In for Machine X	63
A	ppendix	4 : Load Out for Machine X	64
A	ppendix	5 : Load In for Machine Y	65
A	ppendix	6 : Load Out for Machine Y	66
A	ppendix	7 : Load In for Machine P	67
A	ppendix	8 : Load Out for Machine P	68
A	ppendix	9 : Load In for Machine Q	69
A	ppendix	10 : Load Out for Machine Q	70
A	ppendix	11 : Stage 1 Part 1 Model	71
A	ppendix	12 : Stage 1 Part 2 Model	72
A	ppendix	13 : Stage 2 Part 1 Model	73
A	ppendix	14 : Stage 2 Part 2 Model	74
A	ppendix	15 : Stage 3 Model	75

ABSTRACT

In the lean principle, there are several waste to be reduced from the manufacturing process. One of the seven waste is inventory waste which included the material handling tool. Material handling took 30-75% cost of the production, on the other hand an optimized material handling system could save the cost around 15-20%. Therefore, in order to reduce the cost and waste, it is important to know the optimized material handling system. There are several criteria of a good material handling system, one of them is the amount of material handling tool.

The research purpose is to know the amount of material handling in a manufacturer. The current material handling tool that operated was not based on the production requirement. In other hand, the production system has a lot of station that spread on different location. Therefore, simulation model will be used to solve this research. The simulation divided into three different stage based on the current condition.

The simulation objective is to find the highest utilization among all of the amount of trolley alternatives. However, the highest utilization does not verify that the trolley could serve the system as good as the current system. Thus, the number of queue and the queue duration would be defined as the consideration to deterimine the solution. The alternatives on the simulation developed based on the lead time and demand of three different condition, the first alternative based on the average demand, the second alternative based on the maximum demand, and the third alternative based on the minimum demand. The result of the simulation is the number of trolley for stage 1 is 170 trolley, stage 2 is 154 trolley and it was based on the first alternative.

Keywords : Manufacturer, Lead Time, Transportation Model, Simulation, ARENA,

Lean Manufacturing.