THESIS

DISPLACEMENT-BASED SEISMIC DESIGN OF IRREGULAR TYPE REINFORCED CONCRETE SPECIAL MOMENT FRAME (RC-SMF)

A F M SALMAN AKHTER NPM : 165102548/PS/MTS

PROGRAM STUDI MAGISTER TEKNIK SIPIL PROGRAM PASCASARJANA UNIVERSITAS ATMA JAYA JOGJAKARTA

2018

UNIVERSITAS ATMA JAYA YOGYAKARTA

PROGRAM PASCASARJANA

PROGRAM STUDI MAGISTER TEKNIK SIPIL

ENDORSEMENTOF THESIS (PENGESAHAN TESIS)

Name	: A F M Salman Akhter
Student No.	: 165102548/PS/MTS
Concentration	: Structure
Thesis Topic	: DISPLACEMENT-BASED SEISMIC DESIGN OF
	IRREGULAR TYPE REINFORCED CONCRETE SPECIAL
	MOMENT FRAME (RC-SMF)

Name of Supervisor

Date

Signature

Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D.

23/07/18

Dr. Ir. AM. Ade Lisantono, M.Eng.

24/02/2018

UNIVERSITAS ATMA JAYA YOGYAKARTA

PROGRAM PASCASARJANA

PROGRAM STUDI MAGISTER TEKNIK SIPIL

ENDORSEMENT OF THESIS (PENGESAHAN TESIS)

Name: A F M Salman AkhterStudent No.: 165102548/PS/MTSConcentration: StructureThesis Topic: DISPLACEMENT-BASED SEISMIC DESIGN OFIRREGULAR TYPE REINFORCED CONCRETE SPECIAL
MOMENT FRAME (RC-SMF)

Name of Supervisor

Secretary (Sekretaris)

Date

Signature

Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D. Head (Ketua)

Dr. Ir. AM. Ade Lisantono, M.Eng.

24/07/2018

23/07/18

23/7/10

Dr. Ir. Junaedi Utomo, M.Eng. Member (Anggota)

Head of Program (Ketua Program Studi)

(Dr. Ir. Imam Basuki, M.T.)

STATEMENT OF AUTHENTICITY (PERNYATAAN KEASLIAN TESIS)

Name Student No. Concentration Thesis Topic : A F M Salman Akhter
: 165102548/PS/MTS
: Structure
: DISPLACEMENT-BASED SEISMIC DESIGN OF
IRREGULAR TYPE REINFORCED CONCRETE SPECIAL
MOMENT FRAME (RC-SMF)

The above-mentioned research work is done by the author himself and it is declared that none of the data of this research work is copied from others research works. The data presented in this thesis report is originally calculated by the author himself. To avoid plagiarism, the author has provided the proper reference where it is necessary. If any issue arises regarding copyright, the author is ready to accept any sanctions by the administration of Universitas Atma Jaya Yogyakarta (UAJY).

Yogyakarta, July 2018 067685638 A F M Salman Akhter

iv

KATA PENGANTAR

Verily all praise is for Allah, we praise Him and seek His aid and ask for His forgiveness and we seek refuge with Allah from the evils of ourselves and our evil actions.

I would like to express heartfelt gratitude and sincere appreciation to my supervisor, Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D., for giving me the opportunity to work on this research work. I am very thankful to him for his valuable guidance, supports, advice, and inspiration during this study period. Moreover, the discussion we had during this study period was very resourceful and helped me to understand many topics related to earthquake engineering. The suggestions and ideas shared with me were really very helpful to organize this research work.

I would also like to express the deepest respect for my co-advisor, Dr. Ir. AM. Ade Lisantono, M.Eng. for his guideline, supports, and feedback. I am very grateful to him for his support, advice, and inspiration to work hard as a master's student. Beside the technical discussion, his mentorship helped me to improve my presentation skill profoundly.

The financial support provided by DIKTI, Indonesia in the name of KNB scholarship program is greatly acknowledged.

I am expressing my gratitude and love to my family members for their support, especially to my wife, Mahmuda Begum, who always encourage me to peruse higher study. Moreover, I would also express my regards to my class fellows Pak Stev; Mas Sungsang, Eric, Alan, Happy, Stev, Ken, Gill and others for their cooperative helping hand during the study period.

Yogyakarta, July 2018 Penulis

A F M Salman Akhter

TABLE OF CONTENTS

TITLE PAGE	i
ENDORSEMENT OF THESIS	ii
ENDORSEMENT OF THESIS	iii
STATEMENT OF AUTHENTICITY	iv
KATA PENGANTAR	v
TABLE OF CONTENTS	vi
LIST OF TABLE	viii
LIST OF FIGURE	ix
ABSTRACT	xi

CHAPTER I	INTRODUCTION	
	1.1. Background	1
	1.2. Formulation of Problem	3
	1.3. Objective of This Study	3
	1.4. Benefits	4
	1.5. Limitation	4
$ \cup$	1.6. Authenticity of Research	5
. 6		
CHAPTER II	LITERATURE REVIEW	
	2.1. Performance Based Seismic Design	6
	2.2. Displacement Based Seismic Design	8
	2.3. Major Weakness of Current Seismic Code	9
CHAPTER III	METHODOLOGY	
	3.1. Introduction	11
	3.2. Energy Balance Concept	13
	3.3. Design Hazard and Target Drift	14
	3.4. Design Base Shear	16
	3.5. Design Lateral Force Distribution	18
	3.6. Design Beam	20
	3.7. Design Column	21
CHAPTER IV	RESEARCH METHODOLOGY	
	4.1. Introduction	23
	4.2. Design Flow Chart	23
	4.3. RC-SMF Structure for Design	25
	4.4. Nonlinear Modeling of RC-SMF	27
	4.4.1. Defining Material	28
	4.4.2. Defining Section	30
	4.4.3. Defining Element	32
	4.4.4. Ground Motion Selection and Setup	32
	4.4.5. Recorder Setup	34
	4.4.6. Analysis Option and Case Setup	34
	4.4.7. Others Important Factors	35
	4.5. Software for Research	36

CHAPTER V	RESULTS AND ANALYSIS	
	5.1. Introduction	37
	5.2. RC-SMF Design By DBD	37
	5.2.1. 8 Story RC-SMF With Vertical Irregularity	37
	5.3. Nonlinear time history analysis of RC-SMF	41
	5.3.1. Maximum Interstory Drift	41
	5.3.2. Relative Story Shear Distribution	43
	5.3.3. Strong Column Weak Beam	47
CHAPTER VI	SUMMARY AND CONCLUSIONS	
	6.1. General	51
	6.2. Summary	51
	6.2. Summary6.3. Conclusions	52
	6.4. Suggestions	53
REFERENCE		55
APPENDIX- A		60
APPENDIX- B		68
	\mathbf{S}	

LIST OF TABLE

Table 3.1.	Relation among time, ductility and ductility reduction factor according	
	to Newmark and Hall (1982)	14
Table 3.2.	Coefficient for upper limit on calculated period (12.8-1, ASCE 7-10)	17
Table 3.3.	Values of approximate period parameters (12.8-2, ASCE 7-10)	17
Table 3.4.	Value of C ₂ factor	18
Table 4.1.	Selected ground motion data (PEER NGA-West2 Database, 2018)	33
Table 4.2.	OpenSees analysis option parameters for time history analysis	35
Table 5.1.	Design base shear calculation of 8 story RC SMF	
	(with vertical irregularity)	38
Table 5.2.	Lateral force distribution of 8 story RC SMF	
	(with vertical irregularity)	38
Table 5.3.	Beam design of 8 story RC SMF	
	(with vertical irregularity)	39
Table 5.4.	Exterior column moment and axial load of 8 story RC SMF	
	(with vertical irregularity)	39
Table 5.5.	Interior column moment and axial load of 8 story RC SMF	
	(with vertical irregularity)	40
Table 5.6.	Interior and exterior column of 8 story RC SMF	
	(with vertical irregularity)	40

/

LIST OF FIGURE

Figure 2.1.	Standard performance objective	8
Figure 2.2.	Design flowchart according to FEMA 445	9
Figure 3.1.	Required energy by elastic-plastic-single degree-of-freedom system	
-	(work-energy balance concept)	12
Figure 3.2.	Structure push up to target drift (work-energy balance concept)	12
Figure 3.3.	Response spectrum for different soil condition (puskim.pu.go.id)	15
Figure 4.1.	Design flow chart A (calculating design base shear and later force	
8	distribution)	24
Figure 4.2.	Design flow chart B (beam and column design)	24
Figure 4.3.	Nonlinear Modeling and Analysis (flow chart C)	25
Figure 4.4.	Plan view of 4 & 8 Story RC-SMF	26
Figure 4.5.	4 Story RC-SMF without irregularity	26
Figure 4.6.	4 Story RC-SMF with irregularity	26
Figure 4.7.	8 Story RC-SMF without irregularity	27
Figure 4.8.	8 Story RC-SMF with irregularity	27
Figure 4.9.	Concrete model by Chang and Mander (1994)	29
Figure 4.10.	Core concrete model (ConcreteCM)	30
Figure 4.11.	Rebar Model (Steel02)	30
Figure 4.12.	Matched response spectrum with respect to target spectrum	34
Figure 5.1.	Maximum interstory drift from time-history analysis of 8 story	5.
116010 5.11	RC SMF (with vertical irregularity)	42
Figure 5.2.	Maximum interstory drift from time-history analysis of 8 story	
118010 0.2.	RC SMF (without vertical irregularity)	42
Figure 5.3.	Maximum interstory drift from time-history analysis of 4 story	
1.18011.0.01	RC SMF (with vertical irregularity)	43
Figure 5.4.	Maximum interstory drift from time-history analysis of 4 story	10
11guio 5.1.	RC SMF (without vertical irregularity)	43
Figure 5.5.	Relative story shear distribution of 8 story RC SMF	15
1 16010 5.5.	(with vertical irregularity)	45
Figure 5.6.	Relative story shear distribution of 8 story RC SMF	15
1 1guie 5.0.	(without vertical irregularity)	45
Figure 5.7.	Relative story shear distribution of 4 story RC SMF	15
1 iguie 5.7.	(with vertical irregularity)	46
Figure 5.8.	Relative story shear distribution of 4 story RC SMF	-0
1 iguie 5.6.	(without vertical irregularity)	46
Figure 5.9.	SCWB ratio for interior column of 8 story RC SMF	-0
1 iguie 5.7.	(with vertical irregularity)	47
Figure 5.10.	SCWB ratio for exterior column of 8 story RC SMF	Τ/
1 iguie J.10.	(with vertical irregularity)	48
Figure 5 11		40
Figure 5.11.	SCWB ratio for interior column of 8 story RC SMF	10
	(without vertical irregularity)	48

Figure 5.12.	SCWB ratio for exterior column of 8 story RC SMF	
	(without vertical irregularity)	48
Figure 5.13.	SCWB ratio for interior column of 4 story RC SMF	
	(with vertical irregularity)	49
Figure 5.14.	SCWB ratio for exterior column of 4 story RC SMF	
	(with vertical irregularity)	49
Figure 5.15.	SCWB ratio for interior column of 4 story RC SMF	
	(without vertical irregularity)	49
Figure 5.16.	SCWB ratio for exterior column of 4 story RC SMF	
	(without vertical irregularity)	50

ABSTRACT

Reinforced concrete Special Moment Frame (RC-SMF) with irregularity in dimension experiences large inelastic deformation under ground motion. The building code for designing structural elements generally is focused on satisfying the strength and serviceability. On the other hand, the displacement-based design (DBD) procedure is based on building performance level. This paper presents a devoted study of designing structural elements of 8 and 4 story RC-SMF with and without vertical irregularity using the DBD method. This method is mainly using energy-work balance concept with pre-selected yield mechanism and target drift. Moreover, a new lateral force distribution method is used in this study which accounts for inelastic dynamic response and higher mode effects. Strong column-weak beam mechanism is used to design beam and column, and beam moment capacity of each floor is calculated by equating external work to internal work approach. Furthermore, column design strength is taken as the combination of factored gravity loads and maximum expected strength of the beam. The time history analysis results show that story drift is below than the target drift and achieve the desired performance level. Moreover, the results also show lateral force distribution is very close to the lateral shear distribution which obtained from time history analysis.

Keywords: performance based design, work-energy concept, inelastic state later force distribution, nonlinear analysis.