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CHAPTER 2  

MODELLING THE BRIDGE 

 

2.1. Finite Element Model of the Bridge  

Based on the detailed information of the Cape Girardeau bridge, a 

three-dimensional finite element model was developed in 

MATLAB® (1997) by Dyke et al (2002). The evaluation model used 

in this benchmark study is linear. However, the stiffness matrices 

used in this linear model are those of the structure determined 

through a nonlinear static analysis corresponding to the deformed 

state of the bridge with dead loads (Wilson and Gravelle, 1991). 

The nonlinear static analysis is performed using ABAQUS® (1998), 

where the element mass and stiffness matrices are output to 

MATLAB® for assembly. 

The finite element model employs beam elements, cable 

elements and rigid links. This model has a large number of degree 

of freedom and high frequency dynamics. Some assumptions were 

made regarding the behavior of the bridge while retaining the 

fundamental behavior of the bridge. The constraints are applied to 

the mass and stiffness matrices, and a reduction is performed to 

reduce the size of the model to a more manageable model. The first 

ten frequencies of the evaluation model are 0.2899, 0.3699, 0.4683, 
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0.5158, 0.5812, 0.6490, 0.6687, 0.6970, 0.7102, and 0.7203 Hz. 

These steps are summarized in Fig. 2.1.  

This model is used as a basis of comparison for the controlled 

system in which the deck-tower connections are fixed (the 

dynamically stiff shock transmission devices are present). 

 

 

 

 

 

 

 Fig 2.1. Creating the Evaluation model (Dyke et al, 2002) 

 

To make it possible for designers/researchers to place devices 

acting longitudinally between the deck and the tower, a modified 

evaluation model is formed in which the connections between the 

tower and the deck are disconnected. If a designers/researcher 

specifies devices at these nodes, the second model will be formed 

as the evaluation model, and the control devices should connect 

the deck to the tower. As one would expect, the frequencies of this 

model are much lower than those of the nominal bridge model. The 

first ten frequencies of this second model are 0.1618, 0.2666, 
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0.3723, 0.4545, 0.5015, 0.5650, 0.6187, 0.6486, 0.6965, and 

0.7094 Hz.  

 

2.2. Reduced Model of the Bridge of Cape Girardeau 

The reduction is done through static condensation technique. The 

active DOFs retained in the model include (Dyke et al., 2002): 

• the nodes at the top at each tower, 

• the lowest nodes at which cables are connected on each tower, 

• nodes at the joints of the tower, 

• nodes or DOFs of elements whose shear and overturning 

moment are among the design criteria, 

• approximately every third mode of the bridge deck, 

• rotational DOFs about the longitudinal and vertical axis of all 

spinal decks nodes. 

These locations are indicated in Fig 2.2. The result is a model with 

419 degree of freedom. 

Static condensation is performed by Dyke et al., by partitioning 

the mass and stiffness matrices into active and dependent DOF as 

in 

ܯ  ൌ ܯ ௗܯ
ௗܯ ௗௗܯ

൨ ܭ      , ൌ ܭ ௗܭ
ௗܭ ௗௗܭ

൨ (2-1) 
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Fig 2.2. Elements and DOF retained for the Cape Girardeau Bridge (Dyke et al, 2002) 
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where ܯ is the mass matrice, ܭ is the stiffness matrice, ܽ denote 

the active DOF, and ݀ for the dependent DOF. Assuming that no 

loads are applied to the dependent DOFs, the system equation for 

static equilibrium is written as 

 ܭ ௗܭ
ௗܭ ௗௗܭ

൨  ܷ
ഥܷ൨ ൌ ቂ ܲ

0 ቃ (2-2) 

where ܷ is the active, and ഥܷ is the dependent displacement vector. 

Using the second row of eq.(2-2), the transformation matrix is 

obtained as 

 ோܶ ൌ 
ܫ

െܭௗௗ
ିଵܭௗ

൨ (2-3) 

where ோܶis the static transformation matrix, and ܫ is the identity 

matrix of appropriate size, such that 

  ܷ
ഥܷ൨ ൌ ோܶ ܷ (2-4) 

The transformed mass and stiffness matrices are then as follows 

ܯ  ൌ ோܶ
ܯ் ோܶ  and  ܭ ൌ ோܶ

ܭ் ோܶ (2-5) 

The corresponding coefficient matrices for the ground excitation 

and the control forces are given by 

 Γ ൌ ோܶ
ܯ் ோܶ  and  Λ ൌ ோܶ

்Λ (2-6) 

Prior to making this transformation, Γ and Λ must be reordered 

into active and dependent degrees-of-freedom. Application of this 
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reduction scheme to the full model of the bridge resulted in a 419 

DOF reduced order model. The first 100 natural frequencies of the 

reduced model (up to 3.5 Hz) are in good agreement with those of 

the 909 DOF structure. The damping in the system is defined based 

on the assumption of modal damping. The damping matrix was 

developed by assigning 3% of critical damping to each mode. This 

value was selected to be consistent with assumptions made during 

the design of the bridge. The reduced system was used to construct 

the damping matrix using 

መܥ  ൌ Φܯ 
ଵ߱ଵߞ2 0 0

0 … 0
0 0 ߱ߞ2

൩ (2-7) 

where Φ  is the modal matrix, and ߞଵ  and ߱ଵ  are the natural 

frequency [rad/sec] and modal damping ratio of the ith mode, 

respectively. The resulting equation of motion for the damped 

structural system is 

ܯ  ܷሷ  መܥ ܷሶ  ܭ ܷ ൌ  െΓݔሷ  Λ݂ (2-8) 

where ܷ is the displacement vector of active DOFs. This model is 

termed the evaluation model. It is considered to portray the actual 

dynamics of the bridge and will be used to evaluate various control 

systems.  
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Note that this model always includes the effects of the shock 

transmission devices, which constraint longitudinal motion. The 

evaluation model and earthquake inputs are fixed for this 

benchmark problem. 

  

 

 




