PREVENTIVE MAINTENANCE INTERVAL OF CORRUGATOR MACHINE IN PT PURINUSA EKAPERSADA

FINAL PROJECT
Submitted in order to complete the requirement
Bachelor of Engineering

By:

Sanjaya Purnama Sukma 06 14 05042

INDUSTRIAL ENGINEERING STUDY PROGRAM
FACULTY OF INDUSTRIAL TECHNOLOGY
ATMA JAYA YOGYAKARTA UNIVERSITY
YOGYAKARTA
2010

APPROVAL

Thesis of International S-1 Program Entitled:

PREVENTIVE MAINTENANCE INTERVAL OF CORRUGATOR MACHINE IN PT PURINUSA EKAPERSADA

Written by :
Sanjaya Purnama Sukma
(Student's Number : 06 14 05042)

Have been Examined and approved on:

December 2010

Adviser,

Co-Adviser,

(S. Setio Wigati, ST., MT.)

(Y. Suharyanti, ST., MT.)

Board of Examiner: Chairman,

(S. Setio Wigati, ST., MT.)

Member,

Member,

(Ag. Latot Bintoro, ST., MT.) (Ir.B. Kristyanto, M.Eng., Ph.D.)

Yogyakarta, December 2010
International Industrial Engineering rogram
Faculty of Industrial Technology
Universitas Atma Jaya Yogyakarta

Deans

(Ir.B. Kristyanto, M.Eng., Ph.D.)

ACKNOWLEDGEMENT

Thank's to The God for His blessings, strength, and guidances that allow the writer to finally finish the Final Project Report, entitled "INTERVAL OF PREVENTIVE MAINTENANCE CORRUGATORS MACHINE IN PT PURINUSA EKAPERSADA".

The Final Project Report is made to fulfill one of the requirements to reach bachelor degree of Industrial Engineering from Atma Jaya Yogyakarta University.

In this moment, the writer would like to thank to all parties who have helped the writer to accomplish the Final Project and report making as mentioned below:

- Our Lord in Heaven for His blessing, spirit, strength and guidance to finish the final project report
- 2. Mr. Ir.B. Kristyanto, M.Eng., Ph.D., as Dean of Industrial Engineering Faculty Atma Jaya University
- 3. Mr. The Jin Ai, ST., MT., D.Eng., as Head of Industrial Engineering Study Program Atma Jaya University
- 4. Mrs. Ririn Diar Astanti, ST., MT., as Coordinator of International Industrial Engineering Study Program
- 5. Mrs. S. Setio Wigati, ST., MT., as adviser who has given many advises during final project constructing
- 6. Mrs. Y. Suharyanti, ST., MT., as co-adviser who has given many advices during final project constructing

- 7. Mr. Joko Suseno as the production manager of PT Purinusa Ekapersada Semarang for the warm hand shaking which motivate me to do my best
- 8. Mr. Nanang, Mr. Amin as machine operator who teach me about corrugators
- 9. My lovely parents that always supports, pray, and believe me to complete my study
- 10. My families for all the supports and prayers
- 11. Veronica Yulyanti, who always encouraging while I doubt
- 12. Lucky Kristantyo who help me in any difficulties.
- 13. Herfi, Wiwin, Crist, Iswo, Yozi, Widya, Shinto, Rico, and all my best friend that I can not mention one by one
- 14. Piter, Pandu, Memei, Rio, and Alex; My friends from TIKI 2006 who always support and willing to share a lot of experience together.
- 15. Other parties who has helped the writer in doing the internship study and report constructing, but unfortunately can not be mentioned one by one.

The writer realizes that the final project report is not the perfect one. So, the writer would like to accept any critics and suggestion from the readers. Hopefully, the final project report will bring a lot of benefits for all parties and the final project report can bring many advantages for the readers. Thank you.

Yogyakarta, 23 November 2010

The writer

CONTENT

Cove	r	i
Appr	oval	ii
Dedi	cation	iii
Ackn	owledgement	iv
Cont	ent	vi
List	of Table	ix
List	of Figure	X
List	of Attachment	хi
Abst	ract	xi
CHAP	TER INTRODUCTION	1
1.1.	Background	1
1.2.	Problem Statement	2
1.3.	Research Objectives	2
1.4.	Scope	2
1.5.	Research Methodology	3
1.6.	Outline	4
CHAP	TER 2 LITERATURE REVIEW	6
2.1.	Previous Research	6
2.2.	Recent Research	7
CHAP	TER 3 THEORY	8
3.1.	Maintenance Definition	8
3.2.	Types of Maintenance	10
	3.2.1. Preventive Maintenance	10
	3.2.2. Corrective Maintenance	11
	3.2.3. Running Maintenance	11
	3.2.4. Predictive Maintenance	11

	3.2.5. Breakdown Maintenance	11
	3.2.6. Emergency Maintenance	12
3.3.	Reliability	12
3.4.	Failure Rate	12
3.5.	Time to Failure Distribution	15
3.6.	Changeover Decision	20
3.7.	Optimum Preventive Maintenance	20
CHAPT	TER 4 COMPANY PROFILE AND DATA	22
4.1.	Company Profile	22
	4.1.1. History of Company	22
	4.1.2. Production System	23
	4.1.3. Production Process	24
	4.1.4. Maintenance System PT Purinusa	
	Ekapersada	28
4.2.	Data	28
	4.2.1. Time Repair Data	28
	4.2.2. Work Hours Corrugators Machine	28
	4.2.3. Opportunity Cost and Defect Cost	32
CHAPT	TER 5 DATA ANALYSIS AND DISCUSSION	34
5.1.	Data Analysis	34
	5.1.1. Preliminary Data Analysis	34
	5.1.2. Time to Failure and Time Failure	34
	5.1.3. Time to Failure Distribution	35
	5.1.4. Model Formulation	36
	5.1.5. Model Validation	43
5 2	Diaguagian	10

CHAPTER 6 CONCLUSION	50
6.1. Conclusion	50
6.2. Suggestion	50
Reference	51
Attachment	53

LIST OF TABLE

Table	4.1.	Hotplate Downtime Data	28
Table	4.2.	Mechanical Repair Data	30
Tabel	4.3.	Total Production Data	32
Tabel	5.1.	Distribution Selection Based on Arena	
		Input Analyzer Software for Time to	
		Failure	36
Table	5.2.	Total Production Data	38
Tabel	5.3.	Minimum Cost Hotplate Manual	
		Calculation	44
Tabel	5.4.	Minimum Cost Mechanical Part Manual	
		Calculation	46
Tabel	5.5.	Comparison Between Maple Result and	
		Simulation of Real Condition	47
Table	5.6.	Sensitivity Analysis Sumary	49
Tabel	5.7.	Data Analysis Result	49

List of Figure

Gambar 1.1.	Flowchart of Research Methodology	3
Gambar 3.1.	The Role Maintenance System to Support	
	Production System	8
Gambar 3.2.	Bath up Curve	13
Gambar 3.3.	Forms of Failure Rate Distribution	14
Gambar 3.4.	Beta Distribution	16
Gambar 3.5.	Uniform Distribution	16
Gambar 3.6.	Exponential Distribution	17
Gambar 3.7.	Gamma Distribution	18
Gambar 3.8.	Weibull Distribution	18
Gambar 3.9.	Lognormal Distribution	19
Gambar 3.10.	One Cycle of Failure	21
Gambar 4.1.	Production Process in PT Purinusa	
	Ekapersada	26
Gambar 5.1.	Model of 1 cycle failure	36
Gambar 5.5.	Cost per Unit Hotplate Part of	
	Corrugator	41
Gambar 5.6.	Minimum Cost Graphic Mechanical Part of	
	Corrugator	42
Gambar 5.7.	Defect Cost Less than Opportunity	
	Cost	48

List of Attachment

Attachment	1	Detail of Maple Software for Hotplate
		Weibull Distribution
Attachment	2	Detail of Maple Software for Hotplate
		Weibull Distribution with Numeric
		Method
Attachment	3	Detail of Maple Software for Hotplate
		Lognormal Distribution with Numeric
		Method
Attachment	4	Detail of Maple Software for Mechancal
		Repair Exponential Distribution
Attachment	5	Distribution Summaries for Hotplate
		part with Arena Input Analyzer
Attachment	6	Distribution Summary for Mechanical
		part with Arena Input Analyzer
Attachment	7	Corrugator Machine

ABSTRACT

PT Purinusa Ekapersada is a packaging product company that is subsidiary of Sinarmas Group Company. Sheets and cardboard boxes are the orders commonly received by this company. Corrugator is the main machine to produce sheet and cardboard boxes. Hotplate part and Mechanical part are the main part of corrugators machine. Applying both corrective maintenance and preventive maintenance creates the high defect cost and opportunity cost. This research is proposed to decide the interval of maintenance based on minimizing cost.

The research is done by the model that uses software Maple V Release 5 Network Edition to find the interval of maintenance and Microsoft Excel to validate the result of maple software. Interval of maintenance system is used for decide time of maintenance based on cost minimization.

Analysis result shows the interval of maintenance and the cost minimization. The interval for hotplate part is 24 hours with cost Rp 196 and reduces 76.2% from initial cost. The interval for mechanical part is 23 hours with cost Rp 45 and reduces 92.4% from initial cost.