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a b s t r a c t

This paper presents two solution representations and the corresponding decoding methods for solv-
ing the capacitated vehicle routing problem (CVRP) using particle swarm optimization (PSO). The
first solution representation (SR-1) is a (n + 2m)-dimensional particle for CVRP with n customers
and m vehicles. The decoding method for this representation starts with the transformation of par-
ticle into a priority list of customer to enter route and a priority matrix of vehicle to serve each
customer. The vehicle routes are then constructed based on the customer priority list and vehicle
priority matrix. The second representation (SR-2) is a 3m-dimensional particle. The decoding method
for this representation starts with the transformation of particle into the vehicle orientation points
and the vehicle coverage radius. The vehicle routes are constructed based on these points and
radius. The proposed representations are applied using GLNPSO, a PSO algorithm with multiple
social learning structures, and tested using some benchmark problems. The computational result
shows that representation SR-2 is better than representation SR-1 and also competitive with other
methods for solving CVRP.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The capacitated vehicle routing problem (CVRP) introduced by
Dantzig and Ramser (1959), is a problem to design a set of vehicle
routes in which a fixed fleet of delivery vehicles of uniform capac-
ity must service known customer demands for a single commod-
ity from a common depot at minimum cost. The CVRP can be
formally defined as follows (Cordeau, Gendreau, Laporte, Potvin,
& Semet, 2002; Lysgaard, Letchford, & Eglese, 2004; Prins,
2004). A set of n customers require a delivery service from a de-
pot. Each customer i has a non-negative demand qi and a service
time si. A fleet of m identical vehicles of capacity Q and service
time limit D is stationed at the depot. The depot and customers
locations are known; therefore, the travel distance or travel cost
between two locations (dij) and travel time between two locations
(tij) are also known. The CVRP consists of designing a set of at
most m delivery routes such that (1) each route starts and ends
at the depot, (2) each customer is visited exactly once by exactly
one vehicle, (3) the total demand of each route does not exceed Q,
(4) the total duration of each route (including travel and service
times) does not exceed a preset limit D, and (5) the total routing
cost is minimized.

The CVRP is the key operational problem of the vehicle routing
problems that must be solved in the daily operation of physical dis-
tribution and logistic. Hence, studying this basic problem and
methods for finding solution of the problem is essential as the
foundation to learn other advanced problem in this field and devel-
op its solution methodology.

It is known that the CVRP is an NP-hard problem (Haimovich,
Rinnooy Kan, & Stougie, 1988), in which finding the optimal solu-
tion of CVRP instance is very hard and usually requires very long
computational time. As a consequence, evolutionary computing
methods have been applied for CVRP to find a near optimal solu-
tion in a reasonable amount of time, for example: genetic algo-
rithm (Baker & Ayechew, 2003; Berger & Barkaoui, 2003), ant
colony optimization (Bullnheimer, Hartl, & Strauss, 1999; Doerner
et al., 2002) and particle swarm optimization (Chen, Yang, & Wu,
2006; Ai & Kachitvichyanukul, 2007).

Particle swarm optimization (PSO), which first proposed by
Kennedy and Eberhart (1995), is a population based search
method that mimics the behavior of group organism as a search-
ing method. In the PSO, a solution of a specific problem is being
represented by multi-dimensional position of a particle and a
swarm of particles is working together to search the best posi-
tion which correspond to the best problem solution. In each
PSO iteration, every particle moves from its original position to
a new position based on its velocity, where particles’ velocity
is influenced by the cognitive and social information of the par-
ticles. The cognitive information of a particle is the best position
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that has been visited by the particle, i.e. position that provides
the best objective function, and the most common social infor-
mation of the particles is called the global best position, the best
position that has been visited by all particles in the swarm. A
comprehensive survey on PSO mechanism, technique, and appli-
cation is provided by Kennedy and Eberhart (2001) and also
Clerc (2006).

Two previous researches on the application of PSO to CVRP had
different features and characteristics, including the benchmark
problems that had been used for testing the algorithms. Chen
et al. (2006) applied the discrete version of PSO and combined
the method with Simulated Annealing algorithm, while Ai and
Kachitvichyanukul (2007) used the classical version of PSO without
any hybridization. In term of computational result, Chen’s PSO
could provide high quality solution for some benchmark problems
with number of customers less than 134. However, their method
required significantly larger computational time and even almost
reached half an hour for the slowest case. On the other hand, Ai
and Kachitvichyanukul’s PSO could provide solution within rela-
tively fast computational time for some benchmark problems with
number of customers less than 199. However, there were some
variations on the solution quality.

In order to make PSO applicable to CVRP, the relationship be-
tween particle position and vehicle routes must be clearly de-
fined. The definition of particle as an encoded solution is
usually called a solution representation and the method to con-
vert it to problem specific solution is usually called a decoding
method. This paper proposes two specific solution representa-
tions, namely SR-1 and SR-2, and its corresponding decoding
method to convert position in PSO into CVRP solution. The solu-
tion representation SR-1 is a direct extension of the work of Ai
and Kachitvichyanukul (2007), in which a local improvement pro-
cedure is added to its decoding method in order to enhance solu-
tion quality. The solution representation SR-2 is a new proposed
representation which expands the basic idea of SR-1. The decod-
ing method for SR-2 is also incorporated some simple local
improvement procedures for increasing solution quality. Both
representations are designed for the classic variant of PSO, which
is using real value of position. Hence, these representations are
different with Chen’s work which was based on a discrete-valued
representation.

The remainder of this paper is organized as follow: Section 2 re-
views PSO framework for solving CVRP. Section 3 explains the pro-
posed solution representations and decoding methods. Section 4
discusses the computational experiment of PSO that applied the
solution representations on benchmark data set. Finally, Section
5 summarizes the result of this study and suggests further direc-
tion in this research.

2. PSO framework for solving CVRP

The PSO framework for solving CVRP is based on GLNPSO, a PSO
Algorithm with multiple social structures (Pongchairerks & Kachit-
vichyanukul, 2005). In this framework, the particles are initialized
in step 1, evaluated its corresponding fitness value within steps 2–
3, updated its cognitive and social information within steps 4–7,
and moved by step 8. Step 9 is controlling step for repeating or
stopping the iteration. Note that the adjustment of this framework
from the original GLNPSO algorithm are in step 2, which is the con-
version of the position of particle into vehicle routes, and step 3,
which is to determine the performance measurement of the routes.
Also, this algorithm is designed for the minimization problem,
since the CVRP objective is to minimize total routing cost.

The notation and the description of the algorithm are given as
follows.

Notation
t Iteration index; t = 1 . . . T
i Particle index, i = 1 . . . I
d Dimension index, d = 1 . . . D
u Uniform random number in the interval [0,1]
w(t) Inertia weight in the tth iteration
vid(t) Velocity of the ith particle at the dth dimension in the tth

iteration
xid(t) Position of the ith particle at the dth dimension in the tth

iteration
pid Personal best position (pbest) of the ith particle at the dth

dimension
pgd Global best position (gbest) at the dth dimension
pL

id Local best position (lbest) of the ith particle at the dth
dimension

pN
id Near neighbor best position (nbest) of the ith particle at

the dth dimension
cp Personal best position acceleration constant
cg Global best position acceleration constant
cl Local best position acceleration constant
cn Near neighbor best position acceleration constant
Xi Vector position of ith particle, [xi1, xi2, . . . ,xiD]
Vi Vector velocity of ith particle, [vi1, vi2, . . . ,viD]
Pi Vector personal best position of ith particle,

[pi1,pi2, . . . ,piD]
Pg Vector global best position, [pg1,pg2, . . . , pgD]
Ri Set of vehicle routes corresponding to ith particle
u(Xi) Fitness value of Xi

Xmin Minimum position value
Xmax Maximum position value
FDR Fitness-distance-ratio

Algorithm 1. PSO framework for CVRP

1. Initialize I particles as a population, generate the ith particle
with random position Xi in the range [Xmin,Xmax], velocity
Vi = 0 and personal best Pi = Xi for i = 1 . . . I. Set iteration t = 1.

2. For i = 1 . . . I, decode Xi to a set of vehicle route Ri (see Decod-
ing method in Section 3).

3. For i = 1 . . . I, compute the performance measurement of Ri,
i.e., the total cost of the routes, and set this as the fitness
value of Xi, represented by u(Xi).

4. Update pbest: For i = 1 . . . I, update Pi = Xi, if u(Xi) < u(Pi).
5. Update gbest: For i = 1 . . . I, update Pg = Pi, if u(Pi) < u(Pg).
6. Update lbest: For i = 1 . . . I, among all pbest from K neighbors

of the ith particle, set the personal best which obtains the
least fitness value to be PL

i .
7. Generate nbest: For i = 1 . . . I, and d = 1 . . . D, set pN

id ¼ pjd that
maximizing fitness-distance-ratio (FDR) for j = 1 . . . I. Where
FDR is defined as:

FDR ¼ uðXiÞ �uðPjÞ
jxid � pjdj

which i–j ð1Þ

8. Update the velocity and the position of each ith particle:

wðtÞ ¼ wðTÞ þ t � T
1� T

½wð1Þ �wðTÞ� ð2Þ

vidðt þ 1Þ ¼ wðtÞvidðtÞ þ cpuðpid � xidðtÞÞ þ cguðpgd � xidðtÞÞ
þ cluðplid � xidðtÞÞ þ cnuðpnid � xidðtÞÞ ð3Þ

xidðt þ 1Þ ¼ xidðtÞ þ vidðt þ 1Þ ð4Þ

If xid(t + 1) > Xmax,

T.J. Ai, V. Kachitvichyanukul / Computers & Industrial Engineering 56 (2009) 380–387 381



Author's personal copy

xidðt þ 1Þ ¼ Xmax ð5Þ
vidðt þ 1Þ ¼ 0 ð6Þ

If xid(t + 1) < Xmin,

xidðt þ 1Þ ¼ Xmin ð7Þ
vidðt þ 1Þ ¼ 0 ð8Þ

9. If the stopping criterion is met, i.e. t = T, go to step 10. Other-
wise, t = t + 1 and return to step 2.

10. Decode Pg as the best set of vehicle route found R* with its
corresponding performance measurement u (Pg).

This framework is starting with I particles with a particular rep-
resentation that corresponds with I different set of vehicle routes.
Then by following the PSO movement mechanism, the particles are
moving to different positions, which mean other sets of routes are
assessed. Whenever a better set of routes is found, its correspond-
ing best particle information is updated. This movement process is
iterated with an expectation to find better and better routes. Since
the best particle position for the whole swarm is always being
kept, the best vehicle route can be decoded from this information
at the end of iteration.

This algorithm is flexible for handling different kind of solution
representation and vehicle route problems. It can be applied for
any real-valued solution representation and it is also possible to
use it for solving some VRP variants other than CVRP, as long as
the decoding method is clearly defined. As mentioned before,
two specific solution representations are proposed in order to ap-
ply this algorithm for solving CVRP. The details of these represen-
tations will be explained in the following section.

3. Solution representations and decoding methods

3.1. Solution representation SR-1

The solution representation SR-1 of CVRP with n customers and
m vehicles consists of (n + 2m) dimensional particle. Each particle

dimension is encoded as a real number. The first n dimensions
are related to customers, each customer is represented by one
dimension. The last 2m dimensions are related to vehicles, each
vehicle is represented by two dimensions as the reference point
in Cartesian map. This solution representation is first proposed
by Ai and Kachitvichyanukul (2007).

The decoding method for this representation into the CVRP
solution starts with extracting the position value of the first n
dimension of particle to make a priority list of customer to enter
route. It can be done by sorting the first n dimensional values in
ascending order and taking the dimension index as the customer
priority list. The next step is to extract the reference point for
vehicles from the last 2m dimension of particle. The priority ma-
trix of vehicles is constructed based on the relative distance be-
tween these points and customers location. A customer is
prioritized to be served by vehicle which has closer distance. Fi-
nally, vehicle routes are constructed based on the customer prior-
ity list and vehicle priority matrix. The basic procedure of this
decoding method is also the same with the decoding method of
Ai and Kachitvichyanukul (2007). However, there is a slightly
modification in the route construction step, which incorporates
2-opt local improvement procedure to a route right after a cus-
tomer is inserted to the route. Schematic example of the whole
decoding procedure of the representation SR-1 for problem with
6 customers and 2 vehicles is shown in Fig. 1 and the route con-
struction procedure is graphically illustrated in Fig. 2. The nota-
tion and the decoding algorithm for this representation are
presented in Algorithm 2.

Notation
xid Position of the ith particle at the dth dimension
Rij Route of the jth vehicle corresponding to the ith particle

Algorithm 2. Decoding method of solution representation SR-1

1. Construct the priority list of customers (U).
a. Build set S = {1,2, . . . ,n} and U = ;.
b. Select c from set S where xic ¼ min

d2S
xid.

Fig. 1. Solution representation SR-1 and decoding steps to vehicle routes.
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c. Add c to the last position in set U.
d. Remove c from set S.
e. Repeat steps 1b–d until S = ;.

2. Construct the vehicle priority matrix (V).
a. Set the vehicle reference position. For j = 1 . . . m, set xrefj = xi,n+j

and yrefj = xi,n+m+j.
b. For each customer k, k = 1 . . . n.

i. For each vehicle j = 1 . . . m, set dj as the Euclidean distance
between customer k and the reference point of vehicle j.

ii. Build set S = {1,2, . . . ,m} and Vk = ;.
iii. Select c from set S where dc ¼min

d2S
dd.

iv. Add c to the last position in set Vk.
v. Remove c from set S.

vi. Repeat step 2b.iii–v until S = ;.

3. Construct vehicle route.
a. Set k = 1.
b. Add customer one by one to the route.

i. Set l = Uk and p = 1.
ii. Set j = Vl,p.

iii. Make a candidate of new route by inserting customer l to
the best sequence in the route Rij, which has the smallest
additional cost.

iv. Check the capacity and route time constraint of the candi-
date route.

v. If a feasible solution is reached, update the route Rij with
the candidate route, then apply 2-opt procedure to the
route Rij; go to step 3c.

vi. If p = m, go to step 3c. Otherwise, set p = p + 1 and go to step
3b.ii.

c. If k = n, stop. Otherwise, set k = k + 1 and repeat 3b.

3.2. Solution representation SR-2

The solution representation SR-2 consists of 3m dimensional
particle and each particle dimension is encoded as a real number.
All dimensions are related to vehicles, each vehicle is represented
by three dimensions: two dimensions for the reference point and
one dimension for the vehicle coverage radius.

The decoding method for this representation starts with the
transformation of particle to the vehicle orientation points and
the vehicle coverage radius. The vehicle routes are then con-
structed based on these points and radius. For each vehicle,
starting from the first to the last vehicle, a feasible route consists
of customers that located inside its coverage area and have not
been assigned to other vehicle is constructed. Vehicle coverage
area is defined as an area inside a circle centered at its reference
point within its coverage radius. Afterward, the 2-opt, 1-1 ex-
change, and 1-0 exchange procedures are applied to the con-
structed routes. If there are remained customers that have not
been assigned to any vehicle, the customers are inserted one
by one to the existing routes as long as the route feasibility is
maintained. Finally, the local improvement procedures are re-ap-
plied to all of the routes. Schematic example of the decoding
procedure of the representation SR-2 is illustrated in Fig. 3 and
the route construction procedure is illustrated in Fig. 4. The for-
mal decoding algorithm for this representation is described in
Algorithm 3.

Algorithm 3. Decoding method of solution representation SR-2

1. Extracting vehicle properties, for each vehicle j = 1 . . . m.
a. Set reference point, xrefj = xi,3j�2 and yrefj = xi,3j�1.
b. Set coverage radius, rj = xi,3j.

2. Route construction.
a. For each vehicle j, construct route of customers that located

inside circle with center point (xrefj,yrefj) and radius rj.
� Customer is inserted to the route one by one according to its

distance from the center point, priority given to closer
customer.

� Consider all constraints (vehicle capacity and routing time
constraints) to maintaining route feasibility.

� Inserting position: best position in the existing route.

b. Optimize the partial constructed routes with following local
improvement procedures: 2-opt, 1-1 exchange and 1-0
exchange.

c. For remaining customers, insert to the partial constructed
routes:
� Customer is inserted to the route one by one according to its

distance from the depot, priority is given to customer
located further away.

� Consider all constraints (vehicle capacity and routing time
constraints) to maintaining route feasibility.

� Inserting position:

Fig. 2. Illustration of vehicle routes construction of SR-1.

Fig. 3. Solution representation SR-2 and decoding steps to vehicle routes.
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� Vehicle: evaluate all, priority given to the closest vehi-
cle. Distance of a customer to a route is measured by
the distance between the customer to the closest cus-
tomer exists in the route.

� Customer is inserted before the closest existing cus-
tomer in the route.

d. Optimize the routes with the following local improvement
procedures: 2-opt, 1-1 exchange and 1-0 exchange.

3.3. Local improvement procedures

Three common local improvement procedures, 2-opt, 1-1 ex-
change, and 1-0 exchange, are incorporated in the decoding meth-
ods described in the previous sub section. These procedures will be
briefly reviewed in this section.

The 2-opt procedure works on improving single route by
systematically exchange the route direction between two pairs
of consecutive customers in the route and evaluate whether

the routing cost of the route is improved or not. The exchange
mechanism is illustrated in Fig. 5, in which the route direction
between customers i � (i + 1) and j � (j + 1) are interchanged. If
the routing cost of the modified route is better than the rout-
ing cost of original one, the route is updated with the modified
one.

The 1-1 exchange and 1-0 exchange procedures work on
improving two adjacent routes by exchange customer(s) between
routes and evaluate whether the total routing cost of the two
routes is improved or not. The 1-1 exchange procedure systemati-
cally interchanges one customer from the first route with another
customer from the second route. The 1-0 exchange procedure
systematically moves one customer from the first route to the
second route. If the routing cost of the modified routes is better
than the routing cost of original ones, the routes are updated with
the modified ones. These procedures are demonstrated in Fig. 6
and 7, respectively, in which customer i in the first route is inter-
changed with customer j in the second route (Fig. 6) and customer
i in the first route is moved before customer j in the second route
(Fig. 7).

The formal algorithm of these local improvement procedures
are described in Algorithms 4–6. In order to reduce the computa-
tional effort, an additional step to limit the number of exchange
is added to original procedures. In this modified procedures, the
exchange is performed whenever the location of customer i and j
are within range d.

Algorithm 4. Procedure 2-opt

1. Set n = numbers of customer in the route.
2. For i = 1 . . . (n � 2) and j = (i + 2) . . . n.
a. Modify route by changing the route direction of customer in

the sequence number i, (i + 1), j, and (j + 1) as shown in Fig. 5.
b. Evaluate the feasibility of modified route and the routing cost

improvement.
c. If feasibility is maintained and the routing cost is improved,

keep the modified route. Otherwise, return the route to the
condition before the last step 2a.

Algorithm 5. Procedure 1-1 exchange

1. Set n = number of customers in the first route.
2. Set m = number of customers in the second route.

Fig. 4. Illustration of vehicle routes construction of SR-2.

Fig. 5. Illustration of 2-opt procedure.

Fig. 6. Illustration of 1-1 exchange procedure.
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3. For i = 1 . . . n and j = 1 . . . m.
a. If the distance between customer with sequence number i in

the first route and customer with sequence number j in the
second route is within range d, go to step 3b. Otherwise, repeat
step 3a with the next value of i or j.

b. Modify routes by interchanging the customer with sequence
number i in the first route with the customer with sequence
number j in the second route.

c. Evaluate the feasibility of modified routes and the routing cost
improvement.

d. If feasibility is maintained and the routing cost is improved,
keep the modified route. Otherwise, return the route to the
condition before the last step 3a.

Algorithm 6. Procedure 1-0 Exchange

1. Set n = number of customers in the first route.
2. Set m = number of customers in the second route.
3. For i = 1 . . . n and j = 1 . . . m.
a. If the distance between customer with sequence number i in

the first route and customer with sequence number j in the
second route is within range d, go to step 3b. Otherwise, repeat
step 3a with the next value of i or j.

b. Modify routes by moving the customer with sequence number
i in the first route before the customer with sequence number j
in the second route.

c. Evaluate the feasibility of modified routes and the routing cost
improvement.

d. If feasibility is maintained and the routing cost is improved,
keep the modified route. Otherwise, return the route to the
condition before the last step 3a.

4. Computational result

Two set of computational experiments are conducted to test the
performance of the PSO with the two solution representations for
solving the CVRP. The first set of experiment is performed in order
to compare the result of these proposed methods with PSO of Chen
et al. (2006). In this experiment, the proposed methods are applied
to the same sixteen benchmark problems that had been used by
Chen. The second set of experiment is conducted in order to eval-
uate performance of these methods for the larger size problem. The
benchmark data set of Christofides, Mingozzi, and Toth (1979) are
selected as testing case, since these data are widely used as CVRP
benchmark and they cover larger problems than the Chen’s
problem set.

The algorithm is implemented in C# language using Microsoft
Visual Studio.NET 1.1 on a PC with Intel P4 3.4 GHz – 1 GB RAM.
For each data set, 5 replications of the algorithm are tried. The
PSO parameters are: Number of Particle, I = 50; Number of Itera-
tion, T = 1000; Number of Neighbor, K = 5; First inertia weight,
w(1) = 0.9; Last inertia weight, w(T) = 0.4; Personal best position
acceleration constant, cp = 0.5; Global best position acceleration

constant, cg = 0.5; Local best position acceleration constant,
cl = 1.5; Near neighbor best position acceleration constant, cn = 1.5.

4.1. Comparison with Chen’s results

The first computational experiment is conducted on the same
sixteen benchmark problems that had been used by Chen et al.
(2006). In these benchmark problems, the total number of custom-
ers is varying from 29 to 134 customers, and the total number of
vehicles is varying from 3 to 10 vehicles. The computational results
of both solution representation SR-1 and SR-2 for these benchmark
problems are presented in Table 1, in term of the best objective
function found and the average computational time over 5 replica-
tions. For comparison purpose, the best known solution (BKS) and
the Chen’s solution also displayed here. In this table, an objective
function value with bold italic typeface indicates that the corre-
sponding solution is exactly equal to the best known solution.

From the solution quality point of view, the result from repre-
sentation SR-2 is better than Chen’s and SR-1 result. It is shown
in Table 1 that the SR-2 solutions are very close to the best-known
solution, in which the solution of ten out of sixteen instances are
exactly same as the best-known solution and the remainders are
only slightly larger than the best-known solutions. Furthermore,
it provided the best objective function among three methods for al-
most all instances (fourteen out of sixteen instances).

In term of computational effort, both representations SR-1 and
SR-2 are faster than Chen. Even though the Chen experiment is per-
formed on different machines than the SR-1 and SR-2 experiments,
the time gap between Chen and SR-1 or SR-2 computational time is
significantly large, especially for the big problems, i.e. instance
with at least 100 customers (Fn135k7, Mn101k10, etc.). In general,
representation SR-1 requires shorter time than SR-2 with

Fig. 7. Illustration of 1-0 exchange procedure.

Table 1
Computational result of the Chen’s benchmark problems

Instance No. cust. No. vhcl. Objective function (Cost) Comp. time (s)

BKS Chen SR-1 SR-2 Chenb SR-1 SR-2

An33k5 32 5 661 661a 661a 661a 32 11 13
An46k7 45 7 914 914a 914a 914a 129 19 23
An60k9 59 9 1354 1354a 1366 1355 309 28 40
Bn35k5 34 5 955 955a 955a 955a 38 12 14
Bn45k5 44 5 751 751a 751a 751a 134 17 20
Bn68k9 67 9 1272 1272a 1278 1274 344 33 50
Bn78k10 77 10 1221 1239 1239 1223a 429 41 64
En30k3 29 3 534 534a 541 534a 28 11 16
En51k5 50 5 521 528 521a 521a 301 21 22
En76k7 75 7 682 688 691 682a 527 38 60
Fn72k4 71 4 237 244 237a 237a 398 58 53
Fn135k7 134 7 1162 1215 1184 1162a 1526 178 258
Mn101k10 100 10 820 824 821 820a 874 60 114
Mn121k7 120 7 1034 1038 1041 1036a 1734 88 89
Pn76k4 75 4 593 602 599 594a 496 51 48
Pn101k4 100 4 681 694 686 683a 978 99 86

a The best objective function among Chen’s, SR-1, and SR-2 results.
b Computational time on Pentium IV 1.8 GHz with 256 MB RAM.
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exceptions on the instances Fn72k4, Pn76k4 and Pn101k4. These
exceptions are not uncommon since the computational effort is
also depend on the problem instance characteristics.

As summary, the proposed PSO framework with representation
SR-2 can be considered as the best method, since it outperformed
SR-1 in terms of solution quality and dominated Chen’s in term of
both solution quality and computational time.

4.2. Christofides benchmark problem

The second computational experiment is conducted on the
benchmark problems of Christofides et al. (1979). This benchmark
set comprise of problems with randomly distributed and clus-
tered customers, problems with and without route time con-
straint, and varies number of customers. The computational
results for these benchmark problems are presented in Table 2,
in term of the best objective function found and the average com-
putational time over five replications. For comparison purpose,
the best known solution (BKS) and the Ai and Kachitvichyanukul’s
(2007) results (SR-1�) are also displayed here. In this table, an
objective function value with bold italic typeface indicates that
the corresponding solution is exactly equal to the best-known
solution (BKS) and the value displayed below the solution is the
percentage deviation of the solution from the corresponding
best-known solution.

The results on Table 2 shows that the proposed PSO framework
with both representation SR-1 and SR-2 could provide a reasonably
good solutions, with an exception for instance vrpnc9 with repre-
sentation SR-1. The results for SR-1 are at most within 5.00% devi-
ation from the best-known solution and the results for SR-2 are at
most within 2.51% deviation from the best-known solution. In
addition, one SR-1 solution and four SR-2 solutions are approach-
ing exactly the best-known solution. From the computational point
of view, it is shown that the representation SR-2 required more
computational effort than the SR-1. Also, the computational time

for both representations is reasonable, in which less than four
and nine minutes, respectively.

The comparison between the results of representation SR-1�
and SR-1 proves that the addition of the local improvement proce-
dure in the decoding method has significant effect to the solution
quality, since the SR-1 results are generally better than the SR-1�
results. Even though this addition causes an additional effort, how-
ever, the total computational effort can be reduced by using smal-
ler number of particles without affecting the solution quality. The
computational results demonstrate that the representation SR-1
using 50 particles is approximately twice faster than the represen-
tation SR-1� which was using 100 particles, even if the quality of
solution from SR-1 is better than SR-1�.

The high-quality result yielded by the proposed method may
come from two factors. First, the decoding scheme gives higher
possibility to get feasible solution, since a rigorous constraint
checking has already been done while constructing the route. Sec-
ond, the solution quality is improved from the route construction
heuristics, including the local improvement procedures. The com-
binations of these efforts are potential for yielding good solutions.

5. Conclusion

This paper presents two solution representations, SR-1 and SR-
2, and the corresponding decoding methods for solving the capac-
itated vehicle routing problem (CVRP) using particle swarm opti-
mization (PSO). The representation SR-1 is a (n + 2m)-
dimensional particle for CVRP with n customers and m vehicles.
The representation SR-2 is a 3m-dimensional particle. The pro-
posed representations are applied using a framework based on
GLNPSO, a PSO algorithm with multiple social learning structures,
and tested using some benchmark problems.

The computational result shows that proposed PSO framework
with both representation SR-1 and SR-2 is effective for solving
CVRP. Both representations are proven more effective than the
other PSO method for solving CVRP, in term of solution quality
and computational time. In term of solution quality, it is shown
that the proposed PSO framework with representation SR-2 is bet-
ter than the framework with representation SR-1. However, the
representation SR-2 required more computational effort than the
representation SR-1.

Some further research for applying the proposed method to
other VRP variants should be carried out. Since the variants of
VRP differ from one another only on the specific problem con-
straints, the adjustment is only required in the constraint feasibil-
ity checking of the decoding method. However, the effectiveness of
this idea needs further exploration.
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