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ARTICLE INFO ABSTRACT

This paper proposes a formulation of the vehicle routing problem with simultaneous pickup and delivery
(VRPSPD) and a particle swarm optimization (PSO) algorithm for solving it. The formulation is a general-
ization of three existing VRPSPD formulations, The main PSO algorithm is developed based on GLNPSO, a
PSO algorithm with multiple social structures. A random key-based solution representation and decoding
method is proposed for implementing PSO for VRPSPD. The solution representation for VRPSPD with n
customers and m vehicles is a (n + 2m)-dimensional particle. The decoding method starts by transforming
the particle to a priority list of customers to enter the route and a priority matrix of vehicles to serve
each customer. The vehicle routes are constructed based on the customer priority list and vehicle priority
matrix. The proposed algorithm is tested using three benchmark data sets available from the literature,
The computational result shows that the proposed method is competitive with other published results
for solving VRPSPD. Some new best known solutions of the benchmark problem are also found by the
proposed method.
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Scope and Purpose

This paper applies a real-value version of particle swarm optimization (PSO) algorithm for solving the
vehicle routing problem with simultaneous pickup and delivery (VRPSPD). The VRPSPD formulation is
reformulated and generalized from three existing formulations in the literature. The purposes of this
paper are to explain the mechanism of the PSO for solving VRPSPD and to demonstrate the effectiveness
of the proposed method. 76
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction real-life problem settings and characteristics, for example: the num-
ber of depots, tyf vehicle, and customer requirements. Toth and

The vehicle routing problem (VRP) is a generic name given to a  vigg [2] provide comprehensive details on VRP, its variants, formu-

class of problems to determine a set of vehicle routes, in which each
vehicle departs from a given depot, serves a given set of customers,
and returns back to the sam ot. Various types of service appear
in practical situations, while physical delivery of goods is the most
common one,

The basic VRP involves a single depot, a fleet of identical vehicles
that stations at the depot, and a set of customers who require deliv-
ery of goods from the t. The objective of basic VRP is to minimize
the total routing cost, subject to maximum working time and maxi-
mum capacity constraints on the vehicles [1]. Besides the basic VRP,
many VRP variants may appear since there are many possibilities in
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lat@and solution methods.
ne extension of the basic VRP is the vehicle routing problem

simultaneous pickup and delivery (VRPSPD). In this variant,
customers require not only the delivery of goods but also the simul-
taneous pick up of goods from them. A general assumption is that all
delivered goo ginate from the depot and all pickup goods must
be transported back to the depot. Min [3] was inspired by a distribu-
tion problem of a public library and first introduced this extension
as the VRPSPD for minimizing the total travel time of the route by
considering the vehicle capacity as the problem constraint. His pro-
posed solution procedure for the problem consists of three phases:
clustering customer nodes, assigning vehicles to clusters, and creat-
in route of each vehicle.

er Min [3], some researchers also contributed on the mathe-
ma formulation of VRPSPD and the solution techniques. Dethloff
|4] discussed the importance of VRPSPD in the reverse logistic
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operations. He proposed a mathematical formulation for the problem
to minimize the total traveled distan?ubject to maximum capac-
ity constraint of the vehicle. He also developed an insertion-based
heuristic that use four different criteria to solve the problem.

Salhi and Nagy [5] proposed four insertion-based heuristics for
generating solution for VRPSPD. The basic steps of these heuristics
are constructing partial routes for a set of customers@:l then in-
serting the remaining customers to the existing route. These heuris-
tic rules were differentiated mainl the criteria for insertion and
number of customers per insertion. Nagy and Salhi [6] also proposed
al earch heuristic with four phases to solve VRPSPD. After find-
ing an initial solution in the first phase, it is continuously improved
in each of the following phases while maintaining a certain feasibil-
ity condition. In both papers, they addressed not only the VRPSPD,
but alse the mixed case of VR ere some customers require deliv-
ery and the other customers require pickup. They showed that the
VRPSPD is a generalization of the mixed problem. In addition, they
alsxtended the method for the multi depot case.

Tang and Galvao [7] developed a tabu search algorithm to solve
VRPSPD. The algorithm combines several efforts to obtain alterna-
tive inter-route and intra-route solutions, includes relocation of a
customer from one route to another route, interchange a pair of cus-
tomers mveen two routes, crossover twao routes, and 2-opt pro-
cedure. In their formulation, the VRPSPD is formulated to minimize
the total traveled distance of the route subject to maximum distance
and maximum capacity constraints on the vehicles.

Bianchessi and Righini [8] proposed heuristic algorithms for
solving VRPSPD. Their work comprised of four different constructive
algorithms, local search algorithms with various neighborhood
structures, and tabu search algorithms. They were using Dethloff's
VRPSPD formulation and their computational result outperformed
re n Dethloff [4].

ell'’Amico et al. [9] was the first published work on exact method
for solving VRPSPD. They presented an optimization algorithm based
on column generation, dynamic programming, and branch and price
method. However, the computational complexity of VRPSPD is evi-
dent from the computational result, in which 1h of computational
time sometimes is not enough for solving a small size problem con-
sist of stomers.

It is noted that the VRPSPD can be seen as a picku deliv-
ery problem (PDP). In the recent classificatio static pickup and
delivery problem by Berbeglia et al. [10], the 'SPD is called the
multi-vehicle Hamiltonian one-to-many-to-one pickup an ivery
problem with combined demands. By this definition, the problem
consists of multi vehicles which its routes are a Hamiltonian cycle;
the deliveries are from depot and the ps will be transferred
back to depot (one-to-many-to-one); the customer demand is com-
bined which means that at least there is one customer with non zero
pi and delivery demand. ?

0 is a population-based search method proposed by Kennedy
and Eberhart [11], which motivated by the group organism behav-
ior such as bee swarm, fish school, and bird flock. PSO imitated the
physical movements of the individuals in the swarm as a searching
method. A brief and complete survey on PSO mechanism, technique,
and application is provided by Kennedy and Eberhart [12] and also
Clerc [13]. While some other population-based search methods had
been successfully applied in broader area of VRP, such as genetic al-
o [14-16] and ant colony optimization [&,18], the application
of on VRP is still rare. One is the work of Chen et al. [19], where
the discrete version of PSO is combined with Simulated Annealing
(SA) algorithm for solving the basic VRP.

T are two main contributions of this paper. First, it reformu-
lates the VRPSPD as a direct extension of the basic VRP. As a result,
the formulation of Min [3], Dethloff [4], Tang and Galvao [7] can be

reduced to a special case of this reformulation, Second, it fills the

gap of the mca[ion of PSO for VRP solution by showing how the
real-valued version of PSO is applicable for solving VRPSPD.

The proposed algorithm in this paper is different from Chen's al-
gorithm [19] in two aspects. First, the algorithm uses real value in-
stead of discrete value for search variables. Second, it is implemented
withouﬂle use of any local search method.

The remainder of this paper is organized as follows: Section 2 re-
views the VRPSPD definition and mathematical formulation. Section
3 describes the proposed PSO algorithm for solving VRPSPD. Section
4 discusses the computational experiment of the proposed PSO on
a benchmark data set. Finally, Section 5 concludes the result of this
research and suggests further direction of the future research.

2. VRPSPD formulation

The VRPSPD can be formally defined as follows,gc =(V,A)bea
graph where V={vp. vy. ..., vn}is a verte cand A={(v;. vp|v;, vj €
V.i # j} is an arc set. Associated with fEre a distance matrix (d;;)
and a travel time matrix (£;). Vertex vg represents a depot at which
m homogeneous vehicles are stationed, while the remaining vertices
correspond to n customers. Each customer has a non—nmve pickup
quantity p;, delivery quantity g;, and a service time s;. Every vehicle
has a fixed cost of f, variable er distance unit g, capacity Q, and
service duration limit D. The SPD consists of designing a set of
at most m routes such that

(1) each route starts and ends at the depot;

(2) each customer is visited exactly once by exactly one vehicle;

(3) the total vehicle load in any arc does not exceed the capacity of
the Blicle assigned to it (Q);

(3) the total duration of each route (including travel and service
times) does not exceed a preset limit D; and

(4) the total routing cost is minimized.

B8]
The mathematical formulation of VRPSPD is presented below follow-
ing the pr@ing definition, which is a network flow-based formu-
lation and a mixed integer linear program (MILP). The formulation
is an extension of Christofides’ basic VRP formulation [1].
Degigign variables:
Xijk ﬂnaw variable indicating whether arc (i. j) is tra-
versed by vehicle k
Xjj =1 if vehicle k traverses arc (i, j)
Prl = 0 if vehicle k does not traverse arc (i. j)
Yijie  [2M of vehicle k while traverses arfey@ i)
0y, starting service time of customer i by vehicle k
Objective function

m n n n+l m @
Minimize Z =f 3 3 xqi+8) 2 ) diiXiik (

k=1 j=1 i=0 j=1"k=1

[B) subject to

n o m

3> k=1 for1<j<n (2)
i=0k=1

n n+1

Yo Kik= % for1<i<n 1<k<m (3)
Jj=0 =i

n

D oxg <1 for1<k<m 4)
Jlk+sl+tu—5jk€_(1—xuk]M for 0<ign, 16}6 n+1, 1€k€m (5]
6,”1_.;(—30,(&!3 for]gkém (5)
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Vigg<xjQ for0<i<n 1<j<n+1, 1<k<sm &)
n n n
S Voir=Y.6; Y Xy for lsk<m ®)
i=1 j=1 i=0

n n n+1

a’m + ) =4 D _Xijke = 2_ Yiik
i

for 1<j<n, 1jg=:gm = 9
x,-jkel(].‘l} for0<i<n, 1<j<n+1, 1<ksm (10)
Yiez0 for0ign, 1sjsn+1, 1sksm (11)
Six 20 for0<i<n+1, 1<k<m (12)

The objective function (1) shows that this model minimizes rout-
ing cost, which consists of transportation fixed cost and variable cost.
Constraints (2} and (3) form the feasible routes of vehicles, so that
every customer is visited by exactly one vehicle (2), every vehicle
that arrives to a customer must leave that customer (3), and vehicle
is used to serve at most one route.

Constraints (5) and (6) explain the relationship ERfween time
variables and parameters in this model. Constraint (| n?es the
starting service time of one customer with other customer. If vehicle
k servinmstomerj after serving customer i (x;j,=1), starting service
time in customer j must be greater or equal to the sum of starting
5Wice time in customer i, the service time and transportation time
from customer i to customer j (& + 5; + tj; < &;). Otherwise, there
is nu'icr relationship between those starting service time (dy, and
Jji) when x;,=0. Furthermore, dy, represents the time when vehicle
k depart from the depot (it is assumed that a vehicle is to go
at the beginning of a planning horizon, sy =0) and 4, ; represents
the time when vehicle k return to the depot. Hence, the difference
between the latter and the former represents the service/working
duration of vehicle k and the limit of service duration is stated in
coifefraint (6).

‘ehicle load constraints are explained in (7)—(9). Constraint (7)
states that if vehicle k serving customer j after serving customer i
(Xjjke = 1), the corresponding load (y;;;) must at most equal to the
vehicle load capacity (Q); and otherwise the load yy, = 0 if x; =
0. Constraint (8) assures that all customer deliveries are from the
depot. It states that the load of a vehicle at the departure from the
depot must be equal to the total load for customer deliveries of the
corresponding vehicle, Constraint (9) balances the load of a vehicle
after it serves a custome

Constraints (10)-(12) state the domain of decision variables: all
Xjji are binary variables, y;, and ), are non-negative real variables,
Especially for d;, it has the meaning of starting service time of cus-
tomer i by vehicle k only when customer i are served by vehicle k
(%jj, =1 and consequently xjp, = 1).

This formulation can be seen as a general model of VRPSPD. By
setting the parameters, this model could lead to previo proposed
model of VRPSPD. The formulation reduces to Min's [3] by setting
the fixed cost f =0, the variable costg=1, djj=t;j in Eq. (1), and the
service duratiél} limit of vehicle D = co. The formulation reduces to
Dethloff's [4] by setting the fixed cost f = 0, variable cost g=1, and
se duration limit D= oc. To reduce to Tang and Galvao's [7], set
the 1x cost f =0, the variable cost g =1, the service time 5; =0,
define tj; = dj;, and define D as the maximum distance allowed per
vehicle,

3. gﬁ for VRPSPD

In this section, a particle swarm optimization (PSO) algorithm
is proposed for solving the general formulation of VRPSPD that is
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described in Section g(ey features of the algorithm are explained
in details including solution representation, decoding procedure to
map representation to problem solution, and additional routine for
searching appropriate number of vehicles.

3.1. PSO algorithm

As mentioned before, PSO is a population-based search method
that imitated the physical movements of the individuals in the
swarm as a searching method. In the PSO, a swarm of L particles is
served as searching agent for a specific problem solution. A parti-
cle's position (@), which consists of H dimensions, is representing
a solution of the problem. The ability of a particle to search for solu-
tion is represented by its velocity vector (£)) which drives particle
movement. In the P50 iteration step, every particle moves from one
position to another position based on its velocity. Moving from one
position to another, a particle is evaluating different prospective
solgons of the problem.

0 also imitated swarm's cognitive and social behavior as local
and global search abilities. In the basic version of PSO, the particle's
personal best position () and the global best position (‘¥g) are
always updated and kept. The personal best position of a particle,
which expresses the cognitive behavior, is defined as the position
that gives the best objective function among the positions that have
been visited by the particle. Once a particle reaches a position that
has a better objective function than the previous best objective func-
tion for this particle (i.e. Z(@)) <Z('¥))), the personal best position
is updated. The global best position, which expresses the social be-
havior, is the position that gives the best objective function among
the positions that have been visited by all particles in the swarm.
Once a particle reaches a position that has a better objective func-
tion than the previous best objective function for whole swarm (i.e.
Z(¥)) < Z('P'g)), the global best position is also updated.

The personal best and global best positions are used for updat-
ing particle velocity. In each iteration step, the velocity €2 is updated
based on three terms: inertia, cognitive learning and social learning
terms, The inertia term forces a particle to move in the same direc-
tion as previous iteration. Tl'mrm is calculated as a product of cur-
rent velocity with an inertia weight (w). The cognitive term forces a
particle to go back to its personal best position. This term is calcu-
lated as a product of a random number (u), personal best accelera-
tion constant (cp), and the difference between personal best position
¥} and current position @;. The social term forces a particle to move
to the global best position. This term is calculated as a product of a
random number (u), global best acceleration constant (cg), and the
difference betweeffiflobal best position ¥z and current position @),

In the velocity-updating formula, random numbers are incorpo-
rated in order to randomize particle movement. Hence, two different
particles may move to different position in the subsequent iteration
even though they have similar position, personal best, and global
best. Inertia weight and acceleration constants are the parameters
that affect particle movement, each of them give the relave weight
to the inertia, cognitive, and social term, respectively. High inertia
weight means the particles tends to maintain current direction and
low inertia weight mearehe particles tends to follow the cogni-
tive and social term. It is common to have high inertia weight at the
beginning of PSO iteration and low weight at the end, so that the
particles are mov ore freely to explore the solution space in the
initial phase and following the cognitive and social r@ to exploit
the personal best and global best in the final phase. It is expected
that the particles can find a high quality personal and global best
during the exploration phase, then the personal and global best can
be used as good movement guidance in the exploitation phase.

In the PSO particle movement mechanism, it is also common to
limit the search space of particle location, i.e. the position value of
particle dimension is bounded at value [0™", 0™, This feature
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exists as the mechanism to avoid solution divergence. Hence, the
position value of certain particle dimension is being set at the mini-
mum or maximum value whenever it moves beyond the boundary.
In addition, the velocity of corresponding dimension is reset to zero
to avoid further movement t?nd the boundary.

PSO works on findin, est position and the position is repre-
sented by a real number. To make PSO applicable to specific problem;
the relationship between the position of particles and the solutions
of that problem must be clearly defined. In VRP case, the particle's
position represents the vehicle route. The details of the proposed
solution representation and its relationship with vehicle route are
described in the Secfhs 3.2 and 3.3.

A PS0 algorithm for solving VRPSPD is proposed here based on
the GLNPSO, a PSO Algnrithn-mh multiple social learning structures
[20]. In this PSO version, the component for social learning behavior
includes not only the global best but also the local best (‘Ph and
near neighbor best ( 'P:"}.The local best is the best position of among
several adjacent particles. The near neighbor best is a | learning
behavior concept proposed by Veeramachaneni [21]. [t 1s determined
based on fi -distance-ratio (FDR). The formula for determining
these terms in the velocity upda ormula is similar with the social

m in the basic PSO, which is a product of a random number (u),
an acceleration constant (¢; or cp), and the difference between the
social compone ,L or ‘P}"') and current position @,.

The details of the P! garithm for solving VRPSPD are presented
below in Algorithm 1. In this algorithm, the particles are initialized
in step 1, their corresponding fitness value are evaluated in steps
2-3, their cognitive and social infortinn are updated in steps 4-7,
and their positions are updated in step 8. Step 9 is the controlling
step to repeat or stop the iteration. Note that the problem-specific
steps are the conversion of particle's position into vehicle route in
step 2, and, the determination of the performance measurement of

thﬂ]te in step 3.

Notation
T iteration index; t=1...T
1 particle index, I=1...L
h dimension index, h=1...H
u uniform random number in the interval [0, 1]

w(r) inertia weight in the tth iteration

wy (t)velocity of the Ith particle at the hth dimension in
the tth iteration

Oy (z) position of the Ith particle at the hth dimension in
the tth iteration

iy, personal best position (pbest) of the Ith particle at
the hth dimension

Vo, global best position (gbest) at the hth dimension

by, local best position (Ibest) of the [th particle at the
hth dimension

d;ﬁi near neighbor best position (nbest) of the Ith particle
at the hth dimension

p personal best position acceleration constant

¢g  global best position acceleration constant

q local best position acceleration constant

Cn near neighbor best tion acceleration constant

maximum position value

0™ minimum position value

©;  vector position of the [th particle, [0 O -~ Oy)

Q;  vector velocity of the Ith particle, [wy wp -+ @yl

¥, vector personal best position of the Ith particle,
Wi Y - bl

¥g  vector global best position, (g1 gz - Wanl

lf’,L vector local best position of the Ith particle,
Wi v - Vip)

Ry the Ith set of vehicle route

p) fitness value of @
FDR fitness-distance-ratio

Algorithm 1 (PSO Algorithm for VRPSPD).

1. Initialize L particles as a swarm, generate the Ifi8article with
random position @ in the range [0™", 0™, velocity 2, =0
and personal best '¥'; = @, for [=1...L. Set iteration t=1.

gorle 1...L, decode @,(1) to a set of vehicle route R.

. Forl=1...L, compute the performance measurement of R}, and
set this as the fitness value of @, represented by Z(@)).

4. Update pbest: For [=1...L, update ¥, = @, if Z(@)) <Z('F)).

5. Update gbest: For I=1...L, update g = ¥}, if Z(¥)) < Z('Fg).

6. Update Ibest: For [=1...L, among all pbest from K neighbors
of the Ith particle, set the personal best which obtains the least
fitness value to be 'F{‘.

7. Generate nbest: For [=1...L,and h=1...H, set y/}f = |po;,gt
maximizing fitness-distance-ratio (FDR) for o = 1.. . H. Where
FDR is defined as

20 —Z(Wo)
101 = Wronl

8. Update the velocity and the position of each Ith particle:

FDR = where [#0 (13)

w(m) =w( + %[wm —w(Dh] (14)
h[r + 1) = WD (D) + cputhyy — O (0) + cguthgy — Opp(t)
+ Py, = O (D) + caucpff, — Oy (o) (15)
Ot + 1) =00 +opc+1) (16)
If Oy + 1) > 0™, then
Oz + 1) = (17)
opt+1)=0 (18)
If Oy (z + 1) < 0™, then

Ot + 1) = 0™ (19)

%r +1)=0 (20)
0. If the stopping criterion is met, i.e. =T, stop. Otherwise, t=1+1
and return to step 2.

3.2, Solution representation

Solution representation of vehicle routes is one of the key ele-
ments for effective implementation of PSO for VRPSPD. An indirect
representation is proposed here. It consists of two parts: the first
part is related to the customers and the second part is related to the
vehicles. This representation is decoded into vehicle routes by steps

destribp'\ the next section.

The first part of the representation is required to set priority fn

customer to enter existing route in the route construction step. A

random key with n elements is applied here. The first part of the rep-
entation consists of n dimensions of particle with each dimension

assigned to a customer. The aller value of the dimension corre-

sponds to the higher priority to the customer.

The second part of the representation is based on the idea of
vehicle route orientation. Route tation of a vehicle is defined
as a point in the service map that represents a certafsfarea in which
the vehicle is most likely to serve. Consequently, a vehicle route
will tend to aggregate around its corresponding route orientation. A
simple illustration of relationship between vehicle route and route
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Fig. 1. Vehicle routes and route orientation.

orientation is depicted in Fig. 1. It is clearly seen that each vehicle
covers certain service area that can be represented by the route
orifsffation point.

A route orientation point is identified by its x-y coordinate in
the service map. Since PSO uses position of particle with many di-
mensions to represent solution and the position values are a real
numbers, each routrientation can be represented by two dimen-
sions of a particle, one dimension for x-coordinate value and the
other dimension for y-coordinate value. Hence, the second part of
the representation would consist of 2m dimensions of particle that
correspond to m available vehicles.

The route orientation is used as another basis for route construc-
tion. After all the route orientations are identified, preference of ve-
hicles to serve each customer could be determined based on the
distance of customer to orientation point. These preferences are set
to ensure the spatial closeness among customers in one route, since
the spatial closeness between customer and route orientation are
?intained‘ While the spatial closeness is sustained, the total route

istance might be shorter and the corresponding variable cost could
be minimized. .
boundary of position mentioned in Algorithm 1, (0™ gMa%)
are determined based on the coverage of the service map. This
boundary is very crucial for the particle's dimensions related to the
vehicles, where the vehicle route orientation represented by these
dimensions cae placed at every location in the service map. Hence,
the minimum value of X-axis and y-a)nof the service map is set as
the minimum boundary 0™ and the maximum value of x-axis and
y-axis of the service map is set as the maximum boundary 0™, This
boundary has no effect for the particle's dimensions related to the
customers; however, the same boundary values are also selected for
these dimensions.

In summary, the proposed solution representation of VRPSPD
with n customers and m vehicles will require particle with (n +2m)
ension. Each particle dimension is encoded as a real number. The
first n dimensions represent priorities of customers, each customer
is represented by one dimension. The values in these dimensions are
converted to customer priority list in the decoding step. The other
2m dimensions are related to vehicles, each vehicle is represented
by two dimensions. These dimensions are extracted as the orienta-
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tion point of vehicles in the Cartesian diagram/map. Ee summary
of solution representation and its main conversion are displayed
in Fig. 2.

.3. Decoding method

Three steps must be taken in order to decode the proposed so-
lution representation described in previous sec[ into the VRPSPD
solution. First, extract the information from the first n dimension to
make a priority list of customers. Second, take the information from
the last 2m dimension to determine the route orientation point of
vehicles and use this infi tion to create priority matrix of vehi-
cles. Third, construct the vehicle routes based on the customer pri-
ority list and vehicle priority iX.

In the first step, after the first n dimension of position value is
removed, the customer priority list is constructed following the rule
men[ionecP)revious sub-section. The simplest implementation of
this rule is by sorting in ascending order the position value and taking
the dimension index as the list.

The next step is to extract the route orientation point of ve-
hicles a onstruct priority matrix of vehicle. The matrix is con-
structed based on the relative distance between these points and
customers location. The distances can be calculated in every case
of VRPSPD, since the location of customers is placed in a two-
dimensional/Cartesian map. A customer is served first by vehicle
with closer distance. Each row in the matrix keeps the vehicle
priority for customers with the same priority. @

The last decoding step is to construct a route based on the cus-
tomer priority list and the vehicle priority matrix. One by one, each
customer in the customer priority list is assigned to a vehicle based
on its priority and such problem constraints as vehicle capacity con-
straint and service duration constraint. This newly assigned cus-
tomer is inserted to the best position in the existing vehicle route
based on the leaP:lditional cost. This is called the cheapest in-
sertion heuristic. Another effort to improve solution quality of the
route is to re-optimize the emerging route us?ome improvement
heuristic methods such as 2-opt method. The details of this decoding
procedure are described in Algorithm 2.

Algorithm 2 (Decoding meth

Decoding particle position ({/y,—position of the Ith particle at
the hth dimension) irffff] vehicle route (R;-route of the jth
vehicle corresponding to the Ith particle)
1. Construct the priority list of customers (U)

a. Buildset S={1,2...., nfandU=¢

b. Select ¢ from set S where ;. = miny, ¢ 0y,

E ¢ to the last position in set U

d. Remove c from set S

e, Repeat step 1.b until 5=#
2. Construct the vehicle priority matrix (W)

a. Set the vehicle reference position. For j=1...m,

set xrefj = 0) ;1 and yref; = 0} 05

b. For each customeri,i=1...n

i. Calculate the Euclidean distance between cus-

tomer | and vehicle route orientation points using

following formula

dj= \f:xpos,- - xref_;)z + (ypos; — yrefJi)2 (21)

1
ii.Build set S ={1,2,...,m} and W;=¢

iiii. Select ¢ from set S where Ac = minj_s4;
iv. Add ¢ to the last position in set W;

v. Remove ¢ from set §

vi. Repeat step 2.b.iii until S=¢
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Fig. 2. Solution representation and its conversion.

9Consn-uct vehicle route
aSetk=1
b. Add customer one by one to the route
i.Setc=Ugpand b=1
ii. Setj=W,
iii. Make a candidate of new route by inserting customer
q the best sequence in the route Rj; (route of vehiclej),
which has the smallest additional cost (the cheapest

ﬂinn heuristic)
iv. Check feasibility of the candidate route by evaluating
all constraints: vehicle capacity and service duration
constraints
v. If a feasible solution is reached, update the route
R with the candidate route and re-optimize emerging
te with 2-opt method; then go to step 3.c
vi. If b=m, go to step 3.c. Otherwise, set b=b+1
and repeat from step 3.b.ii
c. If k = n, stop. Otherwise, set k = k + 1 and repeat step 3.b.

Following this decoding method, there is a possibility that a cus-
tomer was not inserted into any routes. This situation is undesir-
able because some customers are not served and this corresponds
to an infeasible solution. To avoid particle position that represents
%8 kind of solution from being a candidate of best position, a large
penalty is added to the fitness value of the particle for each customer
not served. By this means and the principles of particle movement in
the PSO, a particle that represents infeasible solution tends to move
toward a position with lower degree of infeasibility and may even-
tually lead to a feasible solution.

1
3.4, Searching for appropriate number of vehicles

The proposed solution representation
designed for solution of VRPSPD with fixed ber of customers (n}
an d number of vehicles (m). It is true that for most problems,
the numb customers to be served is fixed and known in advance.
Hu\Fr. the number of vehicles that actually serve the customers
is a decision variable, which may have a value less than the number
of avail vehicles.

One advantage of this representation is its tendency to spread
evenly the service area of vehicles. In other words, all available ve-
hicles are more likely to be used to serve the customers. Since the
variabl ed cost is the main contributor of the total cost, it is nec-
essary to reduce the number of vehicles that are active in serving
the customers. Hence, an additional routine is proposed here to ob-
tain appropriate number of vehicle. This routine is implemented in
the initializa? step (Step 1) of PSO algorithm.

The main idea of this routine is to repce the number of vehicles
one by one while initializing a particle. Starting with the number of
available vehicles, a solution representation is generatef@After it is
decoded, the number of customers served by each route 15 evaluated
by trying to remove two particle dimensions corresponded to vehicle
with smallest number of customers served. If the new representa-
tion leads to better fitness value, repeat the removal proced ntil
further removal lead to an inferior fitness value. FigRlly, the number
of vehicles (m) is set to the number that gives the best fitness value,
To speed up the process, this number is immediately used as the

decoding method is

number of available vehicles in the process to generate subsequent
particles. The detail of this routine is explained in Algorithm 3.

Eorit]lm 3 (Routine to search for appropriate number of vehi-
cles).

1. Generate a random partin:nto represent n customers and m
vehicles, which consists of n + 2m dimensions. Set v =m

2 Decuqthe particle into vehicle routes using Algorithm 2. Com-
pute the performance measurement of the route, and set this
value as the fitness value of the particle, Z.

3. Calculate the number of customers served by each vehicle,

4. Remove the corresponding dimensions of the vehicle with small-
est number of customers. Reduce the particle size by two di-
mensions. Setv =0 = 1.

5. DéRde the updated particle into vehicle routes using Algorithm
2. Compute the performance measurement of the route, and set
this value as the fitness value of the updated particle, Z’.

6. If the fitness value of updated particle is smaller than its of orig-
inal |:nic1e. Z' <Z,set Z=2', then repeat step 3-5; otherwise,
2o to step 7.

7. Add back the two particle dimensions last removed. Increase
the particle size by two dimensions. Set v=uv + 1. Then, set the
new value of number of available vehicles m=u for subsequent
particles.

4, Computational result
4.1. Comparison with results from literature

gmputational experiments are conducted by applying this pro-
posed algorithm to some benchmark data sets of VRPSPD in order to
evaluate the performance of the pro d method. The first bench-
mark data set is the data introduced ell'Amico et al. [9], where
the problem size is less than 40 customers. By using this data, the
PSO algorithm can be coared against the exact solution method of
Dell'Amico et al. [9]. The second benchmark data set is the data intro-
duced by Dethloff [4], which comprises four sets 50-customer prob-
lems. The PSO performance can be evaluated across some heuris-
tic that had been tested on these problems, including heuristic of
DetBRfT [4], Tang and Galvao [7] and Bianchessi and Righini [8]. The
last benchmark data set is the data introduced by Nagy and Salhi [6],
which consists of five sets of problems with 50-199 customers, Us-
ing this data set, tRJSO results can be compared with those results
from Dloff[4], agy and Salhi [6], and Tang and Galvao [7].

The algorithm is implemented in C# language using Microsoft
Visual Studio.NET 1.1 on a PC with Intel P4 3.4 GHz—1GB RAM. For
each data set, Eplicatiuns of the algorithm are tried. The PSO
parameters are set based on the result of some preliminary exper-
iments that are carried out to observe the behavior of algorithm in
different parameter setting. The PSO parameters are summarized in
Table 1.

4.1.1. Dell’A data
The first computational experiment is conducted on the bench-
mark data set of Dell’Amico et al. |9] which comprises five classes
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le 1 Table 3
ummary of PSO parameters. Comparison of several methods on Dethloff data.
Parameter Value Set  Average total cost
MNumber of particle L=50 Dethloff [4] Tang and Galvao [7] Bianchessi and Righini [8] PSO
Number of iterati T=1000
BRI nsighbor e SCA3 7466 6742 684.6 675.80
ERBErHARHEEHE WIT=0S SCA8  1166.4 1044.4 1035.7 1041830
Last inertia weight Wl =04 CON3 5973 564.2 568.5 569.6%
Personal best position acceleration constant = CON8  860.6 7743 7764 798.31
Global best po‘s:‘l:cn acuelera:l:lon COnSEAmE fp= PSO result better than Dethloff result.
Local best position acceleration constant 6= %
Near neighbor best position acceleration constant =2 PSO result better than Tang and Galvao result.
P50 result better than Bianchessi and Righini result.
Table 2
Comparison of Dell'Amico et al. and PSO solution, PSO method is competitive wi isting methods: the PSO result
TEGnte o e e e outperforms the loff result for all data set, better than‘the Tang
— and Galvao result for SCA8 data set, and better than the Bianchessi
@ DelrAmicoret 3t [9] Pso and Righini result for SCA3 data set. More over, only small difference
ass 1 522.5 524.7 between PSO and the best result is observed for other cases. In ad-
E]lgﬁ g‘g §3?g§f'; gi?g;g'; dition to this result, the proposed PSO gives a reasonable computa-
Class 35 120823 119123 tional time for solving this benchmark data in which approximately
Class 3C 15979.6 15984.6 only 30s of computational time is required for each instance.

20
of VRPSPDEH]‘I{.‘ES. Each class consists of instances with 20 and 40
customers, Class 1 consists of 12 instances, while Class 2§, 2C, 35, and
3C consist of 18 instances. The VRPSPD of these instances is similar
to the Dethloff formulation. Hence, the following problem parame-
ters are required to be set in the proposed PSO method: fixed cost
per vehicle, f = 0; variable cost per distance unit, g = 1; service du-
ratif@f limit D = oc; and the number of available vehicles is equal to
the number of available vehicle in the optimal/best known solution.
The comparison of the best solution among 10 PSO iterations
with th per bound result of Dell'’Amico et al. [9] is presented in
Table 2, in which the average total cost of the instances in each class
is compared. It is noted that Dell'Amico et al. [9] already provided
the optimal solutionZl3l75 out of 84 instances. Hence, the upper
bound represents tnﬁimal solution or the best solution found. The
It presented in Table 2 implies that the proposed PSO method
is able to provide high quality solutions that are very close to the
optimal solution. Moreover, these solutions can be obtained in very
short computational time, in average of 9 and 27 s, respectively, for
20-customer and 40-customer problems.

4.1.2. Dethloff data

Thiigecond computational experiment is conducted on the bench-

k data set of Dethloff [4] which comprises four data sets named

3, SCA8, CON3, and CONBS. Each data set consists of 10 instances
714 50-customer problem with specific characteristics: SCA data sets
are ated with customers scattered uniformly in the service re-
gion, data sets are generated with half of the customers located
uniformly in the service region and the other half are concentrated
in certai t of the service region. The number after SCA or CON
indicated the parameter for determining vehicle capacity.

s mentioned earlier, the VRPSPD is formulated by Dethloff [4]
as the problem to minimize the total traveled distance subject to
fl:kimum capacity constraint of the vehicle. Hence, the following
‘riblem parameters are set as follows: fixed cost per vehicle, f = 0;
variile cost per distance unit, g=1; service duration limit D=oc; and
the nu of available vehicles is equal to the number of available
vehiclemw best known solution.

The comparison of the best solution among 10 PSO iterations
with the result from Dethloff [4], Tang and Galvao [7] and Bianchessi
and Righini [8] is presented in Table 3. To make a direct comparison
across these existing results, only the average result over the 10 in-
stances of each data set is reported. It is shown that the proposed

4.1.3. Nagy and Salhi data

Another computational experiment is conducted by applying this
proposed algorithm to the benchmark data set of Nagy and Salhi [6]
which modified the basic VRP benchmark data set of Christofides

to be the benchmark data set of VRPSPD. The corresponding
gpot and customer coordinate remained the same, but the original
elivery demand data on basic VRP benchmark is split into pickup
quantity and delivery quantity. There are five new sets of data based
on plitting method of demand data, and the new problem sets
are named T. Q. H. X, and Y.

Since the proposed method is implemented for the general for-
mulation of VRPSPD, problem parameters need to be set in order to
compare with results rrnaarevious works of VRPSPD. The following

blem parameters are used: fixed cost per vehicle, f =0; variable
cost per distance unit, g = 1; traveling time is equal to correspond-

traveled distance, t;; = d;;; and the number of available vehicles
15 equal to the number of a| ble vehicle in the best known solu-
tion. The result of problem T, @, and H are compared with the best
results from Salhi and Nagy [5], which is the only result found in the
literature. The result of problem X and Y are compared with the best
solution among Magy and Salhi [6], Dethloff [4], Tang and Galvao [7].
However, result of Tang and Galvao [7] for instances number 6-10
and 13-14 are omitted from comparison because the different prob-
lerwting in which the customer service time are not considered.

n ordPYo compare the solution obtained with the best-known
sol . percentage of deviation from best-known solution is used.
The formula for calculating the percentage of deviation is as follows:

Z—2Zx»
Zx

Fdev = = 100% (22)
32
?re %dev: percentage of deviation from best-known solution; Z:
objective function of current solution; Z=: objective function of best
known ution‘
he comparison of the best solution among 10 PSO iterations
the best-known solutions are shown in Tables 4 and 5. This
comp. n shows that the results from the proposed PSO algo-
rithm are competitive with other published results. As shown in
Table 4, in almost all instances of the problem T, @, and H, the best
objective function of PSO results are better than the corresponding
best-known solutions. Additionally from Table 5, the PSO result
of sixteen instances of problem X and Y are better than its corre-
sponding best-known solution. The detail of these new best solu-
tions of VRPSPD instances are presented in the following webpage:
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le 4
%parison of best-known solution and best PSO solution of T.Q and H Instances
with fixed cost f =0 and variable cost g=1.

le 5
Qr’nparison of best-known solution and best PSO solution of X and Y instances with
fixed cost f =0 and variable cost g=1.

Instance Best-known solution [5] Best PSO solution

Instance Best-known solution Best PSO solution

No. vehicle Total cost No. vehicle Total cost % dev No. Total cost Ref. No. Total cost % dev
(distance) (distance) vehicle (distance) vehicle (distance)
CMTIT 5 541 5 520 -39 CMTIX 3 472 [71 3 467 -1.1
CMT2T 10 839 ] 810 =35 CMT1Y 3 470 izl & 467 -0.7
CMT3T 10 903 7 827 -85 cMmT2X 7 695 [71 6 710 21
CMT4T 13 1111 11 1014 —88 cMT2Y 7 700 71 6 710 15
T 18 1423 15 1297 -89 CMT3X 5 721 W 5 738 23
% 6 571 6 555 -27 CMT3Y 5 719 il 5 740 30
= - 12 942 - CMT4X 7 880 [71 7 912 37
CMTST 10 911 9 904 -0.7 cMT4Y 7 878 [71 7 913 40
CMTOT 14 1164 14 1206 36 CMTSX 11 1098 7] 10 1167 6.3
CMTI0T 18 1418 18 1501 58 CMTSY 10 1083 7] 10 1142 55
CMTIIT 7 1075 7 1026 -45 CMTEX 6 584 4] 6 557 -47
CMT12T 10 827 9 792 -43 CMTEY 6 584 [4] 6 557 -47
CMT13T 12 1600 11 1548 -33 CMT7X 11 961 (4] 11 919 -43
CMT14T 11 866 10 846 =23 CMT7Y 11 961 4] 1 934 -28
CMTIQ 5 557 4 490 -121 CMT8X 10 923 5] 9 896 -29
20 11 860 8 739 -14.1 CcMT8Y 10 923 5] 9 902 -23
CMT3Q 9 918 6 768 -164 CMTIX 15 1215 [S] 15 1225 0.8
CMT4Q 14 1164 9 938 -19.4 CMTIY 15 1215 [5] 15 1230 13
CMT5Q 19 1477 13 1174 -205 CMTI0X 19 1571 4] 19 1520 -33
CMT6Q 6 594 6 557 -63 CMT10Y 20 1527 4] 18 1485 -28
aMT7Q - - 12 933 - CMT11X 4 900 7] 4 895 -05
CMT8Q 9 918 9 890 -30 CMT11Y 5 910 [71 4 900 -1.1
cMT9Q 15 1178 14 1214 3.1 CMT12X 6 675 [71 5 691 24
CMT10Q 19 1477 18 1509 2 CMT12Y 6 639 ZINS 697 1.2
CMT11Q 7 1075 6 964 -103 CMTI3X 11 1576 4] 1 1560 -1.0
CMT12Q 10 843 7 733 -13.1 CMT13Y 11 1576 4] 1 1568 -05
CMTI13Q 13 1613 11 1570 =27 CMT14X 10 871 [4] 10 826 —5.2
CMT14Q 11 873 10 825 -55 CMT14Y 10 871 (4] 10 823 -5.5
CMTIH 6 594 B 464 -218
CMT2H 12 873 6 668 -234
CMT3H 9 915 4 701 -234
CMT4H 14 1164 6 883 -241 Table &
CMTSH 19 1509 9 1044 -30.8 Statistical summary of PSO result on X and Y instances.
CMT6H 6 594 6 557 -63
CMT7H = = 1 943 _ Instance No. cust. Average total Standard % Standard Average comp.
CMTS8H 9 915 ) 899 —ii cost deviation deviation time (second)
IR 14 i) e 20 37 oMTIx 469.57 295 06 )
CMT10H 19 1503 19 1499 =07 cMTIY 50 468.88 2.77 06 40
CMTITH 8 1120 4 830 -259 oMT2X 75 717.45 6.85 10 54
CMT12H 11 850 5 635 -253 oMT2Y 75 716.70 513 07 54
CMT13H 11 1546 11 1565 12 CMTIX 100 746.20 408 05 114
CMT14H 11 866 10 824 —48 ; 7 5
CMT3Y 100 746.78 3.76 05 113
CMT4X 150 928.20 7.98 09 207
CMT4Y 150 926.12 6.75 07 204
CMT5X 199 1196.13 17.39 15 285
CMTSY 199 1182.67 2274 19 286
http://ind.uajy.ac.id/~jinai/PSCER-_VRPSPD_COR_Appendix.htm. el Ll Loz 0e =
Furthermore, for all instances that are worse than the best-known CMT7X 75 944.13 17.80 19 66
solution, the biggest deviation is about six percent. CMT7Y 75 956.90 15.01 16 65
Statistics of the PSO result on probns X and Y are presented in ccwsmsxv :% 3:;?; }3‘23 }2] 133
Table 6. It comprises the average and standard deviation of the ob- CMTIX 150 1246.24 10.95 09 189
jective function, percentage of standard deviation over the average, CMT9Y 150 1245.14 14.31 1.1 187
and the ffage computational time. The robustness of the proposed ~ CMTI0X199 152,45 2 o4 P
method 1n term of solution g is implied in this statistics. Even EMIIDKE 99 1athi 2403 1 Iz
. CMT11X 120 915.30 15.69 17 226
though traposed method Is a random search algorithm, the vari- CMT11Y 120 913.77 10.53 12 228
ation of solutions over replications are very consistent as demon- gmli}“% '.';g,so g‘”: 3-5 115
strated by the small standard deviatfghh. CNM;:B; :20 1175:;‘: lg;lts 0:.5, 1;;
The computational results show that the computational time of CMT13Y 120 1578.18 7.89 05 135
the proposed method tends to be linearly proportional with the CMT14X 100 830.04 4.84 06 98
CMT14Y 100 829.93 5.25 06 97

number of customers, which is representing the problem size. This
relation is desirable, since it is only require linear additional time to
apply t? method on a bigger size problem.

The high-quality result yielded by the proposed method might
come from two factors: the idea of vehicle orientation and the heuris-
tic for constructing routes. The implementation of vehicle orienta-
tion will ensure the sp@l closeness of customers that are included
in the route. Hence, the constructed route will cover only a relatively
narrow area. The customer is inserted into the best position in an
existing route by applying the route construction heuristics. Further-
more, the 2-opt method is capable of improving a newly constructed

5
route, The combinations of these efforts are potential for yielding a
good solution,

The simplicity of PSO may also contribute to the performance. By
its mechanism, the particles are able to explore various areas in the
searching space within a few computational steps. It means that di-
verse solutions of vehicle routes are generated during the iteration
process, since one particle corresponds to one solution of vehicle
routes. This diversification of solutions will increase the possibility
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glparison of best-known solution and best PSO solution of X and Y instances with
fixed cost f =100 and variable cost g=1.

Instance Best-known solution Best PSO solution

No. Total Total Ref. No. Total Total

vehicle distance cost vehicle distance cost
CMTIX 3 472 772 7 3 467 767 -0.7
cMT1Y 3 470 770 [Z1S: 467 767 -04
cMT2X 7 695 1395 71 6 707 1307 -6.3
cMT2Y 7 700 1400 7 6 709 1309 —6.5
CMT3X 5 rpal 1221 7 5 742 1242 1.7
CMT3Y 5 719 1219 7 5 739 1239 1.7
CMT4X 7 880 1580 7 7 923 1623 27
CMT4Y 7 878 1578 7 7 920 1620 2.7
CMT5X 11 1098 2198 71 10 1150 2150 =22
CMT5Y 10 1083 2083 71 10 1138 2138 27
CMT6X 6 584 1184 4 6 557 1157 -23
CMTEY 6 584 1184 4 6 557 157 =23
CMT7X 11 961 2061 (4] 11 931 2031 -1.4
CMT7Y 11 961 2061 4] 1 933 2033 -14
CMTBX 9 928 1828 4 9 902 1802 -14
CMT8Y 9 936 1836 4 9 906 1806 -16
CMT9X 15 1215 2715 [5] 15 1229 2729 0.5
CMT9Y 15 1215 2715 5] 15 1237 2737 0.8
CMT10X 19 1571 3471 4] 19 1499 3399 =21
CMT10Y 19 1571 3471 4] 19 1485 3385 -25
CMT11X 4 900 1300 71 4 898 1298 -0.2
CMT11Y 5 910 1410 71 4 904 1304 -175
CMTI12X 6 675 1275 [Z] 5! 682 1182 =73
CMTI2Y 6 689 1289 il & 681 1181 -84
CMT13X 11 1576 2676 4] 1 1570 2670 -02
CMTI13Y 11 1576 2676 4] 1 1568 2668 -03
CMT14X 10 871 1871 (4] 10 824 1824 =25
CMT14Y 10 871 1871 (4] 10 824 1824 =25

to find a high-quality solution. In addition, the searching mecha-
nism of the particle also fits for searching the vehicle orientations,
in which the best point of a vehicle orientation is explored around
current best points. Furthermore, PSO always keeps and uses the
information on the best position of the particles to direct the parti-
cles ement. Consequently, the iteration process of PSO may end
with a high-quality solution within a relatively short computational
time.

4.2. Effect of fixed cost

The computational results in Section 4.1 are inline with the pre-
vious work in VRPSPD, in which ignoring the fixed cost of vehicle.
However, literature on other areas of VRP have acknowledged the
importance of the fixed cost of vehicle and considered it as one part
of the objective function [1]. The proposed method can straightfor-
wardly handle this situation, since the mathematical model consid-
ered the fi ost in the objective function.

Another computational experiment is carried out in order to show
the performance of the proposed method when considering fixed
cost. All PSO and problem parameters are the same as those used in
the experiment in Section 4.1.3, except that the fixed cost is set as
100. The result of this experiment for problems X and Y are shown
in Table 7. For comparison purpose, the total cost of the best result
Pprevious works [4,5,7] are recalculated using similar unit cost of
ixed cost f =100 and variable cost g=1 before to be selected as the
best-known solution.

It is shown in Table 7 that the computational PSO result for 21
instances of problems X and Y are better than the best-known solu-
tion. By using this amount of fixed cost, it implies that the smaller
number ?ehicles leads to the better total cost. Hence, it is not a
surprise that the proposed method result is frequently better than
the best-known solution since a special effort for reducing the num-
ber of vehicles (Algorithm 3) is included. This effort will ensure
that the number of vehicles is as small as possible. As a result, the

Research 36 (2009) 1693 - 1702 1701

number of vehicles from the PSO result is at most exactly the same
as the best-known solution and in some cases smaller than those of
the best-known solutions.

5. Conclusion and further study

A generalized formul n of VRPSPD for three existing formu-
lations in the literature is presented in this paper along with a so-
lution @hnd based on PSO algorithm. The computational result
shows that the proposed PSO method is effective for solving the
VRPSPD. The effectiveness of the method comes from the combina-
tion of following reasons. First, the idea of vehifZ§ orientation makes
each of routes only cover afjtricted area. Second, the solution
quality is improved from the cheapest insertion heuristic and 2-opt
method which are appli ring the route construction. Third, a
special algorithm reduces umber of vehicles that actually serve
the customers. Fourth, the mechanism of PSO that can generate di-
verse solutions and keep the best solution found during the iteration
p ;

ome aspects may further improve the performance of the pro-
posed algorithm, such as parameter optimization and programming
implementation. Although the PSO parameter set used in this pa-
per from some preliminary experiment, it may not be the best
one. In addition, the programming implementation of the algorithm
may be further optimized. Since these efforts may yet contribute to
additional performance gains in both the solution quality and com-
putational time, a further study on these aspects is still necessary.

Some further research to apply the proposed method to other
VRP variants should be carried out to show generality of the method.
Since the variants of VRP differ from one another only on the spe-
cific problem constraints, the adjustment is only required in the con-
straint feasibility checking of the decoding method. However, the
effectiveness of this idea needs further exploration.
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