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Abstract: The traditional inventory policies have been developed for constant
demand processes. In reality, demand is not always stable; it might have an
increasing pattern. In this paper, a forward with backward inventory policy
algorithm is developed to determine the operational parameters of an inventory
system with a nonlinear increasing demand rate, shortage backorders and a
finite planning horizon. Numerical experiments are also conducted to compare
the results with the existing techniques and to illustrate the applicability of the
proposed technique.
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1 Introduction
Zhou et al. (2004) mentioned that inventory models considering shortage backorders can
be classified into two categories. They are:

1 Inventory followed by shortage (IFS) where each cycle starts with replenishment and
d with shortage.

2  Shortage followed by inventory (SFI) where each eycle starts with shortage before
replenishment arrives.

Before, Teng et al. (1997) investigated two categories of ifffentory model above by
taking into consideration whether shortages are allowed or not allowed in the last eycle of
the planning horizon.
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Complexity of the development of inventory model arises when demand 1s not stable.
&lhe best of author’s knowledge. initial reseafflh on IFS policy for shortage backorders
case with positive linear trend(fljl demand was done by Deb and Chaudhuri (1987) who
developed a heuristic method by assuming that the shortage period in each cyele is a
constant fraction of the length of the cycle. Later, Dave (1989a) corrected and tested the
work of Deb and Chauduri (1987) by using Donaldson’s (1977) example arn the result
from the corrected method was better than that of Silver (1979) and even close to the
optimal solution provided by Dave (1989b). Other optimal solution was provided by
urdcshwar (1988) and Hariga (1994). It is noted that while Deb and Chauduri (1987).
nve (1989b) and Murdeshwar (1988) developed IFS policies for the case where
shortages annot allowed in the last cycle, Hariga (1994) developed IFS policy for the
case whcrnhoﬂagcs are allowed in the last cycle.

@Hher research on inventory policy for linear demand considering shortage backorder
Es conducted by Goval et al. (1996) who concluded through empirical c)nrimcnts that
SFI policy often perform better than IFS policy. Further work was done by Teng et al.
(1997) who compared among four inventory models, i.e.

1 IFS policy without shortage allowance in the last cycle
2 IFS policy with shortage allowance in the last cycle
3 SFI policy without shortage allowance in the last cycle
4 SFI policy with shortage allowance in the last cycle.

From their results Teng et al. (1997) concluded that model 4 is the best among the four
investigated models, which provides the lowest total cost. Other research was done by
Goval and Giri (2000) who stated that the comparisons conducted by Teng et al. (1997)
were invalid. They improved the method to make valid comparisons among the four
models and came up with the conclusion that when inventory starts with zero demand
rates, model 3 will provide the lowest cost, while if inventory starts with positive demand
rate, model 4 is the best. It should be noted that, when model 4 is employed. there exist
shortages in the last replenishment cycle, and this means that total demands of the whole
plafling horizon will not be met.

In reality, demand is not always linear increasing; it may have a nonlinear increasing
pattern. Develoflent of IFS policy for nonlinear increasing demand with shortage
backorders case Was done by Hariga (1994), who developed an exact solution procedure
and also A§EJti and Luong (2009) who developed the heuristic technique based on
consecutive method.

For SFI policy willl nonlinear increasing demand pattern and inventory starfgJwith
positive demand rate, Yang et al. (2002) proposed a forward recursive algorithm for the
case when shortages are allowed in the last replenishment cyele. For this case, if
shortadll are assumed to be completely backlogged, an additional replenishment at the
end of planning horizon should be taken into consideration to ensure that total demands is
fulfilled. The additional replenishment will affect the total cost function and the optimal
solution should be revised. However, this fact has not been discussed in the research of
Yang et al. (2002).

A recent research for nonlinear increasing demand considering shfftage backorders
where inventory starts with zero demand rate, was also conducted by Yang (2006) who
developed a backward recursive algorithm, compared among the four models
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mvestigated by Teng et al. (1997), and came up with the conclusion that model 4 always
provides the lowest total cost. It is noted that this conclusion is contrary to the conclusion
of Goyal and Giri (2000) for linear increasing demand case, which stated that, when
im-'01}-' starts with zero demand rate, model 3 will provide a better cost performance.

Other researfJes on inventory policy problem for nonlinear increasing demand rate
were conducted by considering more characterisfl}s of inventory policy model in to the
model such as deterioration rate, partial backlog and time value of money. However, the
solution methodology are developed under the assumption of the very specific nonlinear
increasing demand pattern such as quadratic demand pattern (Panda et al., 20&, 2009b;
Sarkar et al. 2010; Sanni and Chukwu, 2016; Vandana and Sharm:nOlG). polynomial
demand pattern (Bai and Kendall. 2008 Lukas and Hofiman, 2016). exponential demand
pattern (Wu, 2002), and ramp-type demand pattern (Kawakatsu, 2011; Manna and
Chiang 2010; Roy and Cmdhuri 2011; Vallathal and Uthayakumar, 2016). Astanti and
Luong (2014) developed a repetitive forward rolling technique for determining inventory
policy for nonlinear increasing demand pattern and considering shortage.

leahovc literature reviews, it can be seen that past researches conducted for
finding exact solution for the case §nonlincar increasing demand considering shortage
backorders have not ensured yet that total demand over a pre-established planning
horizon will always be fulfilled (Hariga. 1994). In adition. the exact solution
methodologies were developed for very specific nonlinear demand pattern. The research
presented in this paper therefore focuses on the development of an inventory policy for
more general nonlinear ina:asing demand pattern (i.e., any log-concave function) and
shortage backorders case in such a way that the total demand over a pre-established
planning horizon can always be met. By working on more general demand pattern, it is
expected that the result of this research can be applied to solve problems with various
nonlinear demand pattern that may appear in practical situation including some patterns
that have been individually discussed in past research, i.e., quadratic, polynomial,
cxracmial‘ and ramp-type demand patterns.

In this research, a forward with backward inventory algorithm is pffposed where the
proposed algorithm consist of two steps. The first step is a procedure to help determine
the replenishment times and intermediate shortage starting poimnt simultaneously for two
consecutive cycles in the planning horizon is proposed. Then, the proposed technique
from the first step will be incorporated into a forward with bacard rolling procedure
for every two consecutive cycles in the plmg horizon help determine all
replenishment times and shortage starting points in such a way that the total inventory
cost will& gradually reduced until no improvement can be realized.

The remaining parts of this paper are organized as follows. Section 2 presents the
mathematical model in which the expression of total inventory cost will be derived. In
Section 3, the proposed technique to find the two replenishment times and the
intermediate shortage starting point for any two consecutive cycles in the planning
horizon will be @lived. followed by the development of the forward with backward
rolling procedure in Section 4. Numerical experiments to illustrate the applicability of the
proposed forward technique are then presented in Section §JSensitivity analysis on the
effect of the predefined number of cycles will be conducted in Section 6. And then. some
concluding remarks will be discussed in Section 7.
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2 Mathematical model

The following notation will be used throughout the paper:
e [ is the length of planning horizon unﬁ consideration

e f{0)is the demand rate at time ¢, which is assumed to be an increasing log-concave
fuggtion

s ¢, is the ordering cost per order

* ¢, is the holding cost per unit per unit time

e ¢;is the shortage cost per unit per unit time

e nis the number of replenishment ﬁes in the planning horizon
e /15 the i replenishment time (i = 1. 2. ... n)

e s isthe " shortage starting point (i = 1, 2, ..., n, n + 1), which is also the starting
int of the /" cycle [s,, 8;-]. except that s,,., = H

e [(f) 1s the inventory level zaime t, which should be evaluated after the replenishment
arrives at time 7 = # in the i" cvele [s,, s,
yele [ i

The behavior of the inventory level function is illustrated in Figure 1. For the
development of the mathematical model, the following assumptions are also used:

a Replenishment orders are made only at time t;, (i = 1.2, ... n).
b Lead time is negligible. i.e., replenishment is instantaneou

¢ Shortages are permitted at the beginning {Jkach cycle but no shortages are permitted
at the end of planning horizon (i.e., s,., = H)

Figure 1 Inventory level over the whole planning horizon

— '\[\

5=\t BA S SoWa Sy =H

Time

From the above assumptions, the expression of total imventory cost function, which
includes ordering cost, holding cost, and shortage cost: of the inventory system during a
planning horizon H when n orders are placed 1s expressed as follows:

7C(n, {s:}, {t.}) = ney +c;_i1,- +c;i$, (n
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in which

e [;is the cumulative holding inventory during cycle i

e Siisthe cumﬁlti\’e shortage during cycle 7.

The expressions of cumlaive holding inventory [; and cumulative shortage S, for each

cycle 7 from s; to 55, will be derived in Sections 2.1 and 2.2 below:

2.1 Cumulative holding inventory I

If F(1) denotes the cumulative demand from time O to time [ then

!
Foy = [ sy
0

The inventory level at time t € [#, s;:1] in eycle i can be expressed as:
Sl
1= [ fax <1<,
I
Hence, the cumulative holding inventory [; in cyele i can be determined as:

el Siel el

i If(r)dr=j If('r)drdr

Ii=(si1-t)F(s)- [ Foydr ¥))

2.2 Cumulative shortage S,

The shortage level at time ¢ €[s;. ;] in cycle i can be expressed as:
o2

NG =I fayh s <t<i,
1

Hence, the cumulative shortage S; in cycle i (i = 1, 2, ..., n) can be determined as:

S, = E[S(r)dr = I:[ £ (2)chedlt

i S

S; = (s —f,-)F(s,—)+jF{r)d; 3)
5
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From equations (2) and (3). the expression of the total inventory cost can be defined as
follows:

n Sixl

7C (n,{s;}, {t:}) =ne, ”2_2 (501 &) F (si1) - _[ F(t)dt

G

H ]

+c3 Z (s =1, )F(s;)+ jF(r)dr)

i=l 5

3 Proposed technique to determine replenishment times and shortage
starting point for two consecutive cycles

Consider two consecutive cvcles i and (1 + 1) of the planning }nZOII in which s; and s;.»
are fixed. The technique proposed in this section is developed to help dctcrmmthc two
replenishment times 7. ., and the intermediawnlortage starting point s,y so as to
minimize total inventory cost of the two cycles (see Figure nfor the illustration). The
total inventory cost of the two consecutive cycles started with cycle 7, denoted by 7C2,, 1s
determined as follows.
7C2, =26, +e3 (51~ 6) F(s1) - | Foy
I

Fja2

(S¢'+2 — izl ]F(Sri'ﬁ ]_ .[ F(“)d[
0 s = (5)
+es (S.-—r,-]F[s,-)+‘[F(f)d.f

+..

&

£ [-5]41 _f;+1)F(S;‘+|]+ IF{-’)d-'

Hal

+

o

Figure 2 Inventory levels of the two consecutive cycles
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The optimal values of #, #., and s, (if exist) are the solutions of the following set of
equations:

A A P
orC2, =i erc2, i aTC2, -0
ar; Ol O5is1
or equivalently,
(2463 )Ft)—erF (50)—c3F (5) =0 (6)
(c2+¢3)F(tin1) = c2F (s02) = &3F (5001) =0 (7
(C'z +¢3) S50 — Caligg + €28, =0 (8)
or
I"_{f,- ) _ ol (SH-I. ) + CJF(SI) (9)
€+
f‘-(frﬂ}: CzF(.S',+2]+C3F(.§',-+]] (10)
Cy+C3
o o Cali + C3lin (an

Cz+Ca

The unique existence of the solution {!,' Gels .s','+]} of the set of equations (9), (10), and

(11) can be confirmed through the following iterative procedure:

s « s then

i+l

a In the first iteration, assign s, to be the starting value of s,
e From (9), £” can be found

s  From (10), .'ff]) can be determined which is a value that satisfy the condition:

— 0 f0)
S =8, <l <82

(0

b In the next iteration, s\ will be determined from equation (11) based on £ and

i+l
#2): then 1" and 1} will be determined from equations (9) and (10) based on s/}

i il
It is noted that s'!) © and (M > (O

and hence, r,‘” >4 st b

(0
> SJ+]

The above procedure will be performed until the series {c‘“

s } converges. The

convergence of the series {.s:f,]} can be ensured due to the fact that {.sff,’} is increasi

and has an upper bound of s;,,. From the procedure, it can be seen that the set of
equations (9). (10). (11) has uﬂue solution ¢, ¢, and s;,,.

In brief. the following step-by-step procedure can be employed to determine
{£.64. 57}




500 R.D. Astanti et al.
Step0 k= 0; assign s\y] < s,
Step 1
a  Determine £**" and £*}" from equations (9) and (10) by using bisection
method.
b Determine s from (**V and 1% using equation (11).

i+l

¢ Checkif s** —s*) > ¢ then update k =k +1, go back to step la.

i+1 i+l

S{k&l)

(K41} (k+1) s
g7 0 st will be recorded as the

Otherwise, stop. The current values

solution for #, #/,,. and s/,,.

In the next paragraphs. the unique solution {.‘,-" fiii s,-'“} of (9). (l(ml 1) determined by
the above procedure is optimal will be ;men by mvestigating the Hessian matnx of the
total cost function 7'C2i and proving that the Hessian matrix is positive definite at
{";‘ ol I }

It is noted that the Hessian matrix of 7C2i can be expressed as:

[821C2, 8°TC2, &°*TC2; |
or? Ol LSy
e oMC2, 9TC2, HTC2
;10 o2, 014105141
oMC2, C2, &TC2,
| 05,10t 0810t ost,

Consider the following determinants:

FNCY; FTCI. 9WCI

&TC2, 9°TC2, ar oot  Otds,,

g 2 C2, e ér? aot, s #rC2: ICI: 9O
N P |etre2, erca,| U |8 or,  dh,ds,,
ar.01,  or, PIC2, §fC2, ¥TC2,

os,, 0t 0Os,, 0L, as’ |

In order to prove that the Hessian matrix J is positive definite at {i/.7 ,.s.,} it is

sufficient to prove that.J,, J, J; are positive at {.';. Fo s‘.“} [see Rao (2009)]. In fact,
*TC2,
Iy

T —(cl+c_,)f(r:)>0

i)

S i B
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°TC2, &°TC2,

o o

141

U P :
Waasa) o2, 9°1C2,

o, 01, E&r .1

(¢, +¢,) f(r 0

I:(c +e, ]sm et c_,.f;l]f'(s:“)
[e: +e,]/ (s1a)

0

czr; cyt,,, =0 [see equation(8)].

It is noted that at r{.'.rl’ll, 5'.-1~ we have (c +e. }.s

i i+l

Hence,

(e, +cj)f(r:) 0
0 (cz +"3]f(sr'.-\)

-

={e.+e ) £I€) FL,.)>0

L [OF e

[o'rC2, &°1Cc2, #°TC2, |

ar’ otot,,  019s,
P _|&rcy, 8'1C2,  #TCY,
I LR S ar,_]ar‘ afil lajfm‘;)“".—fl

fﬁ('zl #rC2, 9IC2,
5.5‘”]31 0s,.,01,, os;,, {.l‘:, l‘pfl Sn—l} (12
N . )
(C: +c‘]f(f:) 0 a —c,f(s”,)
= 0 (Cz +C.\)f("f.+|) _Csf( r+|)

= zf[ m) —C.‘f[é) (¢, +¢;) f(shl)
= (c;,-i-c_‘)f(I:)[(cg a:.\)zf(‘:H)f("':n)"cjg (f(s:+|))2:|
-c.f .s-;” [c, (c3 +cl‘)f(.f,.'_1)f(s:+ln

In order to prove that .J, |I N > 0 it will be derived that
2 - - - 2 . -
(e2+e3) f(50) f () —c3? (f(-—"'m )) >y (e tes) fta) S (sha) (13)
and
(c2+es) /() > eaf (i) (14)

First, it 1s notedd-tat the inequality (13) is equivalent to
caes [ (150 ) f (i )+ e f (st )&(ﬁrl )=/ (s ]] >0

which holds true due to the facts that 7, > sj,; and f{.) is an increasing function.
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Second, mequality (14) can be derived based on the assumption that the demand rate
function f{.) is an increasing log-concave function (see Appendix).

From inequalities (13) and (14). it can be easily seen that J; (i sa) 18 also

positive. This completes the proof that the unique solution {.f,’,f,'ﬂ. .s',-',,]} of (9), (10), (11)

is optimal.

4  Forward with backward rolling technique

In this section, a forward with backward rolling technique will be proposed to help adjust
the §Bdefined replenishment times #’s (i = 1. 2. ..., n) and shortage starting points s;’s
(i =2, .... n) for the planning horizon of length H so that the total inventory cost can be
gradually reduced. The proposed procedure is as follows:

Step 1  Divide the planning horizon of length / into f§Bqual cycles in which cycle i
goes from s;10 5., (1 = 1,2,....,m 5, = 0; 5,.., = H). Assign a large value for the
total cost function 7C = Inf.

Step 2
a  Forward move )
1 Seti= 1: consider two consecutive cycle 7 and i + 1; apply the
cedurc discussed in Section 3 to determine the optimal solution {#,
fre1s Sper} {f,, iy, .s'm} of the set of equations (9). (10), and (11).

Record the value of #; and update the value of s;.| by the newly found
value. (mo step2.a2.

2 Updatei=i+ 1.1fi<n, go back to step 2.a.1. Otherwise. record also
the value of .f,_n'mnd in the last iteration and go to step 2.a.3.

3 Determine the total cost 7C and check if the total cost function has
been improved (i.e., reduced). If ves, go to step 2b. If no, stop the
iterative procedure.

b Backward move a

1 Setf=n- |; consider two consecutive cycle i and 7 + 1% apply the
procedure discussed in section 3 to determine the optimal solution
{t, 1,1, 5,1} of the set of equations (9), (10), and (11).
Record the value of #,., and update the value of a;. | by the newly found
value. (mn step2.b.2.

2 Updatei=i- 1.If7 > 0, go back to step 2.b. 1. Otherwise, record also
the value of ¢, 'nlnd in the last iteration and go to step 2.b.3.

3 Determine the total cost 7C and check if the total cost function has
been improved (i.e., reduced). If yes, go to step 2a. If no, stop the
iterative procedure.

The forward with backward rolling procedures discussed above are illustrated in

Figures 3(a) and 3(b)
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Figure 3 (a) Forward rolling procedure (b) Backward rolling procedure
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5 Numerical experiments

In this section, numerical experiments are conducted to illustrate the applicability of the
proposed method. Three examples will be considered here.

5.1 Example 1 (Yang, 2006) (l
Consider the demand function of the form: fir) = b" \nm u=2,b=900. The other
parameters are set as follows: H=1,¢,=45,¢,=1,0;=35

The number of cyeles n used in this sample problem is determined based on the
formula developed by Teng (1996) for the case of linear increasi“ demand. where

n = rounded integer of {[c;c_;HF(H )] [2::. (e2+ca )]}I P 5

Sensitivity analysis can be conducted later to find the appropriate value of n. The
step-by-step procedure to determine £ (7 = 1, 2. ... n) and s; (i = 2, ..., n) is presented
below:
oo
Step 0 Determine the initial valuesof 5, (i= 1,2, ..., n): Fors; = 0,5 =02, 53 = 0.4,
e =006, 5:=0.8, 5s=H =1.0, set T'C = Inf.

Step 1  Forward move

e [teration 1: consider cycles 1 and 2 which goes from s, = 0 to 53 = 0.4. Solve the

set of equations (9), (10), and (11), then the following values are found:
1, = 0.1740, 1, = 0.3197 and s, = 0.2873.

Record the value of f; and update s, from 0.2 to 0.2873

e [teration 2: consider cycles 2 and 3 which goes from 5, = 0.2873 to sy = 0.6.
Solve the set of equations (9), (10) and (11). then the following values are
found: £, = 0.3459, 1, = 0.5044 and 53 = 0.4692.

Record the value of £, and update s; from 0.4 to 0.4692

s [teration 3: consider cycles 3 and 4 which goes from s; = 0.4692 to 55 = 0.8.
Solve the set of equations (9), (10) and (11), then the following values are
found: # = 0.5226, ¢, = 0.6925 and s, = 0.6547.

Record the value of f; and update s, from 0.6 to 0.6547.

e [lteration 4: consider cycles 4 and 5 which goes from s, = 0.6547 to s, = 1.0.
Solve the set of equations (9), (10) and (11), then the following values are
found: ¢, = 0.7061, #; = 0.8838 and s5 = 0.8443.

Record the values of £, #s and update ss from 0.8 to 0.8443.
Determine total cost 7C from expression (1): 7C = 43.67. Continue to step 2.
Step2  Backward move

e [Iteration 1: consider cycles 4 and 5 which goes from s, = 0.6547 to s = 1.0.
Solve the set of equations (9), (10) and (11), then the following values are
found: ¢, = 0.7061.
fs = 0.8838 and 55 = 0.8443.

Record the value of fs and update ss.
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It is noted that this iteration can be ignored because the solution should be
exactly the same as in iteration 4 of step 1.

e [teration 2: consider cycles 3 and 4 which goes from 53 = 0.4692 to 55 = 0.8443.
Solve the set of equations (9),(10). and (11), then the following values are
found: 13 = 0.5332, 1, = 0.7244 and s, = 0.6817

Record the value of fy and update 54 from 0.6547 to 0.6817

e [teration 3: consider cycles 2 and 3 which goes from 5, = 0.2873 to 54 = 0.6817.
Solve the set of equations (9), (10) and (11). then the following values are
found: #, = 0.3684, #, = 0.5655 and 53 = 0.5217.

Record the value of £; and update s; from 0.4692 to 0.5217.

e [teration 4: consider cycles 1 and 2 which goes from s, = 0 to 53 = 0.5217. Solve
the set of equations (9), (10) and (11). then the following values are found:
£, =0.2270, 1, = 04619 and s, = 0.3747.

Record the values of ¢, £, and update s, from 0.2873 to 0.3747.

Determine total cost TC from expression (1): 7C = 42.24. Since there is improvement in
total offll. another forward move step will be conducted. The forward with backward
rolling procedure will be repeated until no improvement in total cost can be |'ca|i7n_

For the current example. the intermediate replenishment schedules after the first
forward step and the first backward step, as well as the final replenishment schedule are
shown in Table 1. It is noted that the total cost 7C = 40.51 resulted from the proposed
technique in this example is exactly the same as the one reported by Yang (2006).

Table 1 Replenishment schedule of example 1
_a After the first forward step
i 1 g | 4 g 6 Total cost
| 0.1740 0.3459 0.5226 0.7061 0.8838 - 43.67
5t 0 0.2873 0.4692 0.6547 0.8443 1.0000
Afiter the first backward siep
P 0.2270 0.4169 0.5655 0.7244 0.8838 - 4224
S 0 0.3747 0.5217 0.6817 0.8443 1.0000
Final replenishment schedule
I 0.2760 0.5070 0.6708 0.8043 0.9198 - 40.51
5 0 0.4556 0.6343 0.7746 0.8941 1.0000

é_? Example 2 (Yang et al., 2002)

Consider the demand function of the form: f{r) = (a + bt)' with 2 =2, a = 10, b = 30. The
other parameters are set as follows: =1, ¢,=45,¢,=1,¢; =35,
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For n = 8, which is also determined from the formula of Teng (1996), the
replenishment s@u]e in this example can be determined based on the proposmncthod
in a similar way as in example 1. The detailed results are shown in Table 2 and illustrated
in Figure 4.

Figure 4 Replenishment schedule of example 2

Tnventory level

R m 0.4200 bh 0.758% \ [0.8513 L
05185

Tim
M | 03865 16353 07364 080N 09181 b

The corresponding (@l inventory cost for this example is TC = 67.21. Itis noted that the
total inventory cost reported by Yang et al. (2002) for this example is 66.13 withn = 7
Ebwever. in the resulting replenishment schedule reported by Yang et al. (2002).
althouggshortages were assumed to be completely backlogged, there still exist a shortage
period at the end of the planning horizon, and the author did not mention how to deal
with this shortage (see Figure 5 for illustration).

Figure 5 Replenishment schedule of example 2

oms 0.2923 h bb 08117\ |o.0093

o o~ 0.2457 N] u-w\l 06791\ 07881 08876y 09798 Y1 iEIime

Inventory level

Source:  Yang et al. (2002) -
= &

In this example, there are two practical ways to fulfill the demand at the end of the

planning horizon. They are:

1 adding one more replenishment at the end of the planning horizon with the
replenishment quantity exactly equals to the shortage amount

2 increasing the time coverage of the last replenishment cycl

The associated costs of these two adjustments are shown also in Table 2 for compf&on
purpose. From the results in Table 2, it can be seen that. if the total demand in the
planning horizon is completely fulfilled. the total inventory cost resulted from the
proposed technique is smaller when it is compared with the result from the adjusted
Yang's models.
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Table 2 Comparnsons between the proposed technique and the adjusted Yang’s models

; Pm:sed method Adjusted Yang 's model (1) Adjusted Yang's model (2)
8 i S 1 5 I

1 0 0.0743 0 0.0826 0 0.0826
2 02261 0.2695 0.2457 0.2923 02457 02923
3 03865 0.4200 04171 0.4528 04171 04528
4 05185 0.5467 0.5574 0.5873 0.5574 0.5873
5 0.6333 0.6581 0.6791 0.7053 0.6791 0.7053
6 07364 0.7588 0.7881 0.8117 0.7881 08117
7 0.8307 0.8513 0.8876 0.9093 0.8876 0.9093
8 09181 0.9372 09798 1.0000 1.0000 -
9 1.0000 1.0000 -
TC 6721 (n=18) 70.63 (n=18) 67.58(n=T7)

5.3 Example 3
Consider the demand function of Example 1, which is in the form f{r) = b" with u = 2,
b = 900. The other parameters are set as the conmation of following values: =1, 1.5,
and 2, ¢;=35and 4.5, ¢; = 1, ¢3 = 3.5 and 4.5. In order to demonstrate the capability of
the proposed algorithm, the same problems are also solved using Yang'§&&006) method
and a Nelder-Mead algorithm. The comparison of the results is presented in Table 3.

Table 3 Comparisons among the proposed technique, Yang’'s method, and Nelder-Mead

algorithm
Problem parameters Total cost of the solution
No. b u H - W Yang's mqfhod Proposed Nelder-Mead
* (2006) algorithm algorithn
A 000 2 1 4.5 1 35 40.51 4051 42.17
B 90 2 15 45 1 35 90.91 90.56 96.53
C 900 2 2 5 1 35 169.41 160.95 178.69
D 900 2 1 3.5 1 45 36.89 36.94 38.13
E 900 2 15 35 1 45 83.72 82.22 83.72
F 900 2 2 is 1 45 15971 146.33 163 .48

15
From Table 3, it can be seen %t the proposed algorithm 1s consistently able to provide a
good solution, in which it is able to obtain five out of six problems with the smallest total
cost. [t is noted that the result of proposed algorithm of problem D is slightly worse than
Yang’s method, however, the deviation is very small. i.e., about 0.14%.
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6 Sensitivity analysis

FronScction 5, a good initial value of the replenishment cycle n derived by Teng (1996),
for linear increasing demand pattern is used. In order to find the best value of n,
sensitivity analysis is conducted to investigate tffn:ct of n on the total cost function.
For the two examples discusscd%: summarized sensitivity analysis results are presented
in Tables 4 and 5. respectively. From the results in Tables 4 and 5, it can be seen that the

values of n u" example 1 and 2 are respectively 5 and 8.

Table 4 Sensitivity analysis on the effect of # for example 1
. n=4 o= 5 n==6
. 8 1 5 I 5 1
1 0.0000 0.3087 0.0000 0.2760 0.0000 02518
2 0.5097 0.5671 04556 0.5070 04157 04625
3 0.7096 0.7504 0.6343 0.6708 0.5787 0.6120
4 0.8665 0.8997 0.7746 0.8043 0.7067 0.7338
5 1.0000 0.8941 09198 08157 0.8392
6 1.0000 09124 0.9333
7 1.0000
TC 40.56 4051 4197
Table 5 Sensitivity analysis on the effect of n for example 2
. n=4 n=3 n==6
£ §; 1 Si 1 & 1
1 0.0000 0.0852 0.0000 0.0743 0.0000 0.0658
2 0.2518 0.2994 0.2261 0.2695 0.2055 0.2454
E] 0.4265 04629 0.3865 0.4200 0.3540 0.3851
4 0.5694 0.5999 0.5185 0.5467 04769 0.5032
5 0.6934 0.7202 0.6333 0.6581 0.5841 0.6073
6 0.8045 0.8286 0.7364 0.7588 0.6805 07015
7 0.9060 0.9281 0.8307 0.8513 0.7688 0.7881
8 1.0000 0.9181 0.9372 0.8507 0.8687
9 1.0000 09275 09443
10 1.0000
TC 67.28 67.21 68.17
7 Conclusions 8
2

We have developed and solved the inventory replenishment problem for nonlinear
increasing demand patiern considering shortadfl:§ackorders. A forward with backward
inventory policy algorithm has been developed to determine the replenishment times and
the shortage points so as to minimize the total inventory cost. Comparing with the other
techniques developed in the past, the proposed technique results in either the same or
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better cost performance. In addition, unlike the past-developed techniques that require
specific functional forms of the demand pattern, the proposed technique can be employed
for a more general demand pattern (i.e.. any log-concave function).
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Appendix
By the assumption that the demand function f{f) is a log-concave function, the following

imequality holds true:

VAONIAD)

> with 7 < 5. (Al)
SO f®

Fix #=¢. multiply both sides of (A1) by fs). and integrate with respect to s from # to

S;21. we have:

. T .
;‘[f(.s)d.s < ;[mf(.s)dk
or equivalently,

S(sia)-s(1) S{f-((:—%j J(s)ds (A2)

Multiplying both sides of (A2) by ¢,. we have:

Fisl

1) If(.s')d.s' (A3)

2 [f(-"a"ﬂ )_f('(i" }:I L) f(f,-‘}

Noted from equation (6) in the main text that

Sl i

(e2+e)F(t)—caF (501) - e:F (5,) =0 & ¢, _[f(f)df = Cw'[f(f)df

We also have: ¢ I Sf(di = c_‘j Sdt
i i

&

Hence, inequality (A3) can be rewritten as:
s L)
(s ) =7 ()] € es =2 [ resyan Ad
e/ (si)-7 (1)) ex f(::)_!f““ (A4)

Applying the Cauchy’s mean value theorem for the two functions f{.) and F(.), i.e., the
demand rate and the cumulative demand functions, in the interval [s,’ s .',-'] there should

exista value xe[s]. 4] such that:

F@LFE)-F(s)]=F (=)L @)-£(s)]

or equivalently,
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y NI
:[f(-s)d-s —m[f(f.- )-1(s)]

Replacing (AS5) into the right-hand side of (A4) we have

. ) S .
2 i+ e J
e[/ (sia)-1(1)]< fm[f(r} =/ (s7)]
Due to the fact that [®, f’(!;). mequality (A6) implies that:

S 1)
e[ f(sia)=7 ()] < e[ 1 ()= £ (s])]
(crtes ) f(g)zenf(sia)+esf(s])
From (A7), we can derive:

(c2+e) f(6)zeaf(s50)

(A5)

(A6)

(AT)

(QED)
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