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Dispersion and Velocity Indices for Observing Dynamic Behavior of
Particle Swarm Optimization

The Jin Ai and Voratas Kachitvichyanukul

45

Abstr —ge!lcr balance of exploitation and exploration
of solu!i‘&mce by the swarm is often mentioned as the key to
a good performance of Particl arm Optimization (PSO)
algorithm. Traditionally, the balance of exploitation and
exploration ability of a PSO algorithm is usually shown
empirically by the final result of the algorithm over some
benchmark functions and not by the §$/4amic behavior of the
swarm during the iteration process. In order to observe the
dynamic behavior of the swarm in a PSO algorithm in details,
two measurement indices, Dispersion Index and Velocity Index,
are proposed. In an empirical study, th indices are
embedded in two PSO  Algorithms and applied to sa
benchmark problems. The results of this study indicate that a
good balance befween exploration IE)zxploita!ion does lead to
a better PSO. This balance coul achieved by allowing
enough fime or iteration step for both exploration and
exploitation processes to take place. Finally, the utilization of
these indices to balance strategy for exploitation and
exploration on the PSO is discussed. It is also suggested that the
velocity index can be used as a basis for controlling the length
of iteration step of PSO algorithm.

[. INTRODUCTION
ARTICLE Swarm l@imizzlion (PSO) 1s a population
based search method which were motivated by the group
organism behavior such as bee swarm, fish school, and bird
flock [1]. PSO imitated the physical movements of the
individuals in the swarm as a search method, altogether with
its cognitive and soc.iala havior as local and global
exploration abilities, In the PSO, a solution of a specific
problem is being represented by an n-dimensional position
of a particle. The search is performed by moving the particle
to a new position via a velocity vector, The PSO algorithm is
started with a population of particles initialized with random
position and velocity. The population of particles is usually
called a swarm. In one iteration step, every particle is moved
from previous position to the new position based on its
velocity. The velocity is updated based on the particle’s
personal best posan and the global best position found so
far by the swarm. Once a particle reach a position which has
a better objective function than the best previous position for
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this panicle,gpersonal best position is updated. Also. if an
objective function is found that is better than the previous
best obj ec[ function of the swarm. the global best position
is updated, A brief and complete survey on PSO mechanism,
technique, and applications is provided by 2] and [3].

Empirical study showed that PSO could be applied to
solve unconstrained  optimization |4], constrained
optimization [5, 6], and also discrete optimization problems
[7]. These early studies also showed that PSO could provide
high quality solutions in reasonable fast computatio@me.
Other studies were also carmed out to deal with the i1ssue of
ncing exploration and exploitation ability of PSO.
Exploration 1s the ability to test various regions in the
problem space in order to locate good solutions, hopefully an
optimal one. Exploitation is the ability to concentrate the
search around a promising candidate solution in order to
locate the optimum more precisely |8]. The results of these
studie:m: the vanants of PSO which were claimed to have
better balance of exploration and exploitation ability than the
original one [9, 10, 11] and parameter setting which
enhances these ability of PSO [8, 12, 13].

In most of these studies, however, the improvement of
exploration and exploitation ability was only demonstrated
empirically by the final result obtained in solving some
benchmark functions, The swarm bel{giflor during the
iterations has not been studied in details. This paper will fill
this gap by studying the dvnamics behavior of the swarm.
Two measurement indices are proposed, dispersion and
velocity index. for observing the swarm dunng the iterative
process. These proposed indices are used to obs
behavior of PSO algorithm on the benchmark problems. The
remainder of this paper is organized as follow: Section 2
reviews the PSO algorithms and defines two measurement
indices of the swarm. Section 3 shows the behavior of PSO
algorithms on some benchmark problems with respect to
proposed measurement indices. Section 4 discusses the
findings of this study and directs the use of these indices to
balanbe exploitation and exploration strategies on the
PSO. Finally, Section 5 summanzes this study and suggests
further applications and extensions.

II. PSO ALGORITHMS AND SWARM MEASUREMENT INDICES

Two versions of PSO Algorithm, the basic PSO and the
GLNPSO, are briefly reviewed in this section. The usage of
these two versions of PSO Algorithm is intended to show
different exploration and exploitation behaviors that could
be monitored by the two proposed swarm measurement
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indilags.

In the basic PSO algorithm, each iteration step mainly
consists of only two set of updating equations: velocity as in
malion (1) and position as in Equation (2).

Vig= Wyt o (pu—x4) + c it ( ps,,—xu) (D
x=x+v @
ad il il

The velocity equation consists of three elements. First
element shows that a particle, which is represented by its
velocity, will maintain the current direction. Second element
shows that it also uses its past knowledge to form a new
direction which is shown in its cognitive behavior. Third
element vs that 1t gains the information from other
particles in the form of the best position of the swiilh so far,
and 1t showed the social behavior of particle. The PSO
algorithm is described below following the definitions of the
indices and notation.

Indices
i : index of particle, i=1.../
d . index of dimension. d=1...D
t - index of iteration, t=1...T
Nomﬁorm
X : the position vector of particle i .
= Xp, Xjgy .o .‘t'.D!
I, . the velocity vector of particle i ,
i= Vo, Vi Yol
P . the personal best position so far of particle i
P . the global best position so far of the swarm
B
# (X)) : objective function value of particle /
¢#(F) : objective function of P, the best objective

function of particle i
vu(1) : the velocity of particle 7 at the dimension d in
the iteration ¢
x4(1) : the position of particle i at the dimension din
the iteration ¢
. the inertia weight

g » the personal best acceleration constant

a : mgloba] best acceleration constant

u : unihm random number in the range [0.1]
P : the personal best position of particle 7 at the

dimension d - : :
P the global best position at the dimension d

Algorithm 1:@hsic PSO Algorithm
1. Initialize / particles as a swarm population: generate the

article 7 with random position .Y, in the range
%\"‘"".X"‘“], velocity 17 =0 and personal best P = X

] i

where i =1... /. Set iteration /= 1.

a
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2. Fori=1... I, compute the objective function of X,

i

¢ (X).

3. Update personal best: For i=1... I update P =Xif
#(X,)<¢(R).

4. Update global best: For i=1..I,set P=P,if
@r)<o(z).

5. Update velocity and position of each particle i=1...1

anm'ncnsion d=1...D:
o vu("'j' 1) = “""m(")"'cp“ (Pu_xu('f ))

+en(py-xu(1))
o x(r+1) =x,(0) +vu(r+1)
o If x,(r+1) <X™ thensetx, (f+1)=X""

DY If x, (1+1) > X ™ thenset x , (¢ +1) =x™"
6.If the stop criterion is met, i.e. =T, stop. Otherwise, set
t=1+] and retumastep 2.
14
The GLNPSO 1s a PSO Algorithm with multiple social
learning structures [11]. In this PSO version. the social
behavior is expressed by not only the global best but also the

local best and near neighbor best. The local best 1s the best
position of among several adjacent particles. m near

neighbor best is another social behavior concept, which 1s

determined based on fitness-distance-ratio (FDR) [9]. The
velocity updating equation is given in Equation (3).
Via™= WVt e ( Pu— x.rr) + o ( P~ xm’) 3)
+e p"'—x +cu p'\—.l')
i ad T " id i

re:
& : the local best acceleration constant
g : the near neighbor B} acceleration constant
pl; the lacal best position of particle i at the
dimension d(f]
p.: the near neighbor best position of particle i at the
dimension d
The personal and global best for GLNPSO are determined
exactl)mhe basic PSO. The local best, P*, is determined
as the personal best with the least fitness value among K
neighbors of particle 7 . Each dimension of the near neighbor
best ( p") is determined as the corresponding personal best
( p,,) that maximizing fitness-distance-ratio among all other
particles. \m'e FDR is defined as

ol X,)=-o(P,
FDR = ’)—(’} which /% “@
Ixirl'_ P |
The GLNPSO Algorithm has the same structure as
AU dop AT s 1 NS
procedure for updating global best, local best and near
neighbor best. Equation 3 is applied as the updating velocity
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equation in step 5.

Algorithm 2QLNPSO Algorithm
1. Initialize I particles as a swarm population: generate the

article 7 with random posmou X, in the range
ll{l’""" X" veloeity 17 =0 and personal best P =X

where i=1... [. Set iteration /= 1.
2. For i=1... I, compute the objective function of X,

#(x).

3. Update personal best: For  i=1

JE<4(P).

4. a. Update global best: For i=1..

#(P)<g(P.).

b. Update local best: For i = 1... /. among all personal
best from K neighbors of the i particle, set the
personal best which obtains the least fitness value to be

Pn’.l

.. I, update P,=Xif

I.set P=rif
g L1

¢. Generate near neighbor best: For[3/! i=1..71,and
d=1..D.set pkxp , that maximizing fitness-
distance-ratio (FDR)forj=1..1.
5. Update velocity and position of each particle
and dimension d=1..

v(t+]] wv(r]+cn(p x(:))+cu(p—r(f))
* +cr:(p —x(.“))+(n(p —x (f))

=x,(1)+v,(t+1)

® [f x, (r+1) <X™ thensetx , (r+1) =Xx""
n[f x (1+1) >X™ thensetxy (1+1)=X""
i fal
6. If the stop eriterion is met, 1.e. =7 , stop. Otherwise, set
B t+1 and retum to step 2.

Two measurement indices are defined for observing the

i=1..1

o (14

dynamic behavior of 1hgwarm. The first index is called
dispersion index. This index measures how particles are
spreading around the best particle in the swarm. and is
defined as the average absolute distance of each dimension
from the best particle. The formula forif the dispersion index
( &) is given in Equation 5. This index&lains the coverage

hi { th Wi Wil
dispersion index Sovera pihes

as relative r coverage of searchiing
area than the one with lower dispersion index.

IS pun|

e i =l =] 5
Fusatt (5)

v#PAhe second index is called velocity index. This index
measures how fast the swarm moves in certain iteration, and
1s defined as the average of absolute velocity. The formula to
calcula the velocity index (U ) is given in Equation 6. This
index shows the moving behavior of the swarm: higher

index means the swarm move more aggressively in the

Y “?l
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problem space than the swarm with lower index.
1D

22 Pl

5 =i=ld=l (6)

II1. COMPUTATIONAL EXPERIMENTS

The computatlm experiment is performed using two
PSO Algorithms: the basic versidEZ) PSO (Algorithm 1)
and the GLNPSO (Algorithm 2). Parameters of the basic
version of PSO algorithnm the experiments are [ =30 ,
T=1000, c,=2.
from 09 to 0.4 Parameters of the GLNPSO for the
experiments are /=307 = 1000, =1, =1, ¢= l,

cg=2, and w 1s linearly decreasing

cp=1, K =35, and w is linearly decreasing from 0.9 to 0.4,
The measurement indices are coded and embedded in the
PSO program, so that the PSO program can record or display
the indices in every iteration step. Six benchmark functions,
which are often used in PSO literatu re used for testing
purpose. For all of these benchmark functions, the objective
is to minimize it. The definition of each function is described
below:

¢ Parabola 30D (search space: [—20. 20]‘”)

D
b=2x" %)

d=1
30

» Griewank 30D (search space: [-300, 300] )

b . : ]
¢=1+ —Hcos|%§f\|} (8)

=1
30

¢ Rosenbrock 30D (search space: [—IU,IU] )

=1
¢= Z&—\d) 100 (- x40 ) | ©

=1

* Alpine 30D (search space: [-10, IUT%

o
§= 2 |asin (xa) +0.1u (10)
=1
* Ackley 30D (‘,earch space: [-30 3079
gs:zo-zoex;a\-o_z ,;* 2y |
)
i an
+e expkz cos(27 m)/ )
¢ Rastrigin 30D (search space: [—IO,IOI[')
I
b= Zl{xdz—m cos(z;:xq] +10D (12)
d=1
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From the equation 712, it is known that the search space
for each problem is different. This relative size makes the
comparison across functions difficult. To make the
comparison convenience, the searching space in the PSO 1s
always set in the \i(nter\-‘ul [0.1] instead of the range of

original problem J\X ™", X'““! in this experiment. A linear

translation from the PSO solution (1.e. x) tothe original
problem solution (1.e. x' ) 1s required by following

ﬁionship:
xr:Xmin_'_x anx_Xmin (13)

The final objective function value (the global best
objective function at the end of iteration) of each of these
functions over five replications of both version of PSO are
given in Table 1. Note that the optimal solutions for all these
benchmark functions are zero. Hence, the GLNPSO version
gives better results than the basic version of PSO for these
benchmark functions, since 1t gives the final solutions that
are closer to zero, This result is inline with the previous
result [11]. However, observation of this final iteration result
could only state empirically that the GLNPSO version is
better than the basic one, but could not explain why this
version 15 better.

To explain wh)ale version of PSO is better, the dynamic
of the swarm is studied by recording the dispersion and
velocity index in every iteration step. Figures 1 and 2 shows
the progress of dispersion index over one typical run of the
basic version of PSO and the GLNPSO respectively. for the
benchmark functions tested. For clarity of the figures, the
data points are only shown for every 10 iterations for only

2
three functions. Both figures gow the general tendency of
particle movements in the swarm: all particles move towards
the global best position. so all particles are laid close to each
other at the end of iteration.
1s also observed from Figures 1 and mll there 1s a
different behavior of the swarm between the basic version of
PSO and the GLNPSO. In the basic version of PSO, the
swarm 1s shrinking slowly over iteration as observed by the
dispersion index. It means that | coverage of searching
area of the swarm 1s decreasing slowly over the iteration.
Hence. the swarm could explore enough various regions of
problem space. However, at the end of the iteration process
the dispersion index 1s still far l‘rumm) or the swarm size 1s
not yet small enough. This imphed that there 1s enough fime
or iteration steps for exploration but not enough time for
exploitation.

In the GLNPSO version, the swarm 1s shrinking more
rapidly and approximately after the hatep of iteration the
dispersion index 1s nearly zero. At the first half of iteration.
while the swarm size is big enough, the swarm could focus
on explornng various regions i the problem space. Then, at
the second half of iteration, since the swarm 1s clustered ira
very small area, the swarm could be more concentrate to
locate the optimum more precisely. It 1s implied that there 1s
enough time for both exploration and exploitation processes
in this version. Hence, it could be concluded that there 15 a
good balance betweailexploration and exploitation. This
balance may lead to a better solution than the basic PSO
version.

TABLE I
COMPUTATIONAL EXPERIMENTS RESULT: COMPARISON OF FINAL OBIECTIVE FUNCTION VALUE
Function Parabola Grnewank Rosenbrock
Replication  Basic PSO  GLNPSO BPSO GLNPSO Basic PSO  GLNP
1 9.04E-05 3.02E-20 1.05E+01 7.39E-03 8.06E+01 242E+01
2 6.65E-05 2.01E-18 l+01 2.47E-03 2.33E+01 2.42E+01
3 1.02E-03 2.39E-15 2.05E+01 1.48E-02 1.39E+02 842E+01
4 4.54E-05 3.57E-22 1.01E+01 1.72E-02 8.27E+01 2.20E+01
5 3.26E-04 2, 13E-19 1.01E+01 9 .85E-03 1.01E+04 2.71E+01
Function Alpine Ackley Rastrigin
Replication  Basic PSO  GLNPSO Basic PSO GLNPSO Bl’SU GLNPSO
1 8.88E+00 2.69E-03 ].'.-'SE- 931E-01 6.28E+01 3.88E+01
2 4 45E+00 4.83E-04 2.18E-01 1.61E-10 945E+01 5.97E+01
3 2.18E-02 1.36E-03 1.25E-02 2.17E-07 591E+01 3.28E+01
4 8.91E+00 1.83E-04 931E-03 1.29E-09 4.08E+01 3.88E+01
5 2. 14E-02 2.16E-05 1.37E+01 1.14E-08 6.32E+01 5.27E+01

2007 IEEE Congress on Evolutionary Computation (CEC 2007)
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Fig. 1. Dispersion index on typical run of basic version PSO.
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Fig. 2. Dispersion index on typical run of GLNPSO.

The progress of velocity index over iteration for the
typical run of both PSO versions are presented in Figures 3
and 4. The pattern of velocity index in both versions are
quite similar with theirs dispersion index. While the velocity
index decreases slowly over iteration process for the basic
PSO version; it diminishes rapidly for the GLNPSO version
and the index becura\'er)-‘ small approximately after half of
iteration process. It means that in the basic PSO version the
swarm movement is decreasing slowly, but there 1s still

(24]
3268

significant movement at the end of iteration process. In other
words, there is not enough iteon steps for exploitation.
While in the GLNPSO version, particles in the swarm move
aggressively in exploring problem space and move very
slowly in exploiting the solution at the later iterations, Once
again, this velocity pattern emphasizes the statement that
balancing between exploitation and exploration may lead to
better solutions.
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Fig. 3. Velocity index on typical run of basic version PSO.
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Fig. 4. Velocity index on typical mun of GLNPSO.

IV. CONTROLLING EXPLORATION AND EXPLOITATIONUSING
DISPERSION OR VELOCITY INDEX

From the cdffhtational experiments in Section 3, it
reiterated that a good balance between exploration and
exploitation m a PSO algorithm will provide for better
solution quality, It is also shown that the dispersion and
velocity index could monitor when the shift from exploration
to exploitation processes possibly takes place. Hence, it is

2007 IEEE Congress on Evolutionary Computation (CEC 2007)
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possible to use these indices to g[rol the balance of
exploration and exploitation in a PSO algorithm. In this
section, some aspect of the usage of these indices is
discussed.

The first aspect is the computational effort of using these
indices. Including the indices in a PSO algonithm will
increase computational effort if the indices are measured in
every iteration. To reduce this effort, it could be measured
only every n iterations, say 50 or 100 iterations.
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Fig. 5. Dispersion and Velocity Index on Typical Run of Basic PSO and GLNPSO on Rosenbrock Function.

The second aspect is the similarity of patterns between
dispersion and velocity indices. The result in Section 3
shows that these indices have similar pattern. Figure 5 shows
the pattern more clearly for one typical run of solving
Rosenbrock function. Since the patterns are similar, it is
sufficient to use only one index in a PSO Algorithm. The
velocity index is preferable since it has simpler formula than
the dispersion index.

The third aspect is how to implement this index in a PSO
Algorithm to achieve a balance between exploration and
doitation processes. A simple idea is to ensure that the
exploration and exploitation processes are performed in the
same number of iterations. The exploration process is
assumed finished when the velocity index reached a very
small value, i.e. < & . After number of iterations in the
exploration process ( 7) is known, the exploitation process is
performed with exactly the same number of iteration )
Hence, the iteration process is stop when t=27.Inthis
way, the exploration xploitation processes are balanced
by means of the same number of iterations.

Table 2 shows the solutions of the benchmark problems
by GLNPSO with modified stopping rion using two
values of £ 1E-03 and 1E-05. It shows that the smaller the
value of &. the higher total the number of iteration
performed. However this increment tends to improve the
solution quality, For these benchmark functions: this
mcrement brings the objective function closer to zero.

The exploration and exploitation pattern of the swarm
may depend on different test problems or different PSO
algonthms or different parameter setting. Using the proposed
stopping criterion with the small enough value of £ will

allow enough iteration lmploitatiun process. Since 1t 1s
already proven that the balance between e ation and
exploitation may lead to a good solution, this stopping
criterion may overcome the problem of finding the best
parameter setting of algorithm for a certain problem.
However, the effectiveness of a certain ulgmlm or
parameter setting still could be comparable by the number of
iteration needed to reach a certain level of velocity index.

V. CONCLUSION

The proposed dispersion and velocity 1@dles could be
used as a tool to monitor the balance of exploration and
exploitation processes in PSO algorithm. After embedding
these indido a PSO algorithm, these indices could also be
used to control the balance between exploration and
exploitation processes in the algorithm. i.e. using velocity
index to indicat completeness of exploration process
and perform the exploration and exploitation processes in the
same number of iterations. A further study is required to
observe behavior of other PSO algorithms and also other
benchmark functions using the dispersion and velocity index
for the generalization of this result. The PSO with the
modified stopping criterion also need to be further explored.
One aspect that important to be studied 1s the
recommendation value of & .
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1]
121
13]
14]

15]

TABLE Il

TypiCAL RESULT OF THE GLNPSO wiTH MODIFIED STOP CRITERION
(A) OBIECTIVE FUNCTION VALUE

Function arabola Griewank Rosenbrock
Replication &= 1E-03 &= 1E-05 RN 1E-03 £=1E-05 &£=1E-03 &= 1E-05
1 4.77E-17 3.89E-21 1.23E-02 7.39E-03 2.53E+H01 231E+01
2 430E-16 9.81E-20 4.90E-02 7.39E-03 243E+01 243E+01
3 4.03E-15 1.70E-17 7.39E-03 1.23E-02 7.79E+01 2.29E+01
4 2.30E-16 7.61E-19 7.39E-03 7.39E-03 7.79E+01 2.09E+01
5 4.12E-16 4.57E-19 4.42E-02 4.93E-03 8.27E+01 1.88E+01
Funetion Alpine Ackley Rastrigin
Replication &= 1E-03 &= 1E-05 1E-03  £=1E-05 £=1E-03 &=1E-05
1 1.42E-01 2.69E-03 1.16E+00 392E-12 4.38E+01 3.88E+01
2 242E-05 4 83E-04 1.34E+00 1.7T0E-08 8.26E+01 5.97E+01
3 1.88E-03 1.36E-03 9.31E-01 8.81E-09 4.28E+01 3.28E+01
4 4.64E-06 1.83E-04 T.07E-08 3.29E-09 5.07E+01 3.88E+01
5 3.30E-04 2.16E-05 491E-08 4.76E-08 537E+01 527E+01
(B) TOTAL NUMBER OF ITERATION
Function arabola Griewank Rosenbrock
Replication £=1E-03 &= 1E-05 &= 1E-03 &= 1E-05 £ = 1E-03 £= 1E-05
1 700 900 700 900 800 1400
2 700 900 700 1000 700 1400
3 700 900 700 1000 800 1400
4 700 900 700 900 800 1400
5 700 1000 700 900 800 1400
Funetion Alpine Ackley Rastrigin
Replication  £=1E-03 £=1E-05 &=1E-03 &=1E-05 £=1E-03 &= 1E-05
1 1100 1100 700 1000 900 1000
2 800 1000 700 1000 1000 1100
3 800 1100 700 900 900 1200
4 800 1000 700 900 800 1100
5 800 1100 700 1000 900 1000
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