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Abstract: The Team Orienteering Problem with Time Windows (TOPTW) is a transportation 
problem case that have a set of vertices with a score, service time, and the time windows, start 
and final at a depot location. A number of paths are constructed to maximize the total collected 
score by the vertices which is visited. Each vertice can be visited only once and the visit can only 
start during the  time window of vertices. This paper proposes a Particle Swarm Optimization 
algorithm for solving the TOPTW, by defining a specific particle for representing the solution of 
TOPTW within the PSO algorithm and two alternatives, called PSO_TOPTW1 and 
PSO_TOPTW2, for translating the particle position to form the routes of the path. The 
performance of the proposed PSO algorithm is evaluated through some benchmark data problem 
available in the literature. The computational results show that the proposed PSO is able to 
produce sufficiently good TOPTW solutions that are comparable with corresponding solutions 
from other existing methods for solving the TOPTW.  
 

Keywords: Particle swarm optimization, team orienteering problem, time windows, 
metaheuristics, solution methodology. 
  

 

Introduction 

 
For many organizations, including industry, trans-
portation of vehicles to visit several locations for 
some specific purpose, i.e. delivery goods or service, 
can be considered as an important activity. During 
planning of this transportation activity, the organi-
zation needs to consider the visit time to each 
location, since each location to be visited usually has 
the earliest and the latest time of visits, or usually 
called the time windows. The vehicle can imme-
diately stop in the location to accomplish its purpose, 
if and only if it arrives in the location during its time 
window. Otherwise, it has to wait in the location if it 
has arrived before the earliest time of visit of the 
location. In other case, the transportation vehicle 
cannot stop in the location if it arrives after the latest 
time of visit, that makes this transportation activity 
useless. Another practical aspect that needs 
consideration during the transportation planning is 
the condition in which case the organization should 
select locations to be visited among candidate 
locations due to time limitation. This decision 
problem can be solved using a simple computational 
procedure, i.e. enumeration method. However, this 
procedure consumes a lot of time when there are 
hundreds or thousands of locations to be evaluated.  
 

This paper focuses on one case of transportation 

problem called the Team Orienteering Problem with 

Time Windows (TOPTW) by considering the conditions 

described above. 
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This problem has root in another transportation 

problem so called the Orienteering Problem (OP). In 

the OP, there are a number of locations that usually 

called vertices, in which each of vertices has a 

definite score. The travel time is given between a 

pair of vertices. The decision of the OP is to 

determine a path starting from the vertex 1, visits to 

some vertices, and ending in the vertex N, in which 

the travel time of the path does not exceed its 

maximum travel time (    ). The objective function 

of the OP is to maximize the total collected score of 

the visited vertices (Golden et al. [1]; Vansteenwegen 

et al. [2]). A variant of OP is called the Orienteering 

Problem with Time Windows (OPTW), in which each 

vertice in this problem has a time window. So, a visit 

to each vertice can only be done within the available 

time windows (Kantor and Rosenwein [3]; Righini 

and Salani [4]). One application of OPTW is a 

travelling to some tourist destinations in one region. 

Each destination (vertex) has its advantages (score) 

and specific open and close time to visit (time 

windows). Since the tour has limited time (maxi-

mum travel time), the tour is not able to visit all 

destinations, therefore the tour guide needs to select 

which destinations to be visited and the route of the 

tour so that the tourist will obtain maximum advan-

tages within the limited tour duration.  

 

The TOPTW problem setting is similar to OPTW 

except that the TOPTW determines a set of paths 

instead of single path (Vansteenwegen et al. [5]). An 

example of TOPTW application is the scheduling of 

some medical representative staffs for visiting 

medical doctors in certain areas to offer new 

products, i.e. new medical devices. Usually they are 

assigned in a limited time (    ) and each doctor has 
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specific time to be visited (the doctor’s time 

windows), so that their visiting schedule is very 

important to determine. Due to these limitations, 

they put a priority to the qualified and experienced 

doctors, i.e. doctor with a good ‘score’, so that the 

visiting sequence schedules of all staffs can cover the 

majority of good doctors in the area. 

 

Although the mathematical model of the TOPTW 

can be formulated, i.e. in the paper of Montemanni 

and Gambardella [6], the problem is hard in nature 

in which the optimal solution can be found in 

reasonable computational time for small size problem 

only. Therefore, some researchers in the past already 

proposed some heuristics or applied some meta-

heuristics for solving the TOPTW, such as iterated 

local search (Vansteenwegen et al. [5]), ant colony 

optimization (Montemanni and Gambardella [6]), 

hybridized evolutionary local search (Labadie et al. 

[7]), LP-based granular variable neighborhood 

search (Labadie et al. [8]), and simulated annealing 

(Lin and Yu [9]).  

 

In the literature, it is found that particle swarm 
optimization (PSO), an emerging population based 
searching metaheuristics, has been successfully 

applied for solving some transportation problems 
such as vehicle routing problems and team orienteer-
ing problem. Several variants of vehicle routing 
problems that had been tackled with PSO are 

vehicle routing problem with time windows (Ai and 
Kachitvichyanukul [10]; Xu et al. [11]; Govindan et 

al. [12]), vehicle routing problem with simultaneous 
pickup and delivery (Ai and Kachitvichyanukul [13]; 

Goksal et al. [14]), and capacitated vehicle routing 
problem (Ai and Kachitvichyanukul, [15]; Kuo et al. 
[16]; Tlili et al. [17]). Two groups of author recently 

published their works on the application of PSO for 
solving the team orienteering problem (Dang et al. 
[18]; Ai et al. [19]). Since the TOPTW is very close 
with these problems, especially the vehicle routing 

problem with time windows (VRPTW) and the team 
orienteering problem (TOP), therefore, there is a 
high possibility to use PSO to solve the TOPTW. 

This paper proposes on how the PSO can be applied 
to solve the TOPTW and tests the proposed 
algorithm over some benchmark problems of 
TOPTW. To the authors knowledge, no other 

literature in the past applied PSO for solving the 

TOPTW.  
 

The outline of this paper is as follows: In the first 

section the formal definition of TOPTW is presented. 

After that the PSO algorithm for TOPTW is pro-

posed. The following section describes the computa-

tional experiments for evaluating the performance of 

the proposed algorithm. Finally, the conclusion of 

this study is presented with some suggestions for 

further research in this research area. 

Methods 
 

TOPTW Problem Formulation 

 

As defined in some previous researches, i.e. Labadie 

et al. [8], the Team Orienteering Problem with Time 

Windows (TOPTW) can be formally defined as 

follow. Let us consider a set of visiting points 

  *       + plus a depot indexed by  . Let 

  (   ) be a directed graph where   is the set of 

vertices and   is the set of arcs. A positive integer 

score (profit)    is associated with each vertex, 

whereas     . Each vertex   has a time window 
,     - where    is the earliest time and    is the latest 

time allowed for starting service at vertex  , whereas 

   and    are the earliest leaving time and the latest 

arrival time of each path to the depot, respectively. 

The maximum total travel time allowed to complete 

a tour is defined as     . As consequences, it is 

assumed that      and        . Let     be the 

nonnegative travel time associated to each arc 
(   )   . It is assumed that the service time at 

vertex  is already included in the    . The problem 

looks for set of   paths with the following conditions: 

(1) each path starts and ends at the depot, 

(2) each vertex is visited at the most once by any 

path, 

(3) the total duration of any path does not exceed 

    , 
(4) the visited vertices time windows are satisfied, 

and 

(5) the total profit of visited vertices is maximized. 

 
Proposed Particle Swarm Optimization for 

TOPTW 

 

Particle Swarm Optimization (PSO) is a population-

based stochastic optimization technique developed 

by Kennedy and Eberhart [20], inspired by the 

behavior of swarm organism such as bird flock, fish 

school, and bee swarm. PSO mimics the physical 

movement of individuals in the swarm to conduct 

the search mechanism of problem solution by two 

important parameters: position and velocity. A par-

ticle position, which is usually placed in multi-

dimensional space, represents an alternative of pro-

blem solution. Velocity of particle is the driver of 

particle movement from one position to another. By 

moving to other position, another alternative of 

problem solution is evaluated. Therefore, the particle 

velocity expresses the searching capability of the 

problem solution. There are two important behaviors 

of the swarm organism that are formulated in the 

PSO, namely the cognitive behavior and the social 

behavior. The cognitive behavior is defined as the 

tendency of particle moving towards the best 

position ever visited by the particle, which is usually 

called personal best or pbest. While the social 
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behavior is defined as the tendency of particle 

moving towards the best position ever visited by all 

particles in the swarm, which is usually called per-

sonal best or pbest. The simplest version of particle 

movement can be stated as following equations: 
   (   )   (   )   ( )     ,    

   ( )-     [       ( )]       (1) 

   (   )     ( )     (   )           (2) 

 
where    is iteration index,  is particle index,  is 

dimension index,  is uniform random number in 

interval ,   -,  ( ) is inertia weight in the    

iteration,    ( ) is velocity of     particle at the     

dimension in the    iteration,    ( ) is position of     

particle at the     dimension in the    iteration, 

   is personal best position (pbest) of     particle at 

the     dimension,    is global best position (gbest) 

at the     dimension,   is personal best acceleration 

constant, and    is global best acceleration constant. 

Equations 1 and 2 imply that  the movement of 

particle in certain period of time is driven by three 

different directions that are: 1) follow its own way, 2) 

go towards its personal best position, and 3) go 

towards its global best position.  

 

In general, the algorithm of PSO can be formally 

defined as follow: 

1. initialization of particles, their position and initial 

velocity, 

2. decode particles into problem solutions, 

3. evaluate the quality of particles, based on their 

corresponding objective functions, 

4. update pbest value, 

5. update gbest value, 

6. update velocity and position for each particle, i.e. 

based equations 1 and 2, 

7. if the stopping criterion, i.e. maximum number of 

iteration, is reached, stop. Otherwise return to 

step 2. 

 

Following this algorithm, the best problem solution 

is represented by the global best at the end of 

iteration. The details of PSO can be found in several 

textbooks, among others are Kennedy and Eberhart 

[20] and Clerc [21]. It is noted that this algorithm 

can be applied on various types of problems by 

defining how the particle represents the problem, 

which is usually called the solution representation, 

and how the particle can be translated into problem 

solution, which is usually called the decoding method. 

Therefore for applying PSO for TOPTW, we need to 

define the solution representation and the decoding 

method in the following subsections. 

 

Solution Representation  

 

Based on Ai et al. [19], the solution representation of 

TOPTW with   vertices is particle with   dimen-

sions, in which each particle’s dimension corresponds 

to each vertex, i.e. dimension 1 represents vertex 1, 

dimension 2 represents vertex 2, and so on. Particle 

position is assigned to be a real number and repre-

sents a priority of vertex on the decoding method. 

The smaller the position of particle, the higher the 

priority of the corresponding vertex. Later on the 

decoding steps, each vertex is evaluated to be 

inserted into the solution paths based on its priority. 

 

Decoding Methods 

 

The decoding method starts with the conversion of 

particle position into priority of vertex. Then, the 

vertex is evaluated for possibility to be inserted into 

the paths, one by one according to the priority. The 

solution of TOPTW is created when all the vertices 

already evaluated. We are proposing two alterna-

tives of evaluation procedure. The first alternative is 

a simpler procedure, in which a vertex is evaluated 

to be inserted in the last sequence of each path, 

starting from the first path. If the insertion complies 

with the vertex’s time window and path duration 

constraint, then the vertex is placed on the sequence. 

Otherwise, the vertex is evaluated to be inserted to 

the subsequent path. If the vertex cannot be inserted 

to any available paths, it implies that the vertex is 

decided not to be visited. 

 

In the second alternative, a vertex is evaluated to be 

inserted into all possible sequences in all existing 

paths. Finally, the vertex is being inserted into a 

sequence in certain path that satisfies all time 

windows and total duration constraints and provides 

the smallest additional time. Figures 2 and 3 

illustrate the first and second evaluation procedure, 

respectively. Later on PSO algorithm for TOPTW 

with the first and second alternative of evaluation 

procedures are called PSO_TOPTW1 and PSO_ 

TOPTW2, respectively. 

 

 
Figure 1. Solution representation of TOPTW of 10 vertices 

and its conversion to priority of vertex 

 

 

Figure 2. The first evaluation procedure 

dimension 1 2 3 4 5 6 7 8 9 10 

position 0.52 2.69 1.03 0.15 1.94 3.17 1.29 3.67 0.76 2.38 

           

sorted position 0.15 0.52 0.76 1.03 1.29 1.94 2.38 2.69 3.17 3.67 

vertex no. 4 1 9 3 7 5 10 2 6 8 

priority 1 2 3 4 5 6 7 8 9 10 

 

priority 1 2 3 4 5 6 7 8 9 10 

vertex no. 4 1 9 3 7 5 10 2 6 8 

           
           

Path 1 0 4 1 0       

           
           

Path 2 0 9 0        
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Table 1. Starting service time of the illustrated path 1 

Vertex 0 4 1 3 0 

Starting service time 0 15 20 37 45 

Earliest service time 0 0 15 0 0 

Latest service time 100 20 45 30 100 

 

 
Figure 3. The second evaluation procedure  

 

Table 2. Feasibility checking and additional time evalua-

tion 

Path Feasibility Additional Time 

0 – 4 – 3 – 1 – 0 Yes 15 

0 – 4 – 1 – 3 – 0 No – 

0 – 9 – 3 – 0 Yes 20 

 

It is illustrated in Figure 2 for the first evaluation 

procedure that at this step vertex number 3 is 

evaluated to be inserted into the existing paths, in 

which currently the first path is 0 – 4 – 1 – 0 and the 

second path is 0 – 9 – 0. The evaluation starts from 

the first path, in which the vertex number 3 is to be 

inserted in the last sequence of this path, i.e. the 

path become 0 – 4 – 1 – 3 – 0. The travel time 

between vertex 1 and 3 is then considered to obtain 

the actual starting service time at vertex 3 and total 

travel time. Since the actual starting service time of 

the first path is presented at Table 1, the emerging 

path is not feasible as it violates the time windows 

constraint of vertex 3. Therefore, the first path 

remains the same and the evaluation of second path, 

i.e. 0 – 9 – 3 – 0 is needed. If this evaluation satisfies 

the time window and path duration constraint, then 

the path 2 is updated. Otherwise, vertex number 3 is 

decided not to be visited. 

 

Figure 3 illustrates the second evaluation procedure 

for the same step as the first one. At first, three 

evaluations have to be evaluated, that are 0 – 4 – 3 – 

1 – 0, 0 – 4 – 1 – 3 – 0, and 0 – 9 – 3 – 0, to identify all 

possible feasible paths. Then, among feasible paths 

the additional time due to adding vertex number 3 is 

evaluated that illustrated in Table 2. In this case, 

finally the first path is updated into 0 – 4 – 3 – 1 – 0, 

since this alternative is feasible and has the smallest 

additional time.  
 

Initialization 
 

In the initialization step of PSO algorithm, only one 

particle is initialized by using special method desc-

ribed below, while the others are initialized with 

random position. The initial position of special parti-

cle, i.e. the first particle, is obtained from the vertex 

score using following equation: 

   ( )       (         ) (    )⁄        (3) 
 

where          are the prescribed value of mini-

mum and maximum of particle’s position, and is the 

score of vertex  . By using this equation, vertex with 

higher score has the lower value of corresponding 

particle position value. As the consequence, the 

higher score vertex has a higher priority. The 

remaining particles are initialized with random 

positions by generating the position between the 

value of     and     . 
 

Results and Discussions 

 
Computational Experiments 

 

Benchmark Data Instances 
 

To conduct computational experiments, the existing 

TOPTW test instances data from previous research-

es, i.e. Righini and Salani [4], Montemanni and 

Gambardella [6], and Vansteenwegen et al. [2], are 

taken. A test instance describes a certain charac-

teristic of TOPTW such as the number of vertices, 

the number of desired paths, maximum travel time 

(    ), and attributes of each vertex (coordinates, 

score, service time, time windows). These TOPTW 

instances are based on the Solomon [22] data 

instances of Vehicle Routing Problem with Time 

Windows, consisting of 100 vertices to be visited, and 

the Cordeau et al. [23] data instances of Multi Depot 

Vehicle Routing Problem, that ranges from 48 to 288 

vertices to be visited. Righini and Salani [4] 

converted 48 Solomon’s data instances into TOPTW 

instances called c10*, r10*, rc10* and 10 Cordeau’s 

data instances into TOPTW instances called pr01–

pr10. Montemanni and Gambardella [6] creates 37 

TOPTW instances, 27 instances are converted from 

Solomon’s data instances, which are called c20*, 

r20*, and rc20*, and the other instances are 

converted from Cordeau’s instances, which are called 

pr11–pr20. Vansteenwegen et al. [2] also uses 

Solomon’s and Cordeau’s data instances and changes 

the number of paths in the problem. They also 

consider the optimal number of paths, in which the 

total collected score is the best among the other 

number of paths. 

 

For comparison purpose, since the optimal solution 

for any TOPTW instances is not available, the result 

of the proposed method will be compared with the 

best known solution of each instances. In this paper, 

the best known solution is updated based on the 

result of Labadie [7] and Lin and Yu [9]. 

priority 1 2 3 4 5 6 7 8 9 10 

vertex no. 4 1 9 3 7 5 10 2 6 8 

           
           

Path 1 0 4 1 0       

           
           

Path 2 0 9 0        
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Experiment Setting 

 

The proposed PSO algorithm for TOPTW, including 

the decoding methods and initialization procedure, 

are implemented using C# language and supported 

by PSO computational library called ET-Lib 

(Nguyen et al. [24]). It is noted that the ET-Lib uses 

a PSO variant called GLNPSO that has three 

different social behavior terms called global best, 

local best, and nearest neighbor best with its 

corresponding acceleration constant (  ,   , and   ). 

The main parameters of GLNPSO are taken from its 

user manual (Nguyen et al. [24]), that are    , 

    ,     , and     . All the test instances are 

run on a computer with an Intel Pentium dual core 

2.70 GHz CPU and 2 GB RAM. For each instance, 

10 replications of the PSO algorithm runs are 

conducted. 

 

Parameters Optimization  

 

It is well known in the PSO literature that its 

parameters have an influence in the solution quality, 

so that these parameters need to be optimized. In 

this experiment, an optimization process is con-

ducted to select the number of particles and the 

number of iterations in such a way that the algo-

rithm is able to provide minimum average deviation 

from the best known solution at minimum compu-

tational time. Test instances c101 with 4 paths is 

used for the optimization process to evaluate the 

combination of 30, 50, 100, and 200 particles with 

500, 1000, and 2000 iterations. The average devia-

tion is calculated based on the deviation of each 

iterations, in which the deviation is defined as the 

difference between the total score of best known 

solution and the total score of PSO solution. 

 

Empirically, the larger number of particles and 

number of iterations the better solution can be 

obtained by the algorithm. However, it is followed by 

the longer computational times. This experiment 

also confirms this statement, in which the best result 

is obtained from the combination of 200 particles and 

2000 iterations with the longest computational time. 

For computational efficiency, we will determine 

combination of parameters that can provide result 

that is statistically similar with the result of com-

bining 200 particles and 2000 iterations but with 

smallest computational time. It is found that combi-

nation of 100 particles and 1000 iterations is the 

preferred one. In addition, the result from combina-

tion of 30 particles and 1000 iterations only differs by 

0.6% from the best result but significantly uses 

smaller computational time. Therefore, considering 

the efficiency of the computational time, both com-

binations (30 particles and 1000 iterations, 100 

particles and 1000 iterations) are used for all test 

instances and both evaluation procedures inside the 

decoding method.  

 

Computational Results 

 

The PSO_TOPTW1 and PSO_TOPTW2 results are 

compared to the results from existing algorithms for 

TOPTW, which are Simulated Annealing (SSA and 

FSA) of Lin and Yu [9], Iterated Local Search (ILS)of 

Vansteenwegen et al. [2], LP-based GVNS (VNS) of 

Labadie et al. [8], Ant Colony System (ACO) of 

Montemanni and Gambardella [6], and GRASP-ELS 

of Labadie et al. [7]. In particular the results of our 

proposed algorithm are categorized into 3 parts, 

namely PSO_TOPTW1_30_1000, PSO_TOPTW2 

_30_1000, and PSO_TOPT W2_100_ 1000. The two 

numbers after the algorithm name indicate number 

of particles and number of iterations, respectively.  

 

Table 3, 4, and 5 shows the results of the TOPTW1_ 

30_1000, TOPTW2_30_1000, and TOPTW2_100_ 

1000. Results are grouped into the each instance 

data set c10*, r10*, c20*, r20*, rc20*, pr01–10, pr11–

20. Columns I and II shows the number of paths and 

data sets used. Column III–V summarize the 

solution of respective group, in terms of the average 

(Avg.), standard deviation (S.D.), and minimum 

(Min.) percentage deviation of 10 PSO replications. 

The percentage deviation (dev) is calculated using 

formula 4, where fPSO is the total profit of PSO 

solution and fBKS is the total profit of the best known 

solution from existing algorithms for TOPTW. 

Column VI–VII show the average (Avg.) and 

standard deviation (S.D.) of computational time. 

    
         

    
         (4) 

 

It is shown from Table 3 and 4 that the average 

percentage deviation of PSO_TOPTW1_30_1000 is 

bigger than PSO_TOPTW2_30_1000, while the 

computational time of PSO_TOPTW1_30_1000 is 

smaller than PSO_TOPTW2_30_1000. These results 

imply that the decoding process in PSO_TOPTW2, 

which is more complex than PSO_TOPTW1, can 

produce better solutions. Table 5 shows that in-

creasing number of particles is able to yield smaller 

deviation but requires more computational effort, 

since the results from PSO_TOPTW2_100_1000 is 

better than the results from PSO_TOPTW2_ 

30_1000 and the computational time of PSO_TOPT 

W2_100_1000 is bigger than the computational time 

of PSO_TOPTW2_30_1000.  

 

In addition to the result presented in Tables 3–5, the 

TOPTW1_30_1000 is able to produce 11 solution of 

instances, among 304 instances used in the compu-

tational tests, reaching its corresponding best known 
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solution. The TOPTW2_30_1000 is able to produce 

74 solution of instances reaching its corresponding 

best known solution. The TOPTW2_100_1000 is able 

to produce 85 solution of instances reaching its 

corresponding best known solution. Combined all 

approaches together, the PSO algorithms in this 

research are able to produce 88 solution of instances 

that are similar with its corresponding best known 

solutions. Furthermore, the TOPTW2_100_1000 is 

able to provide 1 solution of instance that is outper-

form its corresponding best known solution. 

 
Table 3. Summarize of PSO_TOPTW1_30_1000 results 

No. of Inst 

Group 

%Dev  CPU Time 

Paths Avg. S.D. Min  Avg. S.D. 

 c10* 4.04% 2.13% 1.70%  10.81 0.21 

 c20* 15.01% 3.01% 10.37%  13.58 0.28 

 r10* 11.64% 4.52% 5.99%  11.44 0.27 

1 r20* 26.99% 2.99% 22.85%  14.28 0.46 

 rc10* 14.32% 5.69% 6.04%  12.41 1.46 

 rc20* 31.24% 4.38% 25.24%  13.43 0.85 

 pr01-10 31.72% 5.12% 23.53%  91.60 9.91 

 pr11-20 31.88% 4.44% 25.10%  87.99 9.42 

 c10* 6.91% 2.21% 3.73%  13.74 0.35 

 c20* 17.49% 2.36% 13.98%  16.78 0.41 

 r10* 18.20% 3.77% 12.36%  13.82 0.44 

2 r20* 23.97% 2.43% 20.18%  17.59 0.39 

 rc10* 16.35% 3.88% 10.33%  16.68 3.08 

 rc20* 31.57% 2.57% 28.09%  16.90 0.45 

 pr01-10 32.81% 3.93% 27.36%  23.06 0.50 

 pr11-20 36.63% 3.19% 32.13%  21.70 0.60 

 c10* 9.13% 2.10% 5.79%  10.00 0.06 

 c20* 17.08% 2.06% 14.16%  11.13 0.08 

 r10* 21.73% 3.23% 16.40%  9.88 0.26 

3 r20* 11.46% 2.01% 8.54%  22.89 35.96 

 rc10* 18.17% 4.26% 11.50%  9.51 0.51 

 rc20* 22.03% 2.36% 18.29%  11.11 0.17 

 pr01-10 32.85% 3.38% 27.84%  27.68 0.43 

 pr11-20 37.02% 2.37% 33.35%  26.71 0.35 

 c10* 9.98% 1.61% 7.64%  13.12 0.28 

 c20* 7.24% 1.84% 4.63%  12.84 0.28 

 r10* 22.67% 3.07% 17.68%  22.01 32.96 

4 r20* 3.51% 1.11% 1.93%  13.02 0.20 

 rc10* 21.68% 3.45% 16.00%  11.30 0.48 

 rc20* 11.26% 1.88% 8.77%  12.90 0.18 

 pr01-10 31.24% 2.94% 26.29%  41.62 1.02 

 pr11-20 34.55% 2.41% 30.75%  37.96 0.50 

 c10* 7.45% 0.90% 6.02%  28.88 0.29 

 c20* 7.24% 1.84% 4.63%  12.84 0.28 

 r10* 13.09% 1.62% 10.55%  32.08 0.45 

optimal r20* 16.21% 2.19% 13.19%  25.38 36.11 

 rc10* 16.40% 1.88% 13.22%  31.37 0.37 

 rc20* 12.79% 1.87% 10.03%  12.25 0.30 

 pr01-10 17.14% 1.69% 14.68%  191.12 2.38 

 
 

 

 

Table 4. Summarize of PSO_TOPTW2_30_1000 results 

No. of Inst 

Group 

%Dev  CPU Time 

Paths Avg. S.D. Min  Avg. S.D. 

 c10* 0.73% 0.44% 0.26%  25.01 0.58 

 c20* 2.13% 0.92% 0.92%  101.70 2.48 

 r10* 4.04% 2.24% 0.98%  23.02 1.46 

1 r20* 7.88% 1.75% 5.21%  154.24 8.69 

 rc10* 3.92% 2.96% 0.62%  19.48 1.11 

 rc20* 9.45% 2.57% 5.79%  118.24 8.40 

 pr01-10 13.99% 3.30% 9.00%  91.60 9.91 

 pr11-20 19.91% 3.64% 14.45%  87.99 9.42 

 c10* 1.50% 1.06% 0.30%  33.90 1.01 

 c20* 3.85% 0.78% 2.62%  137.30 37.45 

 r10* 8.01% 2.92% 3.09%  28.85 1.71 

2 r20* 6.31% 1.31% 4.17%  154.66 6.08 

 rc10* 6.88% 2.65% 3.35%  26.14 1.21 

 rc20* 11.47% 2.44% 8.36%  125.89 7.70 

 pr01-10 18.09% 3.16% 12.50%  119.67 9.50 

 pr11-20 23.87% 3.26% 18.18%  103.41 9.28 

 c10* 2.86% 1.07% 1.37%  75.73 97.39 

 c20* 4.63% 0.83% 3.31%  159.09 38.36 

 r10* 9.86% 2.09% 6.40%  36.88 1.58 

3 r20* 0.68% 0.22% 0.43%  149.51 3.42 

 rc10* 8.50% 3.04% 4.59%  33.35 1.54 

 rc20* 4.04% 0.96% 2.40%  130.58 4.98 

 pr01-10 19.44% 2.83% 15.08%  142.87 9.53 

 pr11-20 23.32% 3.05% 18.55%  135.62 10.68 

 c10* 3.86% 0.93% 2.49%  52.69 1.05 

 c20* 0.00% 0.00% 0.00%  229.38 0.73 

 r10* 11.38% 2.41% 7.61%  221.68 463.79 

4 r20* 0.01% 0.01% 0.00%  376.64 396.65 

 rc10* 10.85% 2.59% 7.36%  70.00 3.22 

 rc20* 0.21% 0.13% 0.00%  220.14 3.84 

 pr01-10 18.74% 2.81% 14.76%  169.99 12.37 

 pr11-20 21.45% 2.33% 16.97%  161.13 8.64 

 c10* 3.27% 0.56% 2.27%  149.93 16.95 

 c20* 0.00% 0.00% 0.00%  229.38 0.73 

 r10* 5.76% 0.89% 4.38%  98.25 1.93 

optimal r20* 2.11% 0.47% 1.45%  278.42 373.95 

 rc10* 7.17% 1.40% 5.15%  174.11 11.01 

 rc20* 1.18% 0.36% 0.57%  208.55 3.70 

 pr01-10 7.40% 1.05% 5.65%  456.72 3.83 

 

Conclusion 
 

This paper tries to solve the Team Orienteering 
Problem With Time Windows (TOPTW) by using 
Particle Swarm Optimization (PSO) algorithm. A 
specific particle is defined for representing the 
solution of TOPTW within the PSO algorithm, in 
which the particle can be translated into priority of 
vertices and later on the priority of vertices can be 
utilized to form the routes of the path. In this paper, 
there are two alternatives of method to form routes, 
which are called PSO_TOPTW1 and PSO_TOPTW2. 
PSO_TOPTW1 test the priority of each vertices in 
the last sequence of the route.  
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Table 5. Summarize of PSO_TOPTW2_100_1000 results 

No. of Inst %Dev  CPU Time 

Paths Group Avg. S.D. Min  Avg. S.D. 

 c10* 0.59% 0.22% 0.26%  109.40 1.91 

 c20* 1.62% 0.62% 0.92%  363.23 8.09 

 r10* 2.46% 1.64% 0.75%  116.27 4.57 

1 r20* 5.39% 1.63% 2.71%  665.94 32.22 

 rc10* 1.91% 1.76% 0.46%  155.64 11.51 

 rc20* 7.25% 2.23% 4.16%  601.41 42.47 

 pr01-10 13.09% 2.84% 8.60%  437.84 44.30 

 pr11-20 15.50% 3.39% 9.96%  614.59 65.87 

 c10* 0.90% 0.65% 0.15%  263.52 5.78 

 c20* 3.32% 0.58% 2.37%  1125.31 2078.69 

 r10* 5.19% 1.67% 2.79%  130.25 63.64 

2 r20* 4.79% 1.06% 3.17%  620.07 242.10 

 rc10* 4.18% 2.03% 1.90%  272.56 542.43 

 rc20* 8.80% 1.64% 6.32%  532.69 248.19 

 pr01-10 14.56% 3.10% 9.34%  460.87 119.62 

 pr11-20 19.75% 3.00% 15.15%  432.63 34.89 

 c10* 2.20% 0.87% 1.15%  334.40 5.95 

 c20* 4.19% 0.76% 3.18%  1184.06 1989.05 

 r10* 7.70% 1.99% 4.98%  168.31 90.05 

3 r20* 0.41% 0.17% 0.24%  929.30 1280.01 

 rc10* 6.37% 2.32% 3.50%  304.36 552.52 

 rc20* 2.96% 0.91% 1.62%  551.56 251.51 

 pr01-10 18.93% 6.44% 12.03%  676.26 161.03 

 pr11-20 20.40% 2.96% 15.97%  647.08 46.35 

 c10* 3.07% 0.89% 1.61%  431.75 8.85 

 c20* 0.00% 0.00% 0.00%  1278.76 2417.69 

 r10* 9.42% 2.10% 6.46%  243.30 249.63 

4 r20* 0.00% 0.00% 0.00%  525.16 2.97 

 rc10* 8.33% 2.43% 5.09%  336.43 511.76 

 rc20* 0.10% 0.09% 0.00%  504.88 174.41 

 pr01-10 16.28% 2.19% 12.60%  1122.58 499.17 

 pr11-20 19.14% 2.11% 16.21%  1709.08 2251.29 

 c10* 2.80% 0.52% 2.09%  378.33 5.91 

 c20* 0.00% 0.00% 0.00%  1278.76 2417.69 

 r10* 4.63% 0.78% 3.60%  469.01 23.47 

optimal r20* 1.73% 0.38% 1.26%  344.49 12.78 

 rc10* 6.52% 1.45% 4.76%  338.90 5.99 

 rc20* 1.08% 0.34% 0.57%  363.56 4.74 

 pr01-10 6.44% 1.20% 4.52%  1818.35 143.44 

 

Vertices will be placed on route if satisfy the time 

window and duration less than T_max, conversely, 

vertices tested on the next path. PSO_TOPTW2 is 

more complex. The priority of vertices is tested in 

every sequences of the route, starting from the last 

sequence. Vertices will be placed on the route if they 

satisfy time window and have the best time duration, 

conversely, vertices tested on the next path. 
 

The result of program is divided into three parts, 

TOPTW1_30_1000, TOPTW2_30_1000, TOPTW2_ 

100_1000, which distinguishes the alternative 

decoding method, the number of particles, and the 

number of iterations that used.  TOPTW1_30_1000 

has a biggest average percentage deviation smallest 

computational time, otherwise, TOPTW2_100_1000 

has a smallest average percentage deviation and the 

biggest computational time. Overall, this research 

can produce 88 existing best known solutions and 

improve 1 best known solution. Comparison with 

other optimization method shows that the proposed 

method is good enough. 

 

The authors believe that it is still possible to improve 

the performance of the proposed method. However, 

some further research is required, such as in the 

area of parameter optimization, decoding alterna-

tives, hybridization of method, and computer pro-

gramming implementation. Selection of PSO para-

meter may improve the performance of the 

algorithm. There are also room for improving 

the decoding methods. A modification in algo-

rithm, like multi-swarm methods, or a combination 

with other optimization algorithm, like local search, 

can be conducted to get better result. The impro-

vement should address also the issue of shortening 

the computational times of the proposed method via 

good computer programming implementation. Fu-

ture research direction also open for applying the 

PSO for other orienteering problem variants, such as 

capacitated team orienteering problem. 
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