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Ehstract

This paper reviews the literature on the mechanisms for adapting parameters of particle swarm optimization (PSO) algorithm.
The discussion focused on the mechanisms for adaptively setting such parameters as inertia weight, acceleration constants,
number of particles and number of iterations. Two mechanisms are proposed and tested. The velocity index pattern is
proposed for adapting the inertia weight while the acceleration constants are adapted via the use of relative gaps between
various learning terms and the best objective function values. The mechanisms are demonstrated by modifying GLNPSO for a
specific optimization problem, namely, the vehicle routing problem. The prehrmry experiment indicates that the addition of the
proposed adaptive mechanisms can provide good algorithm performance in terms of solution quality with a slightly slower
computational time.

Keywords: Particle swarm optimization, metaheuristic, algorithm’s parameter, adaptive PSO, VRP.

1. Introduction

As an emerging evolutionary computing method [1, 2, 3], Particle swarm optimization (PSO) has recently been successfully
applied to solve many combinatorial optimization problems including job shop scheduling problem [4] and vehicle routing
problem [5, 6]. Similar to other evolutionary computing methods, PSO has several parameters thatne required to be properly
set in order to yield good performance. Finding the best set of PS(@rameters, which include inertia weight, acceleration
constants, number of particles and number of iterations, for a specific optimization problem is not an easy task, since the same
parameters set may yield different performance on different problem cases. Usually, many experiments are required over
many problem cases to determine proper values of parametenmowever, there is no guarantee that the selected parameter
set will always yield the best algorithm performance, especially when the algorithm is applied to solve a new problem case.

A novel idea to replace thm)eri ments to find the best parameter set is through an adaptive mechanism that can adapt PSO
parameters autonomously whenever it is applied to solve a problem instance. It is noted that the concept of adaptive algorithm
is also present in the wider scope of evolutionary computing method, i.e. in the genetic algorithm [7, 8]. Also, some earlier
works in PSO, which will be further reviewed and discussed in Section 3 of this paper, have dealt with the issue of how to
adaptively set its parameters.

The main objective of this paper is to give a perspective on adaptive PSO algorithms. To start with, the GLNPSO, a PSO
Algorithm with multiple social learning structures [9], is briefly reviewed in Section 2, altogether with the main role of its
parameters. Section 3 reviews the existing adaptive mechanism in the literature and presents other altemative mechanisnﬁ
Some selected mechanisms are finally embedded into the GLNPSO Algorithm and applied to a specific optimization problem in
Section 4. Finally, Section 5 summarizes the material presented in this paper and recommends further works.

2. GLNPSO Algorithm a

21
The GLNPSQ Algorithm is a PSO Algorithm with multiple social learning structures. Instead of using only the global best, it also
incorporates the local best and near-neighbor best as additional social learning factors. Therefore, in the velocity updating
equation, it requires also three different acceleration constants related to each social learning factor. The detail of the GLNPSO
Algorithm is presented below.

Notation:
T © lterationindex, 7=1...T
I . Particleindex, /=1...L
h . Dimension index, h=1...H
u - Uniform random number in the interval [O, 1]
w :  Inertia weight
. Velocity of the particle [/ atthe dimension #
Dy, (r} .

in the iteration 7
8,(7) : Position of the particle / atthe dimension h
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the iteration 7
Personal best position (pbest) of the particle /

Vi at the dimension h

” ~ Global best position (gbest) at the dimension
zh . h

W}' Local best position (Ibest) of the particle [ at
T

the dimension #
w ~ Near neighbor best position (nbest) of the
particle [ atthe dimension A

c, . Personal best position acceleration constant
c, :  Global best position acceleration constant
[ : Local best position acceleration constant
P . Near neighbor best position acceleration

" * constant
[ : Maximum position value
gmin : Minimum position value
o, : er of position of the particle /,

[9.'1 Oy - gw]

Vector of velocity of the particle [,

Q
! [“’n @y " f”w]
¥ Vector of personal best position of particle [,
! [*P‘n Wi ':"m]
Veur of global best position,
W

& : |:ii'r/g1 U/gl o ii'r/gH ]
, Vector of local best position of particle [,
e :

Problemneciﬁc solution corresponding to the

&, particle [
Z(®,) : Fitnessvalue of ©,
FDR . Fitness-distance-ratio

GLNPSO Algorithm (For minimization):
1. Initialize a swarm with L particles; generate the particle [ with rancﬂn position @, in the range [9"‘*"_.6"‘“] , velocity

Q, =0 and personal best ¥, =®, for /=1...L . Setiteration z=1.

ﬁ For /=1...L, decode ©,(7) to a problem specific solution R,.

3. For /=1...L, compute the performance measurement of R,, and set this as the fitness value of ©,, represented by
Z(®,).

4. Update pbest: For /=1...L ,update ¥, =0, ,if Z(®)<Z(¥,).
Update gbest: For /=1...L ,update ¥ =Y, if Z('-P;) < Z(“}’g).
Update Ibest: For /=1...L , among all pbest from K neighbors of the particle /, set the personal best which obtains
the least fitness value to be 'P:' .

7. Generate nbest. For /=1...L, and h=1...H , set w,,‘; =y, that maximizing fitness-distance-ratio ( F'DR ) for

o=1...H Where FDR is defined as

S Z(e)-2(v,)
|9m_'f/nn|

8. Update the \m:ity and the position of each particle [:
Dy, [r + l] = cp“('d"’m =&y (”)"’%“(Wgﬁ =6, (r)]

+C;”(W;:; -0, [T])"'C,;”(WJ:; _&'ﬁ)) 2

+way, (1)

which =0 (1)
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8, (+1) =0, (t)+m, (r +1) 3)
If By (z+1)>6™ then
O (7 41) = 0™ )
(o] ay, (7+1)=0 (5)
If Gy (z+1)<&™" then
O (7 +1)=6"" ®)
@y (7+1)=0 (7)

9. If the stopping criterion is met, i.e. 7=1", stop. Otherwise, 7=17+1 and return to step 2.
It can be seen from the algorithm above that there aremome parameters that are required by GLNPSO, including inertia
weight ( w ), acceleration constants (r.‘p, €0 €, C,) N r of particles (L) and number of iterations (1" ). The inertia

weight and acceleration constants play very important role in the velocity updating equation (Eq. 2). Since the velocity drives
the movement of cles from one position to the next (Eq. 3), it implies that the movement of the swarm of particles as a
searching agent in PSO is affected by these parameters. Movement of the swarm is closely linked to the algorithm performa
since each distinct position may correspond to different tion and the final solution obtained by PSO must be one of the
positions that have been visited by the swarm. Therefore, the number of particles and the number of iterations are also related
to the algorithm performme, since these parameters partially determine the number of positions visited by the swarm.
However, simply increase the number of particles and number of iterations does not always improve the algorithm performance,
since the velocity updating mechanism also depends on the cognitive learning (pbest) and social learning (gbest, Ibest, and
nbest). In addition, the number of particles also has influence on the social information values and theirs updating behavior.

3. Parameters Adaptation

3.1 Inertia Weight

Among PSO parameters, inertia v\mwt has gained enormous attention since the early development of PSO. The proper
setting of iner‘tieight is believed to have significant effect on the performance of PSO algorithm. Instead of using constant
inertia weight, A linear decreasing function has been proposed for setting the inertia weight [10]. For the case of GLNPSO
algorithm described mle, this concept is implemented by using following expression as the inertia weight ( w ) in Eq. 2:

w(r)=11'[T)+::;:[w[l]—w(?"}:| (8)

where
w(r) : Inertia weightin iteration 7

Similar with this approach, a nonlineﬂiecreasing function was proposed for setting inertia weight [11]. With these decreasing
inertia weight settings, it is expected that the particles are able to explore the problem space more ly at the beginning of
iteration steps and to exploit promising solution in the end of iteration steps. As seen in Eq. 2, inertia weight is the
multiplication factor of the previous velocity. Therefore, applying large inertia weight at the beginning causes the particles to
maintain their previous velocity and makes the particles move more freely. When this inertia weight is step by step reduced at
the latter iteration steps, the particles are influent less by previous velocity and their movements are influent more by theirs
cognitive and social learning information.

Other approaches that have been proposed attempts to adjust the inertia weight adaptively based on the particular condition of
the swarm. An adaptive PSO was proposed [12] that alternating its inertia weight between a high value and a low value and
vice versa in order to control the swarm’s velocity. For this purpose, the velocity index of the swarm ( @ ) is defined by the
expression given in Eg. 9. The index can be continuously observed from iteration to iteration:

L i
ZZ|¢H;| (©)

&= i=1_h=1

L-H
Then, the swarm velocity index is compared with the target velocity ( @ * ), which is a linear decreasing function:
m*z[l—i]m"“ (10)
2 T

Whenever the velocity index i:eigger than the target velocity, the low value of inertia weight is selected. Reversely, the inertia
weight is set at the high value when the velocity index is smaller than the target velocity.

Another study of the dynamic behavior of the swarm in PSO was carried out to determine which vm:ity index pattern should
be followed by the swarm [13]. The key finding in [13] stated that different pattern should be used in order to achieve balance
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between exploration and exploitation process. It is noted that a better balance between these phases is often mentioned as the
key to a good performance of PSO. This idea can be implemented based on the velocity index pattern, so that half of iterations
placed as exploration phase and the other half placed as exploitation phase. For example, two-step linear decreasing pattern
can be selected to portray tl"mnndition, in which the target velocity follows this expression:

(l —l'Tﬁ){o"m. 0<7<T/2

o*=

()
(02—%]0}"““. T/2<7<T

By using Eq. 11, the target velocity index is gradually decreased from ™" at the first iteration to  0.1™" mie first half of
iterations. It is expected that the problem space is well explored by the swarm in this phase, so that the swarm is able to exploit
the existing solutions during the second half of iterations when the desired velocity index is small enough and slowly reduced
from 0.10™ to 0.

Extending the idea of using two preset values of inertia weight, it is also possible to set the inertia weight in the range of
minfum (w™" ) and maximum value ( w"™* ). The updating mechdf3sm principle is similar with the existing work: whenever
the swarm velocity index is lower than the desired velocity index, the inertia weight is increased, and reversely when & swarm
velocity index is greater than the desired velocity index, the inertia weight i1s decreased. It can be defined that the amount of
increases or decreases of inertia weight depends on the difference between the velocity index of the swarm and the target
velocity index. An example of etions that are used to update inertia weight is as follow:

o *—@ -
Aw = ( . ,“.1: ) (wnmx _ wmm} (12)
@
w=w-+Aw (13)
w=w"" i s ™™ (14)
w:wmi.n if w<wmin (15)

Other proposed mechanisms to adaptively adjust the inertia weight are based on the value of local best and global best at a
particular iteration [14] or the populatiodversity of the swarm [15, 16, 17]. In addition, fuzzy logic rules based on the swarm
fitness values also had been proposed to adaptively adjust the inertia weight [18, 19].

Instead of using single value of inertia weight for the whole swarm, another approach tried to adaptively se@ inertia weight
for each individual particle in the swarm. Fer al. [20] used the velocity and the acceleration component of each particle to
set the individual inertia weight. Panigrahi et al. [21] proposed a method to spread the inertia weight between the range of
minimum and maximum value, in which particle with the best performance is given the smallest weight so that it moves the
slowest and particle with the worst performance is given the biggest weight so that it moves the fastest. It is noted that setting
inertia weight for each individual particle in the swarm required more computational effort than setting single weight for whole
swarm. Therefore, traeffectiveness of this mechanism should be carefully studied in order to evaluate whether the additional
computational effort can significantly improve the performance of the algorithm.

3.2 Acceleration Constants

In terms of setting acceleration constants of PSO adaptively, the values of local and global best at a particular iteration are

roposed as the basis for updating the acceleration constants [14]. Alternatively, e-varying acceleration coefficient (TVAC)
hroposed to replace the same constant during the whole iteration process [22]. In TVAC, the cognitive acceleration constant
is linearly reduced and the social acceleration constant is linearly increased through the iterations.

One mechanism for adaptively setting the important weight of each acceleration term is presenterm'e. As illustration, there
are four cognitive/social terms that are taken into consideration in the GLNPSO presented above: personal best, global best,
local best, and near-neighbor best. The acceleration constant gives relative importance of respective termhen the velocity is
updated. A heavier weight for a specific term means that term is more dominant than the others and the particles tend to move
in the direction of this term. The proposed adaptive mechanism reverses this property by first determining a relative importance
of the cognitive/social term from the current swarm charac'ﬁisﬁcs before setting the acceleration constants.
2

The importance measurement that is employed here is the difference between the corresponding objective function of particle’s
position and the objective function of respective term. For a minimization problem, a bigger difference on a particular term
represents a higher degree of importance on this term. It is implied that particles have opportunity to gain more improvement in
its objective function if moving towards this term. However, negative difference is avoided since it will lead to worsening
objective function.
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As shcmin Fig 1, for a single particle which is located at position & and surrounded in its corresponding cognitive/social
terms (personal best V', global best ‘i’ﬁcal best ‘X, and near neighbor best o ), the degree of importance of each

term can be defined as max Z(@)—Z(\P)A_O} , max{Z(@)—Z(‘}‘g].O} , max{Z[G))—Z{‘PL].O}

max {Z [E-)) - Z{‘P‘\- ) .0} , respectively for personal best, global best, local best, and near neighbor best.

I.l}N

Fig. 1 Particle position and its corresponding social terms.

Then, the acceleration constants can be determined as the proportion of respective degree of importance to the constant ¢*,
which is defined as the sum of the acceleration constants. The expression for the degree of importance of a single particle can
be expanded for the whole swarm which consists of L particles by combining all particles properties, as follow:

2

azp = pyymax {Z(©,)- 2 (¥,).0} (16)
N =Y max{z(®,)-7(¥,).0} (17)

AZ, =Zmax{z(®,)—z{‘{1§‘].u} (18)

AZy = max{z(@;)—z(‘i’;"),o} (19)
1=1
where:
AZ, . Degree of importance for personal best
AZ,. . Degree of importance for global best
v . Degree of importance for local best
AZ, Degree of importance for near neighbor best

2
Finally, the acceleration constants can be determineﬁs the proportion of degree of importance. Also, in order to avoid rapid
changing of parameters, the acceleration constant is updated using exponential weighted moving average technique:

AL =ANZp + N2 + N2, + AL, (20)
e; =ac!,+[l—a}%c* 21)
c, =acg+(]—a)%c* (22)
& =ac,+(]—a]iZZ”c* (23)

N

6, =ac, +(1-a) (24)
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3.3 Number of Particles

Recently PSO with adaptive potion size has been proposed [23]. The total iteration steps are divided into some ladders
with same number of iterations. At the end ofm:h ladder, the diversity of swarm is measured, and then the population size is
adjusted based on thmweasured diversity. If the swarm diversity is lower than a threshold value, the population size is
increased. Otherwise, if the swarm diversity is higher than the threshold, the population size is decreased.

3.4 Other Parameters

Although existing adaptive mechanism for some parameters is not yet available in the literature, such as number of Iterations
and number of neighbor, there are also possibilities to set these parameters adaptively.

4. Example Application

An example of adaptive PSO algorithm is presented in this section. In this example some adaptive features are added to the
GLNPSO algorithm in which the algorithm is only slightly modified and the computational effort is not significantly increased. To
be more specific, the example algorithm can adaptively set the inertia weight and acceleration constants. Therefore, the only
change to the GLNPSO is in the Step 8, in which it is updated to:

a. Update inertia weight following Eq. 9, 11-15.

b. ate accelerations constant following Eq. 16-24.

c. Update the velocity and the position of each particle following Eq. 2—7.

In order to save some computational effort, the adaptive mechanism of inertia weight (step a) and acceleration constants (step
b) is not performed in every iteration, but only performed every fixed number of iterations, for example 10 iterations.
To make the adaptive feature works, the following initialization is required. F@e inertia weight, the ™ is taken from the

max min

velocity index at the first iteration. Also, the w and w are being set as 0.9 and 0.4, respectively. For the acceleration
constants, the value of ¢* is4and o is 0.8. Initially, equal acceleration constant is employed, i.e. ¢, =c, =¢; =¢, =1.

For a test case, this adaptive PSO algorithm is applied to solve vehicle routing problem (VRP), in which the solution
representation of this problem ﬂ PSO and the corresponding decoding method have been proposed before using GLNPSO
[5]. Itis noted that the adaptive PSO algorithm can be applied to any optimization problem that have been solved by respective
non-adaptive PSO algorithm, since the adaptive PSO algorithm only changes its parameters, not other algorithm mechanism.
A problem instance, which consists of 200 customers and 16 vehicles, is generated for computational experiment.

In a typical run with 1000 iterations, the velocity index pattern of both GLNPSO algorithm (without adaptive feature) and the
adaptive PSO algorithm are displayed in Fig. 1. It can be seen that the velocity index pattern of GLNPSO is steadily decreasing,
so that in the first half of the run (approximately from the first iteration to the 500" iteration) velocity index of adaptive PSO
algorithm is bigger than velocity index of GLNPSQ. Also, in the se@d half of the run velocity index of adaptive PSO algorithm
is smaller than velocity index of GLNPSO. This pattern imm that the adaptive PSO algorithm is better at exp g the
solution space in the first half of the run than GLNPSO. Also, the adaptive PSO algorithm is better than the GLNPSO algorithm
to exploit the solution space in the second half of the run.

40

35 —— GLNPSO
—— Adaptive

0 200 400 600 800 1000

Fig. 1 Comparison of typical velocity index patterns of GLNPSO and Adaptive PSO.

In the same algorithm run, the dynamic behavior of the best objective function values (the objective function of gbest) is
presented in Fig 2. Following the pattern of velocity index, the best objective function of GLNPSO is improving steadily.
However, the objective function values from GLNPSO are better than those from the adaptive PSO only in the early part of run.
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After about the 600" iteration, the adaptive PSO provides better objective function. Finally, the best objective function values
found are 2720.86 and 2671.59 for the original version of GLNPSO and from the adaptive version of GLNPSO, respectively.

3500
3400 4
3300 4
3200 4
3100 4 ‘
3000 4

2900 4 | \\
2800 - I

2700 A ot
2600 -

2500 T T T T
0 200 400 600 800 1000

—— GLNPSO
—— Adaptive

Fig. 2 Typical convergent behavior of objective function values from GLNPSO and Adaptive PSO.

The computational time of the adaptive PSO is not significantly bigger than the GLNPSO. It is empirically shown for the typical
run tested above, the computational time of both algorithms are 08:12 and 08:21 minutes, respectively for GLNPSO and
adaptive PSO.

5. Conclusion and Further Works

Some possibilities to enable particle swarm optimization algorithm to self-adapt its parameter are discussed in this paper based

some ideas from literature and new proposamechanism. For illustrative purpose, a demonstrated example of adaptive
PSO algorithm is proposed to adaptively set the inertia weight and acceleration constants.

LX)

The computational experaent on a typical vehicle routing instance implies that the adaptive PSO algorithm can perform better
than GLNPSO algorithm in terms of solution quality but with slightly slower computational time. However, more computational
experiment is required in order to make generalization of t esult. Also, further works is still needed to explore more
mechanisms for adapting other parameters of PSO algorithms, such as: number of particles, number of neighbors, and number
of iterations.
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