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,bsfmd. This paper presents a study on an adaptive version of particle swarm optimization (PSO) algorithm
Jfor solving vehicle routing problems (VRPs). Recently, PSO has been showing promising results in solving
many optimization problems include VRF. There are some parameters that need to be set in order to obtain a
good performance of the PSO algorithm. However, finding the best set of parameters that is good for all
problem cases is not an easy task. Many experimenis must be performed to set ﬂmaramefers and yet there is
no guarantee that the best obtained parameter set will provide consistently good algorithm performance when
it is applied to a new problem cases. Hence, a novel idea to have a self-adaptive PSO, that can adapt its
parameters automatically whenever it is applied to solve a problem ;'mnce, is an alternative way to
overcome this situation. The adaptive version of PSO proposed in this paper has additional capability to self-
adapt its inertia weight (w), one of the key PSEN parameler; based on the velocity index of the swarm, the
searching agents in PSO. The inertia weight is controlled so that the balance ben&n exploration and
exploitation phases of the swarm is maifflyined. since a better balance of these phases is often mentioned as
the key to a good performance of PSO. The performance of this adaptive PSO is evaluated for solving I'RP
instances and is compared with the existing application of PSO for 'RP. The computational experiment shows
that the adaptive version of PSO is able to provide better solution than the existing non-adaptive PSO with
slightly slower computational time.

arwards: Particle Swarm Optimization, Adaptive Parameters, Metaheuristic, Vehicle Routing Problem.

1. INTRODUCTION

This paper presents a study on an adaptive version of
particle swarm optimization (PSO) algorithm which is
applied for solvifld vehicle routing problems (VRPs).
Recently, PSO, which is an emerging evolutionary
computing method, has been successful) applied for
solving some VRP wvariants, including the capacitated
vehicle rout&problem (Ai and Kachitvichyanukul; 2007a,
2008a) and the vehicle routing problem with simultaneous
pickup and delivery (Ai and Kachitvichyanukul, 2008b).

Similar with other evolutionary computing methods, it
is necessary to properly select the PSO parameters in order

1 : Corresponding Author

to yield good performance. The task to find the best set of
parameters for all problem cases is not a trivial one. Much
experiment needs to be performed to determine proper
values of parameters. Moreover, there is no guarantee that
the selected parameter set will yield best algorithm
performance, especially when the algorithm is applied to
solve new problem cases. A novel idea to replace the way
to find the best set parameter is through a self-adaptive
PSO algorithm that can adapt its parameters automatically
whenever it is applied to solve a problem instance. It is
noted that in the wider scope of evolutionary algorithm,
some approaches for adaptively finding the algorithm’s
parameter have been proposed, i.e. Annunziato and Pizzuti
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(2000) and Back et al. (2000).

In the scope of PSO, several researchers have also
dealt with adaptive or self-finding parameter. Among PSO
parameters, mnertia weight has gained enormous attention in
the earlier effort to adapt PSO parameters. Since the early
development of PSO, the proper setting of inertia weight is
believed to have significant effect on the PSO performance.
The two most popular setting for the in@ weight are a
linear decreasing function that was first proposed by Shi
and Eberhart (1998), and a nonlinear decreasing function
proposed ' Gao and Ren (2007). With these settings, it is
expected that the particles are able to explore the problem
space more aggressively at the beginning of the iteration
steps and to exploit promising solution in the end of
iteration steps.

Other approaches that have been proposed attempts to
adjust the inertia weight adaptively based on the particular
condition of the swarm. Ueno er al. (2005) proposed an
adaptive PSO that alternates its mertia weight between a
high value and a low value and vice versa in order to
control the swarm’s velocity, Arumugam and Rao (2008)
used the value of local best and global best at a particular
iteration as the basis for updating the values of inertia
weight. Population diversity of the swarm has also been
md as the basis to adaptively adjust the inertia weight, i.e.
Dan ef al. (2006), Jie et al. (2006), and Zhang et al. (2007).

Borrowing some ideas from those earlier researches in
paramct{mdaptation, especially for adapting the inertia
EBcht. an adaptive PSO algorithm is proposed. The
adaptive PSO algorithm prdffed in this paper has the
capability to self-adapt its inertia weight based on the
dynamics of the swarm, the searching agents in PSO. The
mechanism of this adaptation is selected so that the existing
PSO algorithm for solving VRP is only slightly modified to
have the adaptive feature. Furthermore, the selected
adaptive mechanism does not significantly increase the
computatB;l effort of PSO.

The ainder of this paper is organized as follow:
Section 2 briefly reviewed the PSO algorithm for solving
VRP. Section 3 pffknts the adaptive mechanism for setting
inertia weight. [Jkction 4 describes the computational
results on the benchmark data set. Finally, Section 5
concludes the work presented in this paper and
recommends further direction on this work.

2. PSO FOR SOLVING VRP

1

ESO is a population based search method which
imitated the physical movements of the individuals in the
swarm as a searching method. In the PSO, the i} solution
of a specific problem is being searched by a swarm of
particles that act as a searching agent. A multi-dimensional

particle ition 1s being used to represent problem solution
and a wvelocity vector is being used to represent the
searching ability of the particle. Each PSO iteration step
Ilsisls of the movement of every particle in the swarm
from one position to the next based on the veloeity. Moving
from one position to another, a particle is evaluating
different prospective solution of the problem. In imitating
swarm’s cognitive and social behavior, the PSEIdhechanism
also always keeps the information on the personal best
position of each particle, which is defined as the position
that gives the best objective function among the positions
that have been visited by the particle, and the global best
ition. which is the best among all personal best. These
personal best and global best positionac used for updating
particle velocity. More information on PSO mechanism,
techniques, and applications is provided by Kennedy and
Eberhart (2001) and also Clerc (2006).

In the earlier workfJbf Ai and Kachitvichyanukul;
(2007a, 2008a, 2008b), a PSO framework for solving VRP
had been proposed based on the GLNPSO. a PSO
Algorithm  with multiple social learning structures
(Pongchairerks and Kachitvicn'anuku], 2005). This PSO
version also incorporates the local best, which 1s the best
position among several adjacent particles, and the near
neighbor best. which is social learning behavior concept
proposed by Veeramachaneni (2003). besides the global
best as components for social learning behavior. The PSO
framework is briefly reviewed in Algorithm 1.

Algorithm 1: PSO Framework for VRP
Step 1. Initialization
a. 1cratc particles as member of the swarm.
b. Set the initial position and velocity of each
particle.

Step 2. [teration P!@ss

a. Decode each particle position to a set of
vehicle routes.

b. Evaluate the performance of each smof
vehicle routes and set the performance value
as the fitmess value of the corresponding
particle.f)

c. Update personal best, global best, local best
and near neighbor best values.

d. Update the velocity and position of each
particle based on the updated values.

Stopfi}

Stop if the stopping criterion is met, otherwise

repeat Step 2.

Step 3.

In this framework, L particles ar@f}itialized in Step
1.a in which each particle dimension is randomly generated
between a minimum and a maximum value. The initial
velocity vector is zero for all particles. In the iteration
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process. the following equations are used to update the
velocity and position om:h position:

“’m(f"' 1) = w(r] m{: _}+Cp"( " ‘ﬂ[ ])+cg"( T~
reu(yy =0, (7)) +eu( o wal )0

m(r+1)= A ¥+ ( +]) e T 2)

where:

w,(z) : Velocity of the /" particle at the A"
dimension in the " iteration

8,(z) : Position of the /" particle at the A"

dimension in fff " iteration

w(z) : Inertia weight in the " iteration

Wy . Personal best position (pbest) of the [” particle
atthe 4" dimension

W : Global best position (gbest) at the #”
dimension

:;/,j; . Local best position (lbest) of the J% particle at
the " dimension

v . Near neighbor best position (nbest) of the /*
particle at the 4" dimension

<, . Personal best position acceleration constant

c, . Global best position acceleration constant

c . Local best position acceleration constant

¢ . 3w neighbor best position acceleration constant

u . Uniform random number in the interval [0‘1]

In this research, the adaptation is madf@on the PSO
Framework for VRP by using the twe solution
representations that had been proposed in previous [prks
of Ai and Kachitvichyanukul (2007a, 2008a. 2008b), which
are called solution representation SR-1 and SR-2. For
representing VRP with » customers and m vehicles, the
representation  SR—1 is using particle with (n+2m)
dimensions and the representatfh SR-2 is using 3m
dimensions. Each representation can be transformed into
VRP solution by a specific decoding method. The detail of
each decoding method is not presented here, since it has
been clearly explained in cited references.

3. PROPOSED ADAPTIVE MECHANISM FOR
SETTING INERTIA WEIGHT

The proposed adaptive mechanism for setting inertia
weight borrows idea from Ueno et al. (2005). in which the
algorithm self-adjusts the inertia weight in order to control
movement of the swarm which(fE) represented by its
velocity index. It is known that different inertia weight
value leads to different swarm movement behavior, since
high value caused particles in the swarm to maintain its
current movement and low value caused the particles to
follow the cognitive and social terms. However as
compared with Ueno’s work, the proposed algorithm uses a

@ "

T

different velocity index pattern and a different mechanism
for adjusting the inertia weight.

It i noted that the velocity indgx of the swagrm (@ )
can be calculated using following expression:

L H
Z Z |“’m |

D= I=1 h=l (3)
L-H

where:

I . Particle index, /=1...L

h : Dimension index, h=1._.H

The velocity index measures how fast the swarm
moves in certain iteration and is defined as the average of
absolute velocity. This index indicates the moving behavior
of the swarm: higher index means the swarm moves more
aggressively in the problem space than the swarm with
lower index.

Regarding the velocity index pattern that must be
followed by the swarm. Ueno et al. (2005) ml a linear
decreasing pattern. However, the study of the dynamic
behavior of the swarm i PSO by Ai  and
Kachitvichyanuku EfB007b) implied that different pattern
should be used in order to achieve balance between
exploration and exploitation pfbess. It is noted that a better
balance between these phases is often mentioned as the key
to a good performance of PSO. Hence. the proposed
algorithm incorporates the idea of latter work as the
velocity index pattern. It is intended that half of iterations
are placed as exploration phase and the other half as
exploitation phase. Two-step linear decreasing pattern is
selected to portray this condition, in which the desired
velocity index (@ *) has following equation:

(I_l.ﬁf}mmux‘ 0<7< T/Q
. 4 “

where:
T . Iteration index:

max

r=1...T
 Maximum Velocity Index

By using equation 4. the desired velocity index is
gradually decreased from ™" at the first iteration to
0. 1™ at the first half of iterations. It is expected that the
problem space is well explored by the swarm in this phase,
so that the swarm is able to exploit the existing solutions at
the second half of iterations when the desired velocity
index is small enough and slowly reduced from 0.le"™"
to 0. A comparison of the desired velocity index pattern of
Ueno’s and this proposed mechanism is illustrated in Figure
i
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—— Proposed

velocity

iteration
Figure 1: Desired Velocity Index Pattern of the Swarm

In Ueno’s work, therdiflc only two preset values of
inertia weight, the lower and the higher value, and the
inertia weight that is used in certain iteration [ sclected
based on the current swarm velocity index. When the
swarm velocity index is greater than the desired velocity
index. the inertia weight is set to the lower value in order to
reduce swarm velocity[@ldex in the subsequent iteration. In
the reverse situation, when the swarm velocity index is
lower than the desired velocity index. the inertia weight is
set to the higher value in order to increase swarm velocity
index in the subsequent iteration.

In this proposed mechanism, the inertia weight is set
in the range of minimum (w™" ) and maximum value
( w™ ) instead of using two preset values only.
Nevertheless, the updating mechafm principle is similar
with Ueno’s work: whenever the swaff) velocity index is
lower than the desired velocity index. the inertia weight is
increased, and reversely when the swarm velocity index is
greater than the desired velocity index, the inertia weight is
decreased. The amount of increases or decreases of inertia
weight depends on the difference between the velocity
index of the swarm and the desired velocity index. The
following equations are used to update the inertia weight:

o i

Az (({) _(0) [w_mux L “__min ) (5)
(o max

o= W+ Aw (6)

wEWS if s ™ 7

w=wmlif <™ (8)

Based on the description given above, the proposed
mechanism only requires a slight modification of the PSO
Framework for VRP (Algorithm 1). Since the nertia weight
is only used while updating velocity in the Step 2d, the

steps of calculating desired and actual velocity index and
updating the inertia weight following equations 5 — 8 must
oceur before Step 2d. It is expected that these additional
steps should have only slight impact on the computational
effort.

The complete algorithm of the adaptive PSO
algorithm incorporating the proposed mechanism is
presented in Algorithm 2, which is called the APSO-1
algorithm. It is noted that the APSO-1 algorithm
incorporates the same number of parameters as the non-
adaptive PSO algorithm in Algorithm 1, however, its inertia
weight is controlled by swarm dynamics instead of strictly
followed the pre-defined values.

Algorithm 2: APSO-1 Algorithm for VRP
Step 1. Initialization
a. mu:ratc particles as member of the swarm.
b. Set the initial position and velocity of each
particle.
Step 2. Iteration Pnﬂss
a. Decode each particle position to a set of
vehicle routes. m
b. Evaluate the performance of each s§BJof
vehicle routes and set the performance value
as the fitness value of the corresponding
particle.

¢. Update personal best, global best. local best

and near neighbor best values.

d. Calculate the actual and desired velocity
index using Egs. 3 and 4, and then update the
mrtia weight using Egs. 5-8.

Update the velocity and position of each

]

particle based on the updated values.

Step 3. Stopping
Stop if the stopping criterion is met, otherwise
repeat Step 2.

4. COMPUTATIONAL TEST

Computational test is conducted fo compare the
performance of existing non-adaptive PSO algorithm
(Algorithm 1) and the proposed APSO-1 algorithm
(Algorithm 2). For this purpose, totally new problem
instances of vehicle routing problem are generated which
incorporates the features of simultaneously pickup-
delivery and time windows of customer. Two classes of
200-customers problem are generated, in which each class
consists of four instances. The main difference between the
first and the second class is the time windows characteristic,
in which the first class (class RL) has wider time windows
than the second class (class RT). In both problem classes,
the traveled time between two locations is defined to be
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equal to its Euclidean distance. The detail specification of

Table 2: Computational Results

these two classes of problems is described in Table 1. Objective Function Comp. Time*
Instance PSO APSO-1 | PSO | APSO-1
Table 1: Specification of Generated VRP Benchmark Data RL1 2159.78 | 2150.28 | 15:39.6 16:29.0
Characteristic | ClassRL | Class RT RL2 2060.00 | 2080.51 | 16:234 | 16:52.5
Depot RL3 2106.58 | 2072.19 | 15:03.6 | 16:04.1
Location | (50.50) [ (50,50 RL4 1988.08 | 1961.28 | 16:48.3 | 17:58.5
Customer RT1 2653.43 | 2645.32 | 18:224 | 19:243
Location U[(0. 0): U[(0, 0); RT2 2622.28 | 2626.85 | 18:35.9 | 20:30.1
(100. 100Y] | (100. 100)] RT3 2674.92 | 2686.89 | 20.07.0 [ 20:36.9
Pickup Quantity U[0, 30] u[o, 30] RT4 2548.23 | 2535.68 | 20:09.7 | 21:19.8
Delivery Quantity U[0. 30] U0, 30] * in minutes:seconds
Service Time 10 10
Earliest Time for Starting U[0, 100] U0, 4007 It is also empirically shown from Table 2 that the
Service (ET) adaptive versions of PSO algorithm. the APSO-1 algorithm,
Latest Time for Starting ET + ET + require slightly more computational time than the non-
Service (LT) U[0, 400] UJ0, 100] adaptive one. This addilmll fime is a consequence of
Vehicle additional effort to adjust the inertia weight in the APSO-1
Fixed Cost 0 0 algorithm.
Variable Cost 1 1 Observation on the details of each instance run may
Capacity 300 300 give better understanding of the behavior of both
Duration Limit 500 500 algorithms. In figure 2, \-'clocimldcx over iteration of

Foa:ompmali(mal test purpose. both algorithms are

written in C# language using Microsoft Visual Studio.NET
1.1 and run on a PC with Intel P4 3.4 GHz processor and 1
GB RAM. The test is conducted using only the solution
representations SR-2 for representing VRP solution in both
non-adaptive PSO and APSO-1 algorithm. It is noted that
the non-mnti\-'c PSO 1s using following parameters
setting: L=50 , T=1000 , K=5. w(l)=09 .
w(T)=04, c,=1, ¢,=1, =1, and g, =1. In
addition, the APSO-1 is using the first iteration velocity
index as the maximum velocity index (@™), W™ =09,
and w™ =0.1. For the remaining fixed parameters, the
APSO-1 incorporated the same parameters as non-adaptive
PSO, in which L=50, T=1000, K=5, ¢, =1,
¢, =1, ¢=1, and ¢,=1. For each instance, five
replications of algorithm runs are performed. The
computational results comprising the average objective
[Biction found and computational result for each instance
are presented in Table 2.
As seen in Table 2. the APSO-1 result is relatively
better than the non-adaptive PSO result. In the objective
function column of this table, the bold typeface indicates
smaller result between two algorithms results. It is found
that the APSO-1 algorithm provides smaller average
objective function value than the non-adaptive PSO
algorithm in five out of eight instances.

some algorithm runs 1s drawn. It 1s clearly seen that the
velocity index of non-adaptive PSO algorithm is
continuously decreasing and very fast approaching the
exploitation phase. On the other hand, the velocity index of
APSO-1 algorithm 1s decreased with the lower rate than the
non-adaptive PSO algorithm. As a result. it is always higher
than the corresponding value of the non-adaptive PSO
algorithm in whole iteration steps. Hence. it is implied that
the APSO-1 algorithm has more potential to explore the
search space than the non-adaptive PSO algorithm in the
exploration phase. This higher level of exploration is

irablc, since it may avoid the searching process being

trapped into local optima and also lead to better final
solution.

However, the velocity index of the APSO-1 algorithm
is also still slightly higher than the index of non-adaptive
PSO algorithm in the exploitation phase. It is implied that
the APSO-1 does not have the same level of exploitation as
the non-adaptive PSO algorithm. This difference level of
exploitation might be suspected as the source of
inconsistency mn the APSO-1 algorithm results, in which
some problem instances of APSO-1 result are worse than
the non-adaptive PSO result. If this hypothesis was true. the
desired velocity index ( @™*) pattern could be slightly
change. 1.e. decreased from @™ at the first iteration to
0.05™" at the first half of iterations and slowly reduced
from 0.050™ to 0 at the second half of iterations, to
improve the result. Though. more experiments should be
conducted for this purpose.
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Figure 2: Velocity Index Pattern of Typical Runs on Non-
Adaptive PSO and APSO-1 Algorithms

5. CONCLUSION AND FURTHER WORKS

A possibility to enable particle swarm optimization
algorithm to self-adapt its parameter is presented in this
papeffin which an adaptive version of PSO is proposed
with capability to self-adapt its inertia weight, one of the
key PSO parameter. The computational n\'pcrimcm on
some vehicle routing problem mstance shows that the
proposed adaptive PSO algorithm is able to provide better
solution than the existing non-adaptive PSO with slightly
slower computational time.

Further works is still required to explore more
mechanisms for adapting other paramctcrsmf PSO
algorithms, such as: acceleration constants, number of
particles, number of neighbors, and number of iterations.
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