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PREFACE 
 

The first version of the library of Evolutionary Techniques (ET-Lib) was developed in 
2008 at the Asian Institute of Technology (AIT), Thailand.  The purpose of this library is 
to provide the researchers and students who are working on various optimization 
problems with a general and effective tool based on various evolutionary techniques. 
The first release contains mainly the Particle Swarm Optimization algorithm with 
multiple social learning terms (GLNPSO). 

Currently, GLNPSO algorithm is completely written in C# as an object-oriented 
library. The library includes all the necessary classes and routines which can be used to 
implement the PSO algorithm. Users with little programming knowledge can still use 
classes provided in this ET-library to solve basic problems. For more complicated 
problems, it is recommended that the users are familiar with C# programming language 
at elementary level.  

This manual is organized into 4 chapters. The first chapter will provide users who are 
new to the PSO concept the first introduction to this algorithm. Chapter 2 is used to 
explain the structure of the GLNPSO algorithm and a basic example are given to 
explain how to solve a simple problem with GLNPSO algorithm. In chapter 3, some 
practical applications of GLNPSO are presented with the introduction to such additional 
features as re-initialization, and multi-stage PSO. Finally, Chapter 4 discusses an 
extension of GLNPSO algorithm to deal with multi-objective optimization problems.  
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CHAPTER 1 

INTRODUCTION TO PARTICLE SWARM OPTIMIZATION 
 

1.1. Overview 

Particle Swarm Optimization (PSO) is a population based random search method 
that imitates the physical movements of the individuals in the swarm as a searching 
mechanism. The first PSO algorithm was proposed by Kennedy and Eberhart in 1995. 
The key concept of PSO is to learn from the cognitive knowledge of each particle and the 
social knowledge of the swarm to guide particles to better position. 

In the PSO algorithm, a solution of a specific problem is represented by an n-
dimensional position of a particle. A swarm of fixed number of particles is generated and 
each particle is initialized with a random position in a multidimensional search space. 
Each particle flies through the multidimensional search space with a velocity. In each 
step of the iteration the velocity of each particle is adjusted based on three components: 

• current velocity of the particle which represents the inertia term or 
momentum of the particle 

• the position corresponds to the best solution achieved so far by the particle 
normally referred as personal best 

• the position corresponds to the best solution achieved so far by all the 
particles, i.e., the global best 

Once the velocity of each particle is updated, the particles are then moved to the new 
positions. The cycle repeats until the stopping criterion is met. The specific expressions 
used in the original particle swarm optimization algorithm will be discussed in the next 
section. 

1.2. The Basic Form of PSO 

The notations used to describe the algorithms are given here and followed by a 
summary description of the original PSO algorithm. 

Notations: 

τ  : Iteration index; 1 Tτ = …  
l  : Particle index, 1l L= …  
h  : Dimension index, 1h H= …  
u  : Uniform random number in the interval [ ]0,1  
( )w τ  : Inertia weight in the thτ  iteration 
( )lhω τ  : Velocity of the thl  particle at the thh  dimension in the thτ  iteration 
( )lhθ τ  : Position of the thl  particle at the thh  dimension in the thτ  iteration 

lhψ  : Personal best position (pbest) of the thl  particle at the thh  dimension 
ghψ  : Global best position (gbest) at the thh  dimension 

pc  : Personal best position acceleration constant 

gc  : Global best position acceleration constant 
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maxθ  : Maximum position value 
minθ  : Minimum position value 
lΘ  : Vector position of the thl  particle, [ ]1 2l l lHθ θ θ"  
lΩ  : Vector velocity of the thl  particle, [ ]1 2l l lHω ω ω"  
lΨ  : Vector personal best position of the thl  particle, [ ]1 2l l lHψ ψ ψ"  
gΨ  : Vector global best position, 1 2g g gHψ ψ ψ⎡ ⎤⎣ ⎦"  

lR   The thl  set of solution 
( )lZ Θ  : Fitness value of lΘ  

 

Algorithm PSO 

1. Initialize L  particles as a swarm:  
Set iteration 1τ = . Generate the thl  particle with random position ( )l τΘ  in the range 

min max,θ θ⎡ ⎤⎣ ⎦ , velocity ( ) 0l τΩ =  and personal best l lΨ =Θ  for 1l L= … .  

2. Decode particles into solutions: 
For 1l L= … , decode ( )l τΘ  to a solution lR . (This step is only needed if the particles 
are not directly representing the solutions). 

3. Evaluate the particles: 
For 1l L= … , compute the performance measurement of lR , and set this as the 
fitness value of ( )l τΘ , represented by ( )lZ Θ . 

4. Update pbest:  
For 1l L= … , update l lΨ =Θ , if ( ) ( )l lZ ZΘ < Ψ . 

5. Update gbest:  
For 1l L= … , update g lΨ =Ψ , if ( ) ( )l gZ ZΨ < Ψ . 

6. Update the velocity and the position of each thl  particle: 

( ) ( ) ( ) ( )1
1

Tw w T w w T
T

ττ −
= + ⎡ − ⎤⎣ ⎦−

 (1.1) 

( ) ( ) ( ) ( )( ) ( )( )1lh lh p lh lh g gh lhw c u c uω τ τ ω τ ψ θ τ ψ θ τ+ = + − + −  (1.2) 

( ) ( ) ( )1 1lh lh lhθ τ θ τ ω τ+ = + +  (1.3) 

If ( ) max1lhθ τ θ+ > , then  

( ) max1lhθ τ θ+ =  (1.4) 

( )1 0lhω τ + =  (1.5) 

If ( ) min1lhθ τ θ+ < , then  

( ) min1lhθ τ θ+ =  (1.6) 
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( )1 0lhω τ + =  (1.7) 

7. If the stopping criterion is met, i.e., Tτ = , stop. Otherwise, 1τ τ= +  and return to 
step 2. 

The basic version of PSO algorithm described above contains the inertia term with 
position boundary and linear decreasing weight introduced by Shi and Eberhart (1998) 
to explore the solution space in the initial phase and following the cognitive and social 
term to exploit the personal best and global best in the final phase. In addition, this 
algorithm is applicable for minimization problem.  

1.3. Key parameters of PSO 

This section discusses possible qualifications and effects of each parameter on the 
performance of PSO. The parameters analyzed in this section consist of the population 
size (L), two acceleration constants (cp and cg), and the inertia weight (w). The discussion 
is presented below. 

Population size (L) 

This parameter represents the number of particles in the system. It is one important 
parameter of PSO, because it affects the fitness value and computation time. 
Furthermore, increasing size of population always increases computation time, but 
might not improve the fitness value. Generally speaking, too small a population size can 
lead to poor convergence while too large a population size can yield good convergence at 
the expense of long running time. 

Acceleration constants (cp and cg) 

The constants cp and cg are the acceleration constants of the personal best position 
and the global best position, respectively. Each acceleration constant controls the 
maximum distance that a particle is allowed to move from the current position to each 
best position. The new velocity can be viewed as a vector which combines the current 
velocity, and the vectors of the best positions. Each best position’s vector consists of the 
direction which is pointed from the particle’s current position to the best position, and 
the magnitude of the movement can be between 0 to the acceleration constant of the best 
position times the distance between the best position and the current position.  

Inertia weight (w) 

The new velocity is produced from the combination of vectors. One of these vectors is 
the current velocity. Inertia weight is a weight to control the magnitude of the current 
velocity on updating the new velocity. For w = c, it means that this vector has the same 
direction of the current velocity, and the magnitude which equals to c times the current 
velocity’s magnitude. This weight is one of the parameters to control the search behavior 
of the swarm. 
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Velocity boundary (Vmax) and Position boundary (θmax) 

Some PSO algorithms are implemented with bound on velocity. For each dimension, 
the magnitude of a velocity cannot be greater than Vmax. This parameter is one of 
parameters to control the search behavior of the swarm. The smaller value of this 
parameter makes the particles in the population less aggressive in the search.  

In the PSO particle movement mechanism, it is also common to limit the search space 
of particle location, i.e. the position value of particle dimension is bounded in the 
interval min max,θ θ⎡ ⎤⎣ ⎦ . The use of position boundary θmax is to force each particle to move 

within the feasible region to avoid solution divergence. Hence, the position value of 
certain particle dimension is being set at the minimum or maximum value whenever it 
moves beyond the boundary. In addition, the velocity of the corresponding dimension is 
reset to zero to avoid further movement beyond the boundary. 

More detailed discussions of PSO behaviors in literatures include Ozcan and Mohan 
(1999), Carlisle and Dozier (2000, 2001), Beielstein, Parsopoulos, and Vrahatis (2002). 

1.4. GLNPSO 

Pongchairerks and Kachitvichyanukul (2005, 2009) proposed PSO with multiple 
social structures that were built by combining previously published structures. There 
are two additional social structures which are local best (lbest) and near neighbor best 
(nbest); this structure was presented in Veeramachaneni et al. (2003). Local best 
receives the best fitness value from sub group; each particle can update the velocity 
based on the best performance of neighbors in the population that is related on indices 
of particles. Near neighbor best obtains the maximum Fitness Distance Ratio (FDR) 
among all other particles. 

The GLNPSO algorithm was described below following the notation that was added 
from previous algorithm. 

Notation 

τ  : Iteration index; 1 Tτ = …  
l  : Particle index, 1l L= …  
h  : Dimension index, 1h H= …  
u  : Uniform random number in the interval [ ]0,1  
( )w τ  : Inertia weight in the thτ  iteration 
( )lhω τ  : Velocity of the thl  particle at the thh  dimension in the thτ  iteration 
( )lhθ τ  : Position of the thl  particle at the thh  dimension in the thτ  iteration 

lhψ  : Personal best position (pbest) of the thl  particle at the thh  dimension 
ghψ  : Global best position (gbest) at the thh  dimension 
L
lhψ  : Local best position (lbest) of the thl  particle at the thh  dimension 
N
lhψ  : Near neighbor best position (nbest) of the thl  particle at the thh  

pc  : Personal best position acceleration constant 

gc  : Global best position acceleration constant 

lc  : Local best position acceleration constant 
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nc  : Near neighbor best position acceleration constant 
maxθ  : Maximum position value 
minθ  : Minimum position value 
lΘ  : Vector position of the thl  particle, [ ]1 2l l lHθ θ θ"  
lΩ  : Vector velocity of the thl  particle, [ ]1 2l l lHω ω ω"  
lΨ  : Vector personal best position of the thl  particle, [ ]1 2l l lHψ ψ ψ"  
gΨ  : Vector global best position, 1 2g g gHψ ψ ψ⎡ ⎤⎣ ⎦"  
L
lΨ  : Vector local best position of the thl  particle, 1 2

L L L
l l lDψ ψ ψ⎡ ⎤⎣ ⎦"  

lR   The thl  set of solution 
( )lZ Θ  : Fitness value of lΘ  

FDR  : Fitness-distance-ratio 
 

Algorithm GLNPSO 

1. Initialize L  particles as a swarm: 
Set iteration 1τ = . Generate the thl  particle with random position ( )l τΘ  in the range 

min max,θ θ⎡ ⎤⎣ ⎦ , velocity 0lΩ =  and personal best l lΨ =Θ  for 1l L= … .  

2. Decode particles into solutions: 
For 1l L= … , decode ( )l τΘ  to a solution lR . (This step is only needed if the particles 
are not directly representing the solutions). 

3. Evaluate the particles: 
For 1l L= … , compute the performance measurement of lR , and set this as the 
fitness value of lΘ , represented by ( )lZ Θ . 

4. Update pbest:  
For 1l L= … , update l lΨ =Θ , if ( ) ( )l lZ ZΘ < Ψ . 

5. Update gbest:  
For 1l L= … , update g lΨ =Ψ , if ( ) ( )l gZ ZΨ < Ψ . 

6. Update lbest:  
For 1l L= … , among all pbest from K  neighbors of the thl  particle, set the personal 
best which obtains the least fitness value to be L

lΨ . 
7. Generate nbest:  

For 1l L= … , and 1h H= … , set N
lh ohψ ψ=  that maximizing fitness-distance-ratio ( FDR

) for 1o L= … . Where FDR  is defined as 
( ) ( )l o

lh oh

Z Z
FDR

θ ψ
Θ − Ψ

=
−

 which l o≠  (1.8) 

8. Update the velocity and the position of each thl  particle: 

( ) ( ) ( ) ( )1
1

Tw w T w w T
T

ττ −
= + ⎡ − ⎤⎣ ⎦−

 (1.9) 
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( ) ( ) ( ) ( )( ) ( )( )
( )( ) ( )( )

1lh lh p lh lh g gh lh

L N
l lh lh n lh lh

w c u c u

c u c u

ω τ τ ω τ ψ θ τ ψ θ τ

ψ θ τ ψ θ τ

+ = + − + −

+ − + −
 (1.10) 

( ) ( ) ( )1 1lh lh lhθ τ θ τ ω τ+ = + +  (1.11) 

If ( ) max1lhθ τ θ+ > , then  

( ) max1lhθ τ θ+ =  (1.12) 

( )1 0lhω τ + =  (1.13) 

If ( ) min1lhθ τ θ+ < , then  

( ) min1lhθ τ θ+ =  (1.14) 

( )1 0lhω τ + =  (1.15) 

9. If the stopping criterion is met, i.e. Tτ = , stop. Otherwise, 1τ τ= +  and return to step 
2. 

GLNPSO has been successfully applied to solve many NP-hard combinatorial 
problems. For examples, job shop scheduling problems, vehicle routing problems, 
multicommodity distribution network design problems, continuous (no-wait) flow shop 
problems, multi-mode resource constrained project scheduling problems, etc. 
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CHAPTER 2 

STUCTURE OF GLNPSO LIBRARY 
 
Before discussing each component in PSO library, we will demonstrate how GLNPSO 

work by a simple example. The source code of the example can be found in “\GLNPSO 
basic\Basic Models\PSO basic”. The user can run this example with Microsoft Visual 
C# 2005 or the free Microsoft Visual C # 2008 Express Editions which is free to 
download at http://www.microsoft.com/express/download/. 

2.1. First example 

In this example, our objective is to minimize an objective 
function  ݂ሺݔԦሻ ൌ ∑ ሾ0.01ݔ௜

ଶ ൅ 2 כ sinሺݔ௜ሻ ሿ௡
௜ୀଵ Ԧݔ ݁ݎ݄݁ݓ ൌ  ሼݔଵ, … , ,௡ሽݔ ௜ݔ א ሾെ100,100ሿ ݅׊ ݄ݐ݅ݓ. 

The graph of this function with n=1 is shown in Figure. 2.1. This is an extensive version 
of sphere function which includes some noise to make it more interesting. Here, 
GLNPSO library is applied to find the optimal solution כݔሬሬሬሬԦ to minimize݂ሺݔԦሻ. For the ease 
of interpretation of the results and the dynamic of PSO algorithm, we start by solving 
the problem with n=1.  

 

 
Figure 2.1: Function with multiple local minimum 

 
For this simple problem, only problem formulation needs to be defined and this part 

is written in GLNPSO.cs. The implementation of GLNPSO on this problem is presented 
in Figure 2.2. In order to create a new class of PSO to solve a specific problem, three 
important questions needs to be clarified: 

• What is the dimension of a particle? 
• How to evaluate the fitness of a particle? 
• How can the swarm be initialized? 

In case that n=1, the position of a particle is defined as a real number ݔ which ranges 
from -100 to 100 and the particle’s dimension is 1. The objective function ݂ሺݔԦሻ ൌ ݂ሺݔሻ is 
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used to measure the fitness of each particle (GLNPSO is designed to minimize the 
objective function, in case of maximization we just simply change the sign of the 
objective function to convert it to minimization problem). A particle is considered to be 
located at better position if its position results in a smaller objective value (in figure 2.2. 
the objective evaluation method is defined so that it can also handle the more 
generalized problem where n>1). The initial swarm is created by randomly generating 
the position of each particle in the swarm, which means that each position will follow 
the Uniform Distribution with the lower bound of -100 and upper bound of 100. 

Class spPSO : PSO 
{ // this part is the problem specific code 
 // Minimize f(x) = 0.001x^2 + 2*Sin(x), -100<=x<=100 
public spPSO(int nPar, int nIter, int nNB, double dwmax, double dwmin, 
double dcp, double dcg, double dcl, double dcn): 
base(nIter, nNB, dwmax, dwmin, dcp, dcg, dcl, dcn) 
{  
 base.SetDimension(nPar, 1); 
} 
//Define objective function 
public override double Objective(Particle P) 
{ 
 double obj = 0; 
      for (int i = 0; i < P.Dimension; i++) 
          obj += 0.001 * Math.Pow(P.Position[i], 2) + 2 *    
                    Math.Sin(P.Position[i]); 
 return obj; 
} 
//Initialize a swarm 
public override void InitSwarm() 
{ 
 for(int i=0; i<sSwarm.Member; i++) 
 { 
        for (int j = 0; j < sSwarm.pParticle[i].Dimension; j++) 
        { 
          sSwarm.pParticle[i].Position[j] = -100+200*rand.NextDouble(); 
          sSwarm.pParticle[i].Velocity[j] = 0; 
          sSwarm.pParticle[i].BestP[j] = sSwarm.pParticle[i].Position[j]; 
          sSwarm.pParticle[i].PosMin[j] = -100; 
          sSwarm.pParticle[i].PosMax[j] =  100; 
        } 
      sSwarm.pParticle[i].ObjectiveP = 1.7E308; 
 } 
 sSwarm.posBest = 0; 
} 
} 

Figure 2.2: Define a new PSO class for single variable example 
Figure 2.3 shows the main class in which we define the PSO parameters and run the 

PSO algorithm with these parameters. In this experiment, only the global best and 
personal best is used to guide the swarm like the traditional PSO algorithm. The 
acceleration constants for local best and neighbor best are set to 0, and therefore the 
position of the local best and neighbor best do not influence the movement of particles in 
the swarm. The search space is explored by a swarm of size 10 in 200 iterations and 
three replications are performed. The final solutions and some statistics are reported in 
“MyPSO.xls” at the same folder of the execution file (\GLNPSO basic\PSO basic\PSO 
basic\bin\Debug). 

Dimension 

Randomize initial positions  
and velocity and set boundary 
of position for each particle 

 

Calculate 
Objective 
Value 
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class MainClass 
{ 
public static void Main(string[] args) 
{    
int noPar = 10; 
int noIter = 200; 
int noNB = 5; 
double wMax = 0.9; 
double wMin = 0.4; 
double cP = 2; 
double cG = 2; 
double cL = 0; 
double cN = 0; 
string oFile = "MyPSO.xls"; 
int noRep = 3 
// starting time and finish time using DateTime datatype 
DateTime start, finish;   
// elapsed time using TimeSpan datatype 
TimeSpan elapsed; 
 
// opening output file 
 TextWriter tw = new StreamWriter(oFile); 
 tw.WriteLine("{0} Number of Particle  ", noPar); 
 tw.WriteLine("{0} Number of Iteration ", noIter); 
 tw.WriteLine("{0} Number of Neighbor  ", noNB); 
 tw.WriteLine("{0} Parameter wmax      ", wMax); 
 tw.WriteLine("{0} Parameter wmin      ", wMin); 
 tw.WriteLine("{0} Parameter cp        ", cP); 
 tw.WriteLine("{0} Parameter cg        ", cG); 
      tw.WriteLine("{0} Parameter cl        ", cL); 
 tw.WriteLine("{0} Parameter cn        ", cN); 
 tw.WriteLine("{0} Output File Name    ", oFile); 
 tw.WriteLine(""); 
for(int i=0; i<noRep; i++) 
{ 
  Console.WriteLine("Replication {0}", i+1); 
  tw.WriteLine("Replication {0}", i+1); 
  // get the starting time from CPU clock 
  start = DateTime.Now; 
     
  // main program ... 
  PSO myPSO = new spPSO(noPar, noIter, noNB, wMax, wMin, cP, cG, cL, cN); 
  myPSO.Run(tw, true); 
  myPSO.DisplayResult(tw);     
  // get the finishing time from CPU clock 
  finish = DateTime.Now; 
  elapsed = finish - start;    
  // display the elapsed time in hh:mm:ss.milli 
  tw.WriteLine("{0} is the computational time", elapsed.Duration()); 
    tw.WriteLine(""); 
} 
tw.Close(); 
} 
} 

Figure 2.3: Main class for single variable problem 
In three replications, PSO needs less than 100 iterations to find the optimal solution. 

The average fitness and best fitness of a replication can be found in the output file and 
is presented in Figure 2.4 to show how fast PSO can converge to the optimal solution. 

 

Define PSO 
parameters 

Create new PSO object 
and pass the PSO 
parameters 
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Figure 2.4: PSO performance in single variable problem 

To help the reader have a better understanding of the dynamics of PSO algorithm, an 
animated version of this simple example is created (\GLNPSO basic\Basic 
Models\PSO_Visual). The screen shot of this application is shown in Figure 2.5. The 
user can choose the PSO parameters directly from the interface as well as select the 
function to be optimized. The upper left chart is to plot the function and the final 
solution found by PSO. The lower left chart shows the average of objective values for all 
the particles in the swarm at each iteration to check the convergence of the algorithm. 
In this application, users can perform a simple animation in x-y axis to observe the 
movement of the swarm during the searching process. The red circle points indicate 
current positions of particles. The personal best position of a particle is represented by 
an orange diamond point and finally, the green triangle point is the global best position 
found by the swarm.  There are two options for animation so that the user can either 
choose to let the program automatically simulate all steps in PSO algorithm or run step 
by step (forward or backward) to observe the movement behavior carefully. In the step 
animation mode, the line connecting the position of a particle and its personal best 
position as well as the global best position is drawn to illustrate the direction for the 
movement. The user can exploit this feature to test the sensitivity of PSO parameters on 
the movement of the swarm. The 3D version of this application is also available at 
“\GLNPSO basic\Basic Models\PSO_Visual - 3D” as shown in Figure 2.6.  
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Figure 2.5: 2D Visual presentation of GLNPSO algorithm 

 

Figure 2.6: 3D Visual presentation of GLNPSO algorithm 
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2.2. GLNPSO components 

In the remainder of this chapter, the structure of GLNPSO provided in ET-library is 
discussed in detail. In Figure 2.7, the class view of GLNPSO is presented. Generally, 
there are three important classes required for GLNPSO: Particle, Swarm and PSO.  

 

 
Figure 2.7: Class view for GLNPSO in ET-library 

2.2.1. Particle class 
Particle is the basic class in ET-Lib which includes all the information related to a 

particular particle.  Here are the definitions of attributes of a particle: 
 

Name Type Description 

Position Array of 
real number 

m-dimension position of the particle 

Dimension Integer the dimension of particles’ positions 

PosMin/PosMax Array of 
real number 

the lower and upper bounds of position of at each 
dimension  

Velocity Array of 
real number 

m-dimension velocity of the particle 

Objective Real the objective value or the fitness of the particle 

BestP Array of 
real number 

m-dimension position of the particle which stores 
its personal best experience 

ObjectiveP Real the objective value corresponding to BestP 
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localBest  Integer the index (or location) of local best member in the 
swarm 

Neighbor Array of 
Real 

m-dimension position which is identified by 
comparing the relative position and objective and 
position of the particle with other members in the 
swarm 

 
The constructor public Particle(int nDim) is used to create a new particle. The 

parameter nDim indicates the Dimension of a particle. 

2.2.2. Swarm class 

A swarm is consisted of many particles flying in the search space to look for good 
position. The swarm class includes all the required routines to govern the movement 
behavior of its members (particles). The attributes and methods of this class are listed 
below: 

 
Attributes 

Name Type Description 

Member Integer number of particles in the swarm (population size) 

pParticle Array of 
Particle 

a set of particles in the swarm  

MinObj/MaxObj Real the minimal and maximal objective value found by 
the swarm through searching process 

AvgObj Real the average objective values across all particles in 
the swarm 

postBest Integer the index (or location) of global best member in the 
swarm (pParticle[postBest] refers to the particle 
which found the position resulting in the best 
objective value) 

VelIndex Real the velocity index to measure how fast the swarm is 
moving 

Dispersion  Real the Dispersion index to measure the dispersion of 
particles in the swarm 
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Methods 
public Swarm(int nPar, int nDim) create a new swarm by determine the number 

of particles in the swarm (nPar)and the 
Dimension of each particle) 

public void DisplayBest() show the information of the global best particle 
on the screen 

public void Move(double w, 
double cp, double cg, double cl, 
double cn, double[,] r1, 
double[,] r2, double[,] r3, 
double[,] r4) 

calculate velocities of particles and move them 
to new positions. The parameters passed to this 
method include the inertia weight, acceleration 
constants and random numbers. 

public void UpdateBest(int 
nbSize) 

update information related to personal best, 
global best, local best and neighbor best after 
each flying attempt. 

public void EvalStatObj() update statistics related to the objective values 
of particles in the swarm.

public void EvalDispersion() evaluate Dispersion index 
public void EvalVelIndex() evaluate Velocity index 

2.2.3. PSO class 

All the PSO parameters and routines are stored in this class. Some methods in this 
class are problem-oriented and can be overridden when formulating new optimization 
problems. In general, it has following attributes and methods: 

Attributes:  
Name Type Description 

cp/cg/cl/cn  Real personal/global/local/neighbor acceleration constant 

Iter Integer number of iterations 

NB Integer number of neighbor 

nDim Integer dimension of particles in a swarm 

nPar Integer Number of particles 

Rand random 
stream 

random object used to generate random number 

sSwarm Swarm the swarm used in the PSO algorithm 

wmax/wmin Real the maximal/minimal inertia weight (normally the 
inertia weight in our the default GLNPSO is 
linearly reduced at each iteration from wmax to 
wmin) 
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Methods 
public virtual void 
DisplayResult(TextWriter t) 

write the results of GLNPSO to a predefined 
output file t 

public virtual double 
Objective(Particle p) 

objective function 

void Evaluate() Objective(Particle p) is called to evaluate 
the objective value of each particle in the 
sSwarm 

public virtual void InitSwarm() initialize sSwarm with random particles 

public PSO(int nIter, int nNB, 
double dwmax, double dwmin, 
double dcp, double dcg, double 
dcl, double dcn) 

create a new PSO object by passing all PSO 
parameters 

public void Run(TextWriter t, 
bool debug) 

perform GLNPSO algorithm 

public void SetDimension(int 
par, int dim) 

set swarm size and particle’s dimension 

The GLNPSO algorithm is implemented in Run method. The basic framework of this 
algorithm is similar to that of the algorithm introduced in section 1.4. The algorithm 
first initialize new swarm with user’s predefined parameters such as number of particle, 
and dimension of a particle. After a random swarm is created, their fitness (objective 
value) is evaluated and the learning terms are updated. Then, the swarm starts to 
evolve until the stopping condition is met. The dispersion index and statistics collections 
routines can be called optionally. The C# implementation of this algorithm is presented 
in Figure 2.8.  

 
When designing this library, our objective is to minimize the users’ effort to rewrite 

the PSO algorithm. To solve an optimization problem with GLNPSO, the users only 
need to focus on objective function evaluation procedure (encoding/decoding approach) to 
make the program faster and more effective in finding high quality solutions.  For easy 
problem such as the first example, a simple class defined in Figure 2.2 is all the user 
needs to create to use GLNPSO in ET-library. For more complicated problems, some 
modifications in GLNPSO routines such as movement strategies, local search, and re-
initialization may be added as required. In the next chapter, we introduce some 
practical applications of GLNPSO and also show the flexibility of the design.  
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public void Run(TextWriter t, bool debug) 
{  
   //PSO main iteration 
   double w = wmax; 
   double decr = (wmax - wmin) / Iter; 
   sSwarm = new Swarm(nPar, nDim); 
   InitSwarm(); 
   Evaluate(); 
   sSwarm.UpdateBest(NB); 
             
   if (debug) 
   { 
      sSwarm.EvalDispersion(); 
      sSwarm.EvalStatObj(); 
   } 
   for (int i = 1; i < Iter; i++) 
   {  
      ## Generate random number u1, u2, u3, u4 ## 

sSwarm.Move(w, cp, cg, cl, cn, u1, u2, u3, u4); 
Evaluate(); 
sSwarm.UpdateBest(NB); 

      if (debug) 
      { 
         sSwarm.EvalDispersion(); 
         sSwarm.EvalStatObj(); 
      } 
      w -= decr; 
   } 
} 

** the code in ## … ##  contain the subroutine which can be found in the original code 
Figure 2.8: C# implementation of GLNPSO algorithm 
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CHAPTER 3 

GLNPSO’s APPLICATIONS 

3.1. Traveling Salesman Problem (TSP) 
The Traveling Salesman Problem (TSP) is a traditional problem which is normally 

used as a benchmark for many optimization methods. In TSP, a list of locations is given 
and the task is to find the tour that minimizes the total distance through all locations 
provided that each location can only be visited once. 

For instance, the salesman begins his tour at location 0 and need to visit N location 
before coming back to the starting location. Our objective is to find the shortest path 
ߨ ൌ ሼ݈ଵ, ݈ଶ, … , ݈ேሽ  for this task given that no location will be revisited (except for location 
0). An example of a TSP’s solution is shown in Figure 3.1. With a set of predetermined 
locations, a N+1 by N+1 distance matrix ܦ is defined and the distance, time, or the cost 
to travel from location i to location j is defined by ܦሾ݅, ݆ሿ. The mathematical model of this 
problem can be simply: 

,ሾ0ܦ   ݁ݖ݅݉݅݊݅ܯ ݈ଵሿ ൅ ∑ ,ሾ݈௞ܦ ݈௞ାଵሿ ൅ ,ሾ݈ேܦ 0ሿ ேିଵ
௞ୀଵ ,  (3.1)       ݔ݁݀݊݅ ݊݋݅ݐܽܿ݋݈ ݄݁ݐ ݏ݅ ௞݈ ݄ݐ݅ݓ

 

 
Figure 3.1: TSP solution ߨ ൌ ሼ݈ଵ, ݈ଶ, … , ݈ହሽ   

It is well known that TSP is in the class of NP-complete problems that the 
computational time to find the optimal solution increase exponentially with the number 
of locations. For that reason, a lot of heuristic approaches have been proposed for this 
problem. In this section, the TSP is solved by using the GLNPSO algorithm. Different 
from the example in chapter 2, the particle’s positions of TSP cannot be directly used to 
calculate the objective value (total distance). Instead, particles must be decoded to get 
TSP’ solutions. The encoding/decoding scheme is presented in Figure 3.2. 
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Location 
 
Particle’s position 

 

Traveling route ߨ 

Evaluate Objective value 
,ሾ0ܦ ݈ଵሿ ൅ ෍ ,ሾ݈௞ܦ ݈௞ାଵሿ ൅ ,ሾ݈ହܦ 0ሿ 

ସ

௞ୀଵ

 

 

ൌ ሾ0,3ሿܦ ൅ ሾ3,1ሿܦ ൅ ሾ1,2ሿܦ ൅ ሾ2,5ሿܦ ൅ ሾ5,4ሿܦ ൅  ሾ4,0ሿܦ
 

Figure 3.2: Encoding/Decoding approach for TSP with N=5 
In figure 3.2, the position of a particle is an array of real number randomly 

distributed from 0 to 1. Each position in the m-dimension position is used to indicate the 
priority of a location. The locations with smaller position values will be visited before 
those with larger position values. In the decoding method, the traveling is determined 
by sorting the particle’s position in the ascending order. When the route ߨ has been 
constructed, the total distance of the tour is calculated. 

 
Figure 3.3: TSP optimizer with GLNPSO library 
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At each iteration, the fitness (objective value) of each particle in the swarm is 
evaluated by this decoding procedure. The user can find the source code of the 
application in Figure 3.3 at “\GLNPSO basic\Applications\PSO_Visual_TSP\”. The 
coordinate of each location is in the file "\GLNPSO 
basic\Applications\PSO_Visual_TSP\PSO basic_visual_TSP\bin\DebugLocations.txt” 
and the format of this file is: 

Number of locations 
For each location: x-coordinate, y-coordinate 

3.2. Job Shop Scheduling (JSP) 
The job shop scheduling problem (JSP) is a combinatorial optimization problem in 

which a set of jobs need to be scheduled on a set of machines in order to optimize a 
certain criterion followed by the constraints that each job has the precedence and 
deterministic time-span which are known in advance. Each sequencing job that consists 
of n operations will be processed on a set of m machines; hence, there are a total of nm 
activities (operations) involved in such a job shop scheduling problem. In Table 3.1, an 
example of JSP with 4 jobs and 3 machines are given and a feasible solution of this 
problem is illustrated in Figure 3.4. 

Table 3.1 The 4×3 example of JSP 

 

 
Figure 3.4: Feasible solution for a job shop scheduling problem 

Small size instances of the JSP can be solved within reasonable computational time 
by exact algorithms. However, when the size of problem is increased, the computational 
time of the exact approaches grow exponentially. Accordingly, many researchers develop 
heuristic techniques to achieve near optimal solution instead. Nevertheless, the 
heuristic approaches are problem specific and they might not be applicable to all 
situations; thus, meta-heuristics are investigated to improve the quality of the solution 
as well as increase the computational speed. 
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3.2.1. JSP’s model 

In this section, we will create a model of this problem with GLNPSO to minimize the 
makespan Cmax (maximum completion time of all operations). Following is the 
mathematical model of JSP: 

Notations in the JSP 

Indices: 
j  : The thj  job in the problem, { }nj ,...,1=  
k  : The thk  machine in the problem, { }mk ,...,1=  

Decision variable:  
kjx ,  : The start time of job j  on machine k . 

kjjy ,',  : 1   if job j  is scheduled before job j′  on machine k . 
 0   Otherwise. 
Parameters: 

m  : The number of machines. 
n   : The number of jobs. 

kjp ,   : The process time of job j  on machine k . 

jr   : The ready time of job j . 

jd   : The due date of job j . 
M   : An arbitrary large number. 

Objectives: 

The objective functions are frequently to minimize any of the performance measures 
as the following. Some commonly used objectives in the JSP include the followings; 

● Minimize:  { }kjkjkj px ,,,max +  
Subject to: 
Precedence constraints kjkjkj xpx ′≤+ ,,,  kkj ′∀ ,,  (3.2)  

Conflict constraints ( )kjjkjkjkj yMxpx ,,,,, 1 ′′ −+≤+  kjj ,, ′∀   (3.3) 

 kjjkjkjkj yMxpx ,,,,, ′′′ +≤+  kjj ,, ′∀  (3.4) 

Readiness constraints jkj rx ≥,  kj,∀  (3.5) 

Nonnegative constraints 0, ≥kjx  kj,∀  (3.6) 

 binaryy kjj ,',  kjj ,, ′∀  (3.7) 

3.2.2. Encoding/Decoding 

It is obvious that the solutions for JSP cannot be directly represented as the m-
dimension position as introduced in chapter 2. For that reason, we will use 
encoding/decoding method so as to the solutions of this problem can be expressed as 
particles’ positions which are evolved through PSO algorithm. Then, the position is 
decoded to get the feasible solution to evaluate the objective value. In this example, we 
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use an array of real numbers to represent the priority of each operation that needs to be 
scheduled. The schematic illustration of this encoding/decoding procedure for JSP in 
table 3.1 is shown in Figure 3.5. 

  
 

 
Figure 3.5: Encoding/Decoding procedure  

with the operation-based representation of a particle 

First, each solution is encoded in a particle’s position as an array of real numbers 
which are randomly generated in range [0, 1]. The dimension of each particle equals to 
the number of jobs multiplied by the number of machines. In this example as shown in 
Table 3.1, there are 4 jobs and 3 machines; thus, the dimension of particle for this 
example equals to 12. 

At each step in PSO algorithm, particles are decoded to get feasible schedules. The m-
repetition of job numbers permutation which was first introduced by Tasgetiren et al. 
(2005) is applied along with sorting list rule. Firstly, the continuous numbers inside 
particle will be sort then the permutation of 3-repetition of 4 jobs will be applied. After 
that, the operation-based approach by Cheng et al. (1996) is used to represent a 
schedule. The advantage of this approach is that any permutation of this representation 
always leads to a feasible schedule. Nevertheless, it is possible that some of different 
representations could possibly generate the same schedule. The particle as shown 
previously is used, corresponding to the small size of JSP which is already mentioned. 
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The decoded particle is then transferred to a schedule by taking the first operation 
from the list, the second and so on. During the schedule generation, each operation is 
allocated to a required machine in the best available processing time without delaying 
other scheduled operation. The procedure yields an active schedule. For instance O122 

(Job 1, Operation 2, Machine 2) is allocated to the machine 2 at time 3. It cannot be 
scheduled before time 3 because the first operation of Job 1 is being processed.  

The source code for JSP with GLNPSO can be found in the manual folder, which 
mainly based on PSO algorithm proposed by Pratchayaborirak (2007). The main 
different between this structure of this model and that of the example in chapter 2 is the 
introduction of some specific classes to store data of JSP and perform decoding 
procedure and evaluate objective value (except makespan, several other objective values 
can be easily calculated after particles are decoded). The general view of this model is 
given in Figure 3.6.  

   

 
 

Figure 3.6: GLNPSO model for JSP 

3.2.3. Reinitialize strategy 

During the iterations, the particles are often trapped in a deep local minimum which 
can cause trivial movement of the whole swarm. As a result, the reinitialize strategy is 
applied to diversify the particles over the search space once again. Consequently, the 
system could escape from that local trap. This approach can be applied to enhance PSO 
as shown below. 

Suppose that the algorithm met the re-initialize criteria which has been set in 
advance then the re-initialize algorithm will start when the certain iteration number is 
reached and the procedure will be repeated again every fixed number of iteration. To 
accomplish the re-initialize strategy, a pre-defined number of particles are randomly 
selected for re-initialization. This number is defined by the reinitialized ratio multiply 
by the number of particles. In addition, the gbest particle is excluded from the selection. 
The personal memories of each selected particle are reinitialized by randomly 
regenerating its position, resetting its velocity to zero, and resetting pbest to null. 

 

 

 

GLNPSO 

 JSP class 

 Decoding 
class 

Get JSP’s 
data 

Dimension 

Position 
Objective value 
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3.2.4. Local search strategy 

In general, a local search may apply to a certain group of particles in the swarm to 
enhance the exploitation of search space. The local search typically attempts to improve 
quality of the solution by searching the better solutions around its neighbors. In this 
study, the neighborhood search adopts the critical block (CB) neighborhood of Yamada 
and Nakano (1995). Concept of the search method is to move an operation inside a 
critical block to the beginning or the end of that critical block. Figure 3.7 presents the 
critical path and the set of neighborhood move according to the CB neighborhood. 

 
Figure 3.7: The CB Neighborhood 

The local search procedure used in the propose algorithm can be described as the 
following. 

Suppose the algorithm meet the local search criteria which already set in advance 
then the local search algorithm will be activated by the reaching of a certain iteration 
number and the local search procedure will repeat every fixed number of iteration. 

To perform the local search, firstly, a critical path – the path with the longest length 
from the first operation on any machine to the last operation on any machine – is 
identified. A single critical path is arbitrarily selected if there is more than one critical 
path. Any operation on the critical path is called a critical operation. The critical path is 
naturally decomposed into critical blocks. The block is a maximal subsequence of critical 
operations that are processed on the same machine. Therefore, two consecutive blocks 
require different machines to process those operations. 

A moving set of neighborhood is defined inside the block which contains at least three 
operations, any operation between the first and last operation in a critical block is 
moved to the beginning or the end of that critical block. Furthermore, a block which 
contains two operations, two operations will be simply swapped. 

For each move according to the defined set, if the fitness value is improved then the 
new solution and the new fitness value are updated. The local search procedure ends 
when all moves are completed. 

The reinitialize and local search strategy are added to the original algorithm in order 
to improve the quality of final solutions by making some attempts to escape from the 
local optimal. LocalSearchParticle(sSwarm.pParticle[j], ref rand) and 
ReInitSwarm()are new methods in PSO class. At the beginning of an iteration, if the 
reinitialize or local search condition are met, the swarm will respectively reinitialize or 
perform local search on its members instead of performing movement. Following is the 
C# implementation of GLNPSO for JSP. 
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public void Run(TextWriter t, bool debug) 
{  
   //PSO main iteration 
   double w = wmax; 
   double decr = (wmax - wmin) / Iter; 
   sSwarm = new Swarm(nPar, nDim); 
   InitSwarm(); 
   Evaluate(); 
   sSwarm.UpdateBest(NB); 
             
   if (debug) 
   { 
      sSwarm.EvalDispersion(); 
      sSwarm.EvalStatObj(); 
   } 
   for (int i = 1; i < Iter; i++) 
   {  
      bool reinit_locals = false; 
      if (((i - startLS) % LSiterval == 0) && (i >= startLS)) 
      { 
       for (int j=0; j<sSwarm.Member; j++) 
            LocalSearchParticle(sSwarm.pParticle[j], ref rand); 
       reinit_locals = true; 
      } 
      if (((i - startReinit) % ReInitIterval == 0) && (i >= startReinit)) 
      { 
       ReInitSwarm(); 
       reinit_locals = true; 
      } 
      if (!reinit_locals) 
      { 
       ## Generate random number u1, u2, u3, u4 ## 

 sSwarm.Move(w, cp, cg, cl, cn, u1, u2, u3, u4); 
} 
Evaluate(); 
sSwarm.UpdateBest(NB); 

      if (debug) 
      { 
         sSwarm.EvalDispersion(); 
         sSwarm.EvalStatObj(); 
      } 
      w -= decr; 
   } 

} 

** the code in ## … ##  contain the subroutine which can be found in the original code 
Figure 3.8: C# implementation of GLNPSO algorithm for JSP 

3.2.5. Migration strategy 

After a swarm met the stopping criteria, some particles will migrate to the next 
swarm, with random number, equal to the number of migrating particles which already 
set in advance as a percentage of migration. The migration strategy can also diversify 
the particles over the search space again. Consequently, the solution may be improved 
by exploring new area in the search space and exploiting the good flying experience from 
migrated particles. 

Call reinitialize 
and local search 
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Pratchayaborirak (2007) used this concept in his two-stage PSO algorithm. The first 
stage of the algorithm consists of k swarms which are serially executed using the same 
objective function. When a certain swarm is terminated, a percentage of particles will be 
randomly selected to migrate to the next swarm to join with the newly generated 
particles. This can help boost the convergence of solution by using information from the 
previous swarm. The first stage ends when the fourth swarm is terminated.  

In the second stage, equal numbers of particles are randomly selected from the four 
previous swarms to form a single swarm and the PSO algorithm is repeated until the 
stopping condition is met. The best result yields at the end of the second stage will be 
used as the best answer found. The two-stage PSO algorithm is performed in the Main 
class as shown in Figure 3.9. 

class MainClass 
{ 
public static void Main(string[] args) 
{    
## Read input from file ## 
JD  ## calculate dimension of particles based on JSP data ## 
       
int noPar = 10; 
int noIter = 200; 
int noNB = 5; 
double wMax = 0.9; 
double wMin = 0.4; 
double cP = 2; 
double cG = 2; 
double cL = 0; 
double cN = 0; 
string oFile = "MyPSO.xls"; 
 
double MigrateProp = 0.2; 
bool multiSwarm = true; 
int noSwarm = 5; 
 
int startReinit = 150; 
int ReInitIterval = 100; 
int startLS = 210; 
int LSinterval = 100; 
 
int noRep = 3 
// starting time and finish time using DateTime datatype 
DateTime start, finish;   
// elapsed time using TimeSpan datatype 
TimeSpan elapsed; 
## opening output file ## 
for(int i=0; i<noRep; i++) 
{ 
  Console.WriteLine("Replication {0}", i+1); 
  tw.WriteLine("Replication {0}", i+1); 
  // get the starting time from CPU clock 
  start = DateTime.Now; 
     
  // main program ... 
  PSO[]  subSwarm=new PSO[noSwarm-1]; 
  #region Activate sub-swarms 
  if (multiSwarm) 
  { 

 

parameters for two-
stage PSO algorithm

 
Parameters for local 
search and re-
initialize strategy 
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   for (int s = 0; s < noSwarm - 1; s++) 
   { 
     Console.WriteLine("Start swarm {0}", s); 
     subSwarm[s] = new spPSO(noPar, noIter, noNB, wMax, wMin, cP, cG, cL,  

    cN, Dimension, JD,ReInitIterval);
      if (s != 0) subSwarm[s].Migrate(subSwarm[s - 1].sSwarm, 

 subSwarm[s].sSwarm, MigrateProp);
      subSwarm[s].Run(tw, true); 
      subSwarm[s].DisplayResult(tw); 
      Console.WriteLine("Obj {0} ", 
subSwarm[s].sSwarm.pParticle[subSwarm[s].sSwarm.posBest].ObjectiveP[0]); 
     } 
    } 
  #endregion 
  Console.WriteLine("Start final swarm"); 
  PSO globalSwarm = new spPSO(noPar, noIter, noNB, wMax, wMin, cP, cG, cL, 

 cN, Dimension, JD, ReInitIterval);
  if (multiSwarm) 
   { 
      for (int s = 0; s < noSwarm - 1; s++) 
         globalSwarm.MigrateBest(subSwarm[s].sSwarm, globalSwarm.sSwarm, 1 

 / ((double)noSwarm - 1));
   } 
  globalSwarm.Run(tw, true);               
  globalSwarm.DisplayResult(tw);     
## display results ## 
} 
tw.Close(); 
} 
} 

** the code in ## … ##  contain the subroutine which can be found in the original code 
Figure 3.9: C# implementation of two-stage PSO algorithm 

In Figure 3.9, subSwarm[s].Migrate(subSwarm[s - 1].sSwarm, 

subSwarm[s].sSwarm, MigrateProp) is a new method in Swarm class to randomly 
migrate a proportion of particles from one swarm to another. On the other hand, 
globalSwarm.MigrateBest(subSwarm[s].sSwarm, globalSwarm.sSwarm, 1 / 

((double)noSwarm - 1)) is performed to equally collect top members in the sub-
swarms into a global swarm. The details of these methods are presented in source code. 

The coordinate of each location is in the file “\GLNPSO basic\PSO JSP\PSO 
basic\bin\Debug\JSP.txt” and the format of this file is:  

Number of jobs, number of machines 
For each job: 
 For each operation: machine ID, processing time 

 
  

Collect best members in 
previous swarms evolve a 
global swarm 

Migrate and evole 
sub-swarm 
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CHAPTER 4 

MULTI-OBJECTIVE OPTIMIZATION WITH PSO 
 

Previous chapters have shown how GLNPSO can be used to solve optimization 
problems with single objective. However, many real world applications required 
optimization models to handle more than one objective function. As a result, multi-
objective optimization (MO) becomes increasingly attractive to both practitioners and 
researchers. So far, there have been a large number of studies focusing on methodologies 
to deals simultaneously with more than one objective function. The mathematical model 
for a MO problem is given as follow: 

ԦሻݔԦ݂ሺ                     ݁ݖ݅݉݅݊݅݉ ൌ ሾ ଵ݂ሺݔԦሻ, ଶ݂ሺݔԦሻ, … , ௄݂ሺݔԦሻሿ (4.1) 

subject to:  

݃௜ሺݔԦሻ ൑ 0  ݅ ൌ 1,2, … ݉ (4.2) 
݄௜ሺݔԦሻ ൌ 0 ݅ ൌ 1,2, … ݈ (4.3) 

where ݔԦ is the vector of decision variables, ௜݂ሺݔԦሻ is a function of ݔԦ , ܭ is the number of 
objective function to be minimzed,  ݃௜ሺݔԦሻ and ݄௜ሺݔԦሻ are the constraint functions of the 
problem. 

4.1. Review of methodologies for multi-objective optimization 
One of the most intuitive methods to solve multi-objective problem is to combine the 

objectives into a single aggregated objective function. In this method, each objective 
function will be assigned a weight based on the preference of the decision makers and all 
of these weighted functions are linearly combined. The only remaining task is to use any 
available optimizer to find the solution for the problem with this single aggregated 
objective function. However, this approach has two major drawbacks. Firstly, a single 
solution is obtained based on a set of pre-defined, subjective weights on the objective 
functions. Thus the requirement of prior preference of the decision makers may not lead 
to a satisfactory result (another approach based on prior preference is goal programming 
which normally solve MO problem as a series of linear programs). Secondly, the decision 
maker’s knowledge about the range of each objective value may be limited. As a result, 
even with a preference in mind, the single solution obtained provides no possibility for 
tradeoffs of decisions. In order to be more objective, the approach based on a single 
aggregative objective function needs to be run multiple times to see the effect of the 
weights on the solutions obtained. Hence it is more preferable to provide means for the 
decision maker to find the tradeoff by identifying the non-dominated solutions or Pareto 
front, which usually consumes a relatively large amount of computational time. For that 
reason, many methods are developed to search for the Pareto front. In this case, multi-
objective Evolutionary Algorithm (EA) is the most commonly selected solution 
technique. 

 One of the earlier attempts to solve multi-objective optimization problems using 
Evolutionary Algorithm (MOEA) is Non-dominated Sorting Genetic Algorithm or NSGA 
(Srinivas and Deb, 1995). This method was commonly criticized for its high 
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computational complexity which made it inefficient with a large population size. 
Another problem with this method is that its effectiveness depends mostly on the pre-
defined sharing parameter. To address the drawbacks of the original NSGA, the new 
NSGA-II is proposed (Deb et al., 2002) by adopting a new non-dominated sorting 
procedure, an elitism structure, and a measurement of crowdedness. In their paper, 
NSGA-II had been demonstrated to outperform other MOEAs such as Pareto-archived 
evolutionary strategy (PAES) and strength- Pareto EA (SPEA).  

4.2. Pareto Optimality 
For the formulation 4.1-4.3, given two decision vectors ݔሬሬԦ, ݕԦ א ܴ஽, the vector ݔԦ is 

considered to dominate vector ݕԦ (denote ݔԦ ط ԦሻݔԦ), ݂݅ ௜݂ሺݕ ൑ ௜݂ሺݕԦሻ ݂݅׊ ݎ݋ ൌ 1,2, … , ݆׌ ݀݊ܽ ܭ ൌ
1,2, … |ܭ ௝݂ሺݔԦሻ ൏ ௝݂ሺݕԦሻ. 

As shown Figure 4.1, for the cases that neither ݔԦ ط Ԧݕ Ԧ norݕ ط  Ԧ  are calledݕ ݀݊ܽ Ԧݔ , Ԧݔ
non-dominated solutions or “trade-off” solutions. A non-dominated front ࣨ is defined as 
a set of non-dominated solutions if  ݔ׊ א ݕ׍ ,ࣨ א Ԧݕ|ࣨ ط  Ԧ . A Pareto Optimal front ࣪ is aݔ
non-dominated front which includes all solution ݔԦ non-dominated by any other ݕԦ א ࣠, Ԧݕ ്
࣠ Ԧ whereݔ א ܴ஽  is the feasible region.  

 
 

Figure 4.1: ݔԦ ط  Ԧ  for the case with two objective functionsݕ

4.3. Multi-objective optimization with PSO 
As discussed earlier, one of the approaches for solving problems with multiple 

conflicting objective functions is to search for Pareto optimal front, i.e., to search for the 
set of non-dominated solutions. This Pareto optimal front represents the best solution 
for the problems with multiple conflicting objective functions. It is quite a different 
proposition from searching for a single best point and it is necessary to modify the 
original framework of PSO. The key components to be modified include the following: 

• Storage of elite group or non-dominated solutions found so far 
• Selection of a reference particles (or leaders) to guide the swarm toward 

better positions 
• Movement strategy, how to use the reference particles as search guidance  

Ԧ݂ሺݔԦሻ

Ԧ݂ሺݕԦሻ
ଶ݂ሺݔԦሻ 

ଶ݂ሺݕԦሻ 

ଵ݂ሺݔԦሻ ଵ݂ሺݕԦሻ
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In the multi-objective optimization problems, the flying experience of the swarm 
needs to be stored as a set of non-dominated solutions instead of a single solution. In 
this case, the Elitist structure as mentioned in NSGA-II is adopted. After each update of 
particle position, the objective functions of each particle are evaluated and they must all 
be processed by a non-dominated sorting procedure. This sorting procedure identifies 
the group of particles in the swarm which are non-dominated by other particles and put 
all of these particles into an archive for the Elite group. Again, the Elite group is 
screened to eliminate inferior solutions, i.e., solutions that were dominated by those in 
the Elite group. As a result, the Elite group in the archive is the best non-dominated 
solutions found so far in the searching process of the swarm. 

When the Elite group is formed, one of the biggest challenges for most EAs is how to 
select the candidates among the Elite group to help guide the evolution of the 
population. The most common criterion is that the leader (or guidance) needs to lead the 
population to the less crowded areas to obtain a better spread of the final front. A 
successful implementation of this idea is given in NSGA-II with the introduction of 
crowding distance (CD) as a measure of the spread of the non-dominated front. This 
approach estimates the density of solutions surrounding a specific solution by 
calculating the average distance of two points on either side of this point along each of 
the objective (see Deb et al., 2002 for more details). The advantage of this approach is 
that it does not require a pre-determined sharing parameter in NSGA. Coello el al., 2002 
proposed a PSO algorithm with a geographically-based system to locate crowded 
regions. They divided the objective space into a number of hypercubes and then each 
member in the Elite archive is assigned to one of these hypercubes. After the archive is 
classified, a hypercube with smallest density is considered and one of its members is 
randomly selected to be used as the global guidance. 

Finally, the movement of particles is very critical to improve the quality of the 
Pareto front. Most of the proposed Multi-objective PSO (MOPSO) algorithms use only a 
single global guidance from the Elite group similar to the traditional PSO movement 
strategy. However, the existence of multiple candidates in the archive may open a large 
number of choices for movements. In section 4.4, several potential movement strategies 
are discussed as options to fully utilize the Elite archive as guidance for the search. 

In Figure 4.2, a PSO framework for multi-objective optimization problems is 
presented. This framework takes into account all the features that are mentioned above 
and the implementation of this framework is described in algorithm A1. The 
-ሺ࣭ሻ uses the sorting algorithm proposed in NSGA-II to identify non ݐݎ݋ܵ_݀݁ݐܽ݊݅݉݋݀_݊݋ܰ
dominated solutions. After each particle is evaluated, the set of non-dominated solutions 
will be updated and stored in the Elite group. The number of solutions in the Elite group 
is usually limited to reduce the computational time for sorting and updating procedures. 
When the number of non-dominated solutions exceeds the limit, the particles located in 
the crowded areas will be selectively removed, so the Elite group can still result in a 
good Pareto front. The two procedures ݈ܵ݁݁ܿ݁ܿ݊ܽ݀݅ݑܩ_ݐ ሺࣟሻ and ܷݕݐ݅ܿ݋݈݁ݒ_݁ݐܽ݀݌ሺԭሻ are 
movement strategy dependent and will be separately discussed in the next section. 
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Figure. 4.2: Framework for MOPSO 
 

A1. Algorithm for MOPSO 

i. Initialize the swarm ࣭ and set the velocities of all particle to zero 
ii. For each particle ݅ א  ࣭ with position Θ௜ 

Evaluate objective function ௞݂ሺΘ௟ሻ, ݇׊ ൌ 1,2, … ,   ܭ

iii. ࣭כ ՚ ࣭ is the set of non-dominated particles in כ࣭ -  ሺ࣭ሻ ݐݎ݋ܵ_݀݁ݐܽ݊݅݉݋݀_݊݋ܰ  
iv. Elite archive ࣟ ՚    ሻכ࣭ ڂ ሺࣟ ݐݎ݋ܵ_݀݁ݐܽ݊݅݉݋݀_݊݋ܰ
v. If the stopping criterion is satisfied, end procedure; otherwise, go to step vi 
vi. ܷݏ݉ݎ݁ݐ_ ݃݊݅݊ݎ݈ܽ݁_ ݈ܽ݅ܿ݋ݏ_݁ݐܽ݀݌ 
vii. ݁ܿ݊ܽ݀݅ݑ݃ ݈ܾܽ݋݈ܩ ԭ ՚   ሺࣟሻ ݁ܿ݊ܽ݀݅ݑܩ_ݐ݈ܿ݁݁ܵ
viii. ܷݕݐ݅ܿ݋݈݁ݒ_݁ݐܽ݀݌ሺԭሻ using equation (1.10) 
ix. ܷ݊݋݅ݐ݅ݏ݋݌_݁ݐܽ݀݌  by equation (1.11)  
x. Return to step ii 
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In this framework, the multiple social learning terms in GLNPSO are used to update 
the new velocity. As a result, the new velocity is influenced by four social terms: 
personal best, global best (global guidance), local best and near neighbor best. The global 
guidance is the most important term in this framework and it depends mainly on the 
movement strategy adopted by the swarm; therefore it will be discussed separately. The 
modifications for other terms are adjusted in this framework to make it work for MO 
problems. 

In MO problems, there are two situations when the personal best need to be 
updated. First, when the new position of a particle dominates its personal best 
experience, it certainly becomes the personal best. However, if the new position and its 
personal best are non-dominated, the issue to face is whether to update to the new value 
or not. Keeping the current personal best position helps the particle explore the local 
region deeper, which can lead to higher quality solutions. On the other hand, it is also 
desirable to move to new position to spread out the non-dominated front. Because each 
decision has its own advantages, the algorithm will randomly pick one of them to 
become the personal best.  

For the near neighbor best, a fitness distance ratio (FDR) which was originally 
developed to find the neighbor best are modified to handle multiple objective functions 
as shown in equation (4.4). 

ெைܴܦܨ ൌ
∑ %Δ୩

௄
௞ୀଵ

௜ௗߠ| െ ߰௢ௗ| ݎ݋݂  ݈݈ܽ ݀ ൌ 1 … ,ܦ ݅ ൌ 1 …  ܮ
(4.4) 

%Δ୩ ൌ
ሾ ௞݂ሺΘ୧ሻ െ ௞݂ሺΨ୭ሻሿ

| ௞݂ሺΘ୧ሻ|  

In equation (4.4), fk (.) is the kth objective function and θ୧ௗ, ψ୭ௗ are the values at 
dimension d of particle i and its neighbor o and D and L are the dimension of a particle 
and the number of particles in the swarm respectively (refer to Peram et al., (2003) and 
Veeramachaneni et al., (2003) for more details about FDR with single objective). In the 
implementation, a very small value ߝ should be included in the dominators to handle the 
cases that a dominator might become zero. The amount of improvement that can be 
made when a neighbor h is chosen is represented by %Δ୩. By using equation (4.4), the 
near neighbor best should be the one that is expected to guide a particle to a position 
that can achieve the most improvement across all objective functions. 

In order to prevent the particle from being too sensitive to every change of the 
swarm, the local best is only updated when the new local particles dominated the 
current best one.  

4.4. Movement strategies 
As mentioned in the previous sections, MO problems require the swarm to store its 

searching experience as a set of non-dominated solutions instead of a single best one. 
Then, a very key research question is how can a particle effectively use the knowledge of 
this Elite group to guide it to a better position? Because the target is to identify the near 
optimal Pareto front, the definition of a better position is more complex than that for the 
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cases of single objective optimization problems. In literature, the three common criteria 
to measure the quality of a non-dominated front ࣨare: 

• The average distance to the Pareto optimal front ࣪ 
• The distribution of non-dominated solutions in ࣨ 
• The spread of ࣨ in the multi-objective space 

Similar to any optimization problem, the gap between the solutions found and the 
true optimal solutions should be as small as possible. Moreover, the solutions should 
provide a good outline of the Pareto front so that the decision makers can make more 
informed decisions. Based on the above criteria, six movement strategies are proposed. 
These strategies are especially designed to obtain high quality Pareto front. The 
procedures to perform these movements will be included in step vii and viii of the 
MOPSO framework. 

4.4.1. Ms1: Pick a global guidance located in the least crowded areas 
This strategy aims at diversifying particles in the swarm so that they can put more 

effort in exploring the less crowded areas, thereby increasing the spread of the non-
dominated front. For that reason, a particle in the Elite group with fewer particles 
surrounding it is preferred when selecting the global guidance.  

The crowded distance CD estimates the density of solutions located around a specific 
solution by calculating the average distance of two points on either side of this point 
along each of the objectives. A procedure to calculate the crowding distance (CD) for 
each member in the Elite group is implemented as given in NSGA II. To make this 
paper self-contained, the algorithm to calculate CDs is given in algorithm CD below. 

Algorithm CD: ݁ܿ݊ܽݐݏ݅݀_݃݊݅݀ݓ݋ݎܿ_݁ݐ݈ܽݑ݈ܿܽܥ ሺࣟሻ (from Deb et al., 2002) 
ܮ ൌ |ࣟ|  
,݅ ݄ܿܽ݁ ݎ݋ܨ ݐ݁ݏ ࣟሾ݅ሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ 0  
  ݉ ݁ݒ݅ݐ݆ܾܿ݁݋ ݄ܿܽ݁ ݎ݋ܨ

 ࣟ ൌ ,ሺࣟݐݎ݋ݏ ݉ሻ  
 ࣟሾ1ሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ ࣟሾܮሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ ∞  
݅ ݎ݋ܨ  ൌ 1 ܮሺ ݋ݐ െ 1ሻ  

ࣟሾ݅ሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ ࣟሾ݅ሿ. ݁ܿ݊ܽݐݏ݅݀ ൅ ሺࣟሾ݅ ൅ 1ሿ. ݉ െ ࣟሾ݅ െ 1ሿ. ݉ሻ/ሺ ௞݂
௠௔௫ െ ௞݂

௠௜௡ሻ  

Particles with higher CDs are located in less crowded area and they are considered 
to be good candidates for global guidance in this movement strategy. ψ ԭ,ୢ and θ୧,ୢ are 
dimension d of the global guidance ԭ and particle i  in the swarm respectively.  

The movement direction of Ms1 is shown in Figure 4.3 and the pseudo-code for this 
movement strategy is presented in algorithm A2. In step i of algorithm A2, a procedure 
to calculate the crowding distance (CD) for each member in the Elite group ࣟ is called. 
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Figure 4.3: Movement strategy 1 in bi-objective space 

A2. Algorithm for Ms1 

i. ݁ܿ݊ܽݐݏ݅݀_݃݊݅݀ݓ݋ݎܿ_݁ݐ݈ܽݑ݈ܿܽܥ ሺࣟሻ 
ii. Sort  ࣟ by decreasing order of crowding distance (CD) values 

iii. Randomly select a particle ԭ from top t% of  ࣟ 
iv. Update global term in particle i movement by  

ܿ௚ݑ ሺψ ԭ,ୢ െ  θ୧,ୢ ሻ  for all dimension d with u ~ U(0,1) 

4.4.2. Ms2: Create the perturbation with Differential Evolution concept 
The fact that more than one global non-dominated solution exist has raised the 

questions of whether it is better to combine the knowledge of two or more members in 
the Elite group to guide a particle. In this strategy, the concept of Differential Evolution 
(DE), proposed by Price and Storn (1995) for continuous function optimization, is 
adopted to utilize the flying experience of two individual in the Elite group. The key idea 
behind DE is to use vector differences for perturbing the vector population. In the 
original DE algorithm, a new parameter vector is generated by adding the weighted 
difference between two population members to a third member (all of these vectors are 
randomly selected from the population). A fitness selection scheme similar to Genetic 
Algorithm (GA) is carried out to produce offspring to form new population. 

The inspiration for this strategy is that this PSO has the tendency to converge quite 
fast to some best solutions in the swarm. This is counterproductive since this can reduce 
its ability to search for a wider range of solutions in a Pareto front. Therefore, it is more 
desirable to have a mechanism to perturb the swarm and move its members to the new 
and less crowded areas. Figure 4 demonstrates the moving strategy Ms2 which adopts 
the DE concept to create the moving direction for a particle. The algorithm for Ms2 is 
presented in A3.  

The points in Figure 4.4 show the objective values of each particle in objective space; 
however, it is important to note that that the vectors also represent the corresponding 
positions of particles as well as their movements in positional space (and these vectors 
can only be plotted in higher dimension space). 
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Figure 4.4: Movement strategy 2 in bi-objective space 

A3. Algorithm for Ms2 

i. ݁ܿ݊ܽݐݏ݅݀_݃݊݅݀ݓ݋ݎܿ_݁ݐ݈ܽݑ݈ܿܽܥ ሺࣟሻ 
ii. Sort  ࣟ by decreasing order of crowding distance (CD) values 

iii. Randomly select a particle R1 from top t% of  ࣟ 
iv. Randomly select a particle R2 from bottom b% of  ࣟ  
v. Update global term in particle i movement by  

ܿ௚ݑ ሺψோଵ,ௗ   െ  ψோଶ,ௗሻ  for all dimension d with u ~ U(0,1) 

4.4.3. Ms3: Explore the unexplored space in the non-dominated front 
The two strategies discussed above focus mainly on moving particles to less crowded 

areas and expand the spread of the non-dominated front. Here, strategy Ms3 is aimed at 
filling the gap in the non-dominated front and hence improving the distribution of the 
solutions in the front. Figure 4.5 shows how the information in the Elite group is used to 
guide a particle to potential unexplored space within the current non-dominated front. 

 

Figure 4.5: Movement strategy 3 in bi-objective space 
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In this strategy, the first step is to identify the potential gap in the Elite group. 
When the gap is determined, a pair of vectors is used to represent the gap. Algorithm A4 
provides the procedure to identify pairs of unexplored vectors and how to move particle 
based on this information. 

A4. Algorithm for Ms3 

i. Identify the unexplored areas in  ࣟ 
For each objective functions fkሺ.ሻ 
Sort  ࣟ in increasing order of objective function fkሺ.ሻ 
For iൌ1 to | ࣟ| ‐1  

  Gap ൌ ௞݂ሺΘ୧ାଵሻ െ ௞݂ሺΘ୧ሻ  
  If Gap ൐ x% *ሺ ௞݂

௠௔௫ െ ௞݂
௠௜௡ሻ: 

   add pair ሺi,i൅1ሻ in unexplored list  ࣯ 
ii. Randomly select one pair ሺE1, E2ሻ from ࣯ 

iii. Update global term in particle i movement by  

ܿ௚ ݑ  ሾሺܧଵ,ௗ െ  θ୧,ୢሻ  ൅ ݎ  כ ሺܧଵ,ௗ െ ଶ,ௗሻሿܧ   for all dimension d with u, r ~ Uሺ0,1ሻ

The range of objective function fkሺ.ሻ in the Elite group is ሺ ௞݂
௠௔௫ െ ௞݂

௠௜௡ሻ. By using the 
condition Gap ൐ x% *ሺ ௞݂

௠௔௫ െ ௞݂
௠௜௡ሻ, it is expected that the final non‐dominated front will only 

include the gap less than x% of the any objective function range. Reducing the value of x can 
improve the distribution of the final front but, at the same time, it may distribute the effort of 
swarm across the front and slow down the process of searching for better solutions.  

4.4.4. Ms4: Combination of Ms1 and Ms2 
This strategy tries to balance between the exploration and exploitation abilities of 

Ms2. Therefore, instead of moving purely to new areas by DE concept, a component 
similar to Ms1 is added to the perturbation formula in A3 so that a particle not only 
explores the new region but also benefits from the flying experience of the Elite group to 
improve the solution quality. Ms4 uses the same algorithm as Ms2 with the following 
updating formula: 

ܿ௚ݑ ቂቀψோଵ,ௗ െ  θ୧,ୢ ቁ ൅ ሺψோଵ,ௗ െ ψோଶ,ௗሻቃ ൌ ܿ௚ݑ ቀ2ψோଵ,ௗ െ  θ୧,ୢ    െ  ψோଶ,ௗቁ

4.4.5. Ms5: Explore solution space with mixed particles 
Since each of the movement strategies has its own advantages which can have 

different contributions toward a high quality Pareto front, it would be beneficial to 
include more than one search strategy in the algorithm. One of the straightforward 
ways to perform this idea is to use a heterogeneous swarm, i.e., a single swarm with a 
mixture of particles with different movement strategies. It is preferable that the 
composition of a productive swarm should include groups of particles with the following 
characteristics: 

• Ones that prefer to explore based on its own experience and with some 
influence from its neighbors – Group 1 
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• Ones that prefer to follow the global trend but avoid the crowded areas (Ms1) 
– Group 2 

• Ones that like to explore new areas (Ms2) – Group 3 
• Ones that fill the gaps left by previous movements (Ms3) – Group 4 

In Ms5, these four groups of particles co-exist in the same swarm and all of their 
flying experience is stored in a common Elite archive. A particle of the first group will 
not directly use the global knowledge but will explore the space gradually based on its 
own experience and a partial knowledge of its neighbor. For that reason, these particles 
do not change their movement abruptly every time the global trend changed. This 
feature helps them to better explore the local region. The second group, on the other 
hand, searches by using the status of the Elite group and moves to the position that has 
not been well explored. In the cases that particles in the Elite group have distributed 
uniformly, members in this group will have similar movement behavior as those in the 
first group. The responsibility of particles in group 3 is to explore the border to increase 
the spread of the non-dominated fronts with their perturbation ability. Although the 
first three groups have tried to explore the search in many different directions, they may 
still leave some gaps unexplored because of their convergence at some segments on the 
Pareto front. The task of the last group is to move to fill these gaps so that the final 
front can have a better distribution. 

4.4.6. Ms6: Adaptive Weight Approach 
The sixth movement strategy Ms6 is the only one that does not use the global Elite 

group. The swarm follow Ms6 is divided into n + 1 sub-swarms with n is the number 
objective functions. The first n sub-swarms will search for the optimal solution 
corresponding to each objective functions just like the tradition PSO. The last sub-
swarm will minimize the adaptive weighted function as defined in Gen et al. (2008) by 
the following formula: 

ሻݔሺܨ ൌ ෍ ௞ሺݓ ௞݂ሺݔሻ െ ௞݂
௠௜௡ሻ

௡

௝ୀଵ

݁ݎ݄݁ݓ     ௞ݓ ൌ
1

௞݂
௠௔௫ െ ௞݂

௠௜௡  (4.5) 

4.5. M3PSO library 
It is noted that the traditional PSO algorithm needs to be changed to deal with MO 

problems. Therefore, a new library called M3PSO (Multi-strategy Multi-Learning-Term 
Multi-Objective Particle Swarm Optimization) is developed based on the original 
framework of GLNPSO and includes the suggested modifications proposed in previous 
sections as shown in Figure 4.2 and Algorithm A1. Basically, besides the available 
routines in GLNPSO, some additional classes and routines are created to deal with 
multi-objective problems. The new and modified components are listed below: 
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Class Name Type Description 

Particle 

NoObj Integer 
number of objective functions to be 
minimized 

Objective Array of 
real number 

the objective values or the fitness of the 
particle 

ObjectiveP Array of 
real number 

the objective values corresponding to 
BestP 

crowdDistance Real 

the crowding distance value which is 
used to indicate the crowdedness of the 
current position of the particle 

Trap 
Array of 
Integer 
number 

the indicator of how many iteration in 
which the value at a specific dimension 
stays unchanged 

type Integer 

the type of a particle (for movement 
strategy 5 and 6 as introduced in 
section 4.4) 

Swarm 

posBest 
Array of 
Integer 
number 

the index (or location) of global best 
member in the swarm 
(pParticle[postBest[k]] refers to the 
particle which found the position 
resulting in the best objective value of 
objective function k) 

MinObj/MaxObj 
Array of 

Real number

the minimal and maximal objective 
value found by the swarm through 
searching process 

AvgObj Array of 
Real number

the average objective values across all 
particles in the swarm 

movingStrategy Integer 
the index of movement strategy used by 
the swarm to explore the Pareto front 

particleMix 2D array of 
real number 

particleMix[i,0] and  particleMix[i,1] is 
the accumulative probabilities which 
are used indicate which particles in the 
swarm use movement strategy i 

constr Bool 
Indicator of whether the MO problem 
have constraints or not 

public void 
setMovingStrate Method Set the movement strategy of the 
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gy(int mS) swarm 

public void 
setParticleMix(
ArrayList pMix) 

Method 
Set the particle mix 

public void 
setConstraintMo
de(bool ctr) 

Method 
Set the value of constr 

private static 
void 
AssignUnexplore
P(Random rnd, 
ArrayList 
USpace, ref 
Particle E1, 
ref Particle 
E2) 

Method 

Select a pair of particles used to 
indicate the direction to unexplored 
areas as described in movement 
strategy 3 

private static 
void 
AssignGlobalP(R
andom rnd, 
ArrayList 
Elist, ref 
Particle P, ref 
Particle S, 
double topP, 
double topS) 

Method 

Select a particle located in less crowded 
area (P) and crowded areas (S) with the 
probability top and tops as described in 
movement strategy 1 and 2 

private double 
FDR_Calculate(i
nt n_temp, 
double FDRBest, 
int i, int j) 

Method 

Calculate the modified FDR index 

public void 
UpdateBest(int 
nbSize, Random 
rnd, bool 
activeNeighbor) 

Method 

Update learning terms for movement 
strategy 1 to 5 

public void 
UpdateBestSingl
e(int nbSize) 

Method 
Update learning terms for movement 
strategy 6 

PSO 

nObj Integer 
The number of objective functions to be 
minimized 

moveS Integer 
The movement strategy used by the 
swarm 

ElististP Array List 
The list of Elite solutions found through 
the search 

UnExploreSpace Array List 
The list of pairs of particles which used 
to indicate the direction to unexplored 
areas as described in movement 
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strategy 3 

MaxElististMemb
er Integer Upper limit of the ElististP 

parmix Array List 

The proportion of members in the 
swarm assigned to follow each 
movement strategies  

Constraint Bool 
Indicator of whether the MO problem 
have constraints or not 

TopEPerc Real 

The percentage of members on the top 
of the Elite group (in less crowded 
areas) which can be randomly picked to 
become the global guidance in 
movement strategy 1 and 2 

BotEPerc Real 

The percentage of members at the 
bottom  of the Elite group (in crowded 
areas) which can be randomly picked to 
become the global guidance in 
movement strategy 2 

GapPerc Real 

Percentage of the range (corresponding 
to each objective function) to identify 
the value which is used as a threshold 
to determine the gap in movement 
strategy 3. 

public void 
RecruitElite(Ar
rayList E) 

Method Recruit elite member from elite group E 

void 
updateElististG
roup(ArrayList 
Front) 

Method 
Update the elite group to sort out the 
dominated solutions 

public void 
SortEliteP(int 
nf, bool 
constr) 

Method 
Perform non-dominated sorting 
procedure on the elite group 

void 
crowding_Distan
ce_assignment(A
rrayList 
ElististP) 

Method 
Call the 
Crowding_Distance_Calculate_perObj 

procedure for each objective function 

private void 
Crowding_Distan
ce_Calculate_pe
rObj(ArrayList 

Method 

Method 
Calculate the crowding distance 
corresponding to each objective function 
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ElististP, int 
o) 
public virtual 
double[] 
Objective(Parti
cle p) 

Method 
Evaluate the all objective values of a 
particle  

4.6. A simple example of multi-objective optimization problem 
In this section, M3PSO is applied to solve a simple MO problem. For the ease of 

illustration, this problem deals with two objective functions but it can be easily modified 
to handle more than two objective functions. The problem below is the SCH problem 
which is normally used to test the effectiveness of MO algorithm. 

ሻݔଵ݂ሺ   ݁ݖ݅݉݅݊݅ܯ ൌ  ଶݔ

ଶ݂ሺݔሻ ൌ ሺݔ െ 2ሻଶ   
א ݔ ݁ݎ݄ܹ݁ ሾെ10ଷ, 10ଷሿ 

 
Similar to single objective optimization discussed in chapter 2, we have to determine 

the dimension of a particle, the method to evaluate the objective values, and the method 
to initialize the swarm. In general, M3PSO are designed so that problems can be easily 
formulated without worrying too much about the optimization algorithms. Figure 4.6 
shows how a new class is created to solve the problem with M3PSO. 

class spPSO : M3PSO 
{ 
   public spPSO(int nPar, int nIter, int nNB, double dwmax, double dwmin,  
   double dcp, double dcg, double dcl, double dcn, int maxE, int moveStr, 
ArrayList pm,double te,double be, double gap) 
   :base(nIter, nNB, dwmax, dwmin, dcp, dcg, dcl, dcn,maxE,moveStr,pm) 
   { 
     //define problem 
     int dimension=1;         //dimension of a particle is 1 
     bool constr = false;  //there is no constraint 
     int nObj=2;           //two objective functions to be minimized 
     if (moveStr==6)                        
        base.SetParameters(nPar,dimension,nObj+1,constr,te,be,gap); 
     else  
   base.SetParameters(nPar, dimension, nObj, constr, te, be, gap); 
     //number of particles, dimension,  
     //number of objective (+1 if ms6 is used, and +1 more if there are 
constraints in the model 
     //and constraint activator (true if there are any constrains in the 
model          
    } 
   public override void DisplayResult(TextWriter t) 
   { 
     t.WriteLine("No. NonDom: " + "\t" + "{0}",ElististP.Count); 
     for (int i = 0; i < this.ElististP.Count; i++) 
     { 
      for (int o = 0; o < ((Particle)this.ElististP[0]).NoObj; o++) 
      t.Write(((Particle)this.ElististP[i]).Objective[o].ToString()+"\t"); 
      t.WriteLine(); 
     } 
     t.WriteLine(""); 
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     t.WriteLine("Result:"); 
     t.WriteLine("-------");   
   } 
   public override double[] Objective(Particle p) 
   { 
     double[] obj=new double[p.NoObj]; 
     Function.SCH_Function(p, obj); 
     return obj; 
   }  
   public override void InitSwarm() 
   { 
     for (int i=0; i<sSwarm.Member; i++) 
     { 
       for (int j = 0; j < sSwarm.pParticle[i].Dimension; j++) 
       { 
        sSwarm.pParticle[i].Position[j] = -1000 + 2000 * rand.NextDouble(); 
        sSwarm.pParticle[i].Velocity[j] = 0; 
        sSwarm.pParticle[i].BestP[j] = sSwarm.pParticle[i].Position[j]; 
        sSwarm.pParticle[i].PosMin[j] = -1000; 
        sSwarm.pParticle[i].PosMax[j] =  1000; 
       } 
       for (int o=0;o<sSwarm.pParticle[i].NoObj;o++) 
           sSwarm.pParticle[i].ObjectiveP[o] = 1.7E308; 
     } 
     sSwarm.posBest=new int[sSwarm.pParticle[0].NoObj]; 
   } 
} 
class Function 
{ 
   public static void SCH_Function(Particle p, double[] x) 
   { 
     double var = p.Position[0]; 
     x[0] = Math.Pow(var, 2); 
     x[1] = Math.Pow(var - 2, 2); 
   } 
} 

Figure 4.6: Formulate SCH problem in C# 
 The formulation of MO problem is very similar to that of single objective 

optimization problem except for the function evaluation method which returns multiple 
objective values instead of a single value. The M3PSO’s parameters are defined in the 
main class as presented in Figure 4.7. 

class MainClass 
{ 
  public static void PSO(int fx,double[] PSOparas, int strategy, bool 
aniEnable, out double[] index, out ArrayList Pareto, out ArrayList Ani, out 
ArrayList AniS, out ArrayList Average) 
  { 
    ## Animation declaration ## 
    //parameter setting 
    int noIter = Convert.ToInt32(PSOparas[0]); 
    int noPar = Convert.ToInt32(PSOparas[1]); 
    double wMin = PSOparas[2]; 
    double wMax = PSOparas[3]; 
    int noNB = Convert.ToInt32(PSOparas[4]); 
    double cP = PSOparas[5]; 
    double cG = PSOparas[6]; 
    double cL = PSOparas[7]; 



High Performance Computing Group 45 Asian Institute of Technology 
 

    double cN = PSOparas[8]; 
    int maxE = Convert.ToInt32(PSOparas[9]); 
    double TopEp = PSOparas[10] / 100; 
    double BotEp = PSOparas[11] / 100; 
    double GapUnexplore = PSOparas[12] / 100; 
    int moveStrategy = strategy; 
    bool multiSwarm = false; 
    int rSeed = (int)PSOparas[17]; 
    int noRep = (int)PSOparas[18]; 
    // end parameter setting 
    if (moveStrategy == 6) 
      { 
        pMix.Add(0); pMix.Add((double)PSOparas[13] / 100); 
        pMix.Add(1); pMix.Add((double)PSOparas[14] / 100); 
        pMix.Add(2); pMix.Add((double)PSOparas[15] / 100); 
      } 
    if (moveStrategy == 5) 
      { 
        pMix.Add(0); pMix.Add((double)PSOparas[13] / 100); 
        pMix.Add(1); pMix.Add((double)PSOparas[14] / 100); 
        pMix.Add(2); pMix.Add((double)PSOparas[15] / 100); 
        pMix.Add(3); pMix.Add((double)PSOparas[16] / 100); 
      } 
    // starting time and finish time using DateTime datatype 
    DateTime start, finish; 
     // elapsed time using TimeSpan datatype 
            TimeSpan elapsed; 
    ## Write parameter to text ## 
    for (int i = 0; i < noRep; i++) 
      { 
        rSeed++; 
        AvgVal[i] = new ArrayList(); 
        Console.WriteLine("Replication {0}", i + 1); 
        tw.WriteLine("Replication {0}", i + 1); 
        // get the starting time from CPU clock 
        start = DateTime.Now; 
    // main program ... 
    M3PSO GlobalSwarm = new spPSO(fx,noPar, noIter, noNB, wMax, wMin, cP, 
     cG ,cL, cN, maxE, moveStrategy, pMix, TopEp, BotEp, GapUnexplore; 
    GlobalSwarm.SetRSeed(rSeed); 
    GlobalSwarm.Run(tw, true, aniEnable, AvgVal[i], out sAni, out sAni2); 
    // get the finishing time from CPU clock 
    finish = DateTime.Now; 
    elapsed = finish - start; 
    // display the elapsed time in hh:mm:ss.milli 
    ## Display output ## 
   } 
} 
** the code in ## … ##  contain the subroutine which can be found in the original code 

Figure 4.7: C# implementation of M3PSO algorithm 
The more generalized source code of this example, which includes a convenient 

interface and a list of test problems, can be found in “\GLNPSO manual\GLNPSO 
basic\PSO_MutiObjective\”.  This small application also provides the animation feature 
to help the user easily observe the movement behavior of the algorithm in bi-objective 
space as shown in the Figure 4.8. 
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Figure 4.8: Multi-objective optimizer with M3PSO 

Figure 4.8 shows the interface built for research purpose. The figure on the upper left 
corner presents the final Pareto front found by the M3PSO algorithm. The average 
objective value of each objective function through each step is shown in the figure on the 
lower left corner. The largest figure in the middle is used for animation. At each 
animation step, the elite members are represented by triangle point and the current 
position of each particle is represented by the circle point. The color of each point is used 
to identify the type of a particle (in movement strategy 5 and 6). Table 4.1 shows how 
meaning of colors used in animation screen. 

Table 4.1: Color set used for animation 
Color Ms1 Ms2 Ms3 Ms4 Ms5 Ms6 

Yellow Type 0 Type 0 Type 0 Type 0 Type 0 Type 0 
Gray  Na Na Na Na Type 1 Type 1 
Blue Na Na Na Na Type 2 Type 2 
Red Na Na Na Na Type 3 Na 

When movement strategies Ms1-Ms4 are used, all particles only follow single 
movement behavior so only one color is used. In movement strategy Ms5, type 0, 1, 2, 3 
indicate the particle in group 1, 2, 3, 4 respectively. Meanwhile, type 0 and type 1 in 
Ms6 represent the particles in the sub-swarms that minimize single objective function 1 
and 2 respectively. In Ms6, type 2 indicates the particles in the sub-swarm assigned to 
minimized adaptive weighted function. 

4.7. Portfolio optimization with M3PSO algorithm 
Portfolio Optimization (PO) is a critical problem in finance in order to find an optimal 

way to distribute a given budget on a set of available assets. Although many investment 
decisions are normally made on qualitative basis, there are an increasing number of 
quantitative approaches adopted.  

Select test 
problem 

Determine M3PSO 
parameters 

Select experiment 
options 

Animation 
control panel 
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The most seminal mathematical model was initiated by Markowitz more than 50 
years ago and there have been many extensions of his models since then. The classical 
mean-variance portfolio selection problem of proposed by Markowitz can be given as: 

෍ ݋݈݅݋݂ݐݎ݋݌ ݄݁ݐ ݂݋ ݁ܿ݊ܽ݅ݎܽݒ ݄݁ݐ ݃݊݅ݖ݅݉݅݊݅ܯ ෍ ௜௝ߪ௝ݓ௜ݓ

ே

௝ୀଵ

ே

௜ୀଵ

 

݋݈݅݋݂ݐݎ݋݌ ݄݁ݐ ݂݋ ݊ݎݑݐ݁ݎ ݀݁ݐܿ݁݌ݔ݁ ݄݁ݐ ݃݊݅ݖ݅݉݅ݔܽܯ ෍ ௜ߤ௜ݓ

ே

௜ୀଵ

  

 :݋ݐ ݐ݆ܾܿ݁ݑݏ

෍ ௜ݓ

ே

௜ୀଵ

ൌ 1 

0 ൑ ௜ݓ ൑ ݅׊ ݎ݋݂ 1 ൌ 1 … ܰ 
The basic assumption in this model is that asset returns follow multivariate normal 

distribution. The decision variable ݓ௜ is the proportion of the budget which is distributed 
to asset i. Parameter ߤ௜ and ߪ௜௝ are the expected return of asset i and the covariance 
between asset i and j. Because it is difficult to weigh the two criteria before the 
alternatives are known, the popular approach in this case is to search for the whole 
efficient frontier. In this section, we will use M3PSO library to solve the portfolio 
optimization problem.  

In this problem the decision variable ݓ௜ can be modeled as the particle position which 
ranging from 0 to 1. However, because the sum of all values of ݓ௜ must be equal to 1, 
positions of particles cannot guarantee to provide feasible solutions. Fortunately, an 
infeasible solution can be easily repaired to become a feasible one. To illustrate the 
encoding/decoding scheme, we use a simple example with 4 assets. The data for this 
problem is provided in Table 4.2. The encoding/decoding scheme for the portfolio 
optimization problem is shown in Figure 4.9. 

Table 4.2: Four asset example 

Asset Expected 
Return 

Std. 
Deviation 

Corelation Matrix 
1 2 3 4 

1 0.004798 0.046351 1 0.118368 0.143822 0.252213 
2 0.000659 0.030586 1 0.164589 0.099763 
3 0.003174 0.030474 1 0.083122 
4 0.001377 0.035770 1 

݂݋ ݊ݎݑݐ݁ݎ ݀݁ݐܿ݁݌ݔ݁ ݄݁ܶ ݄݁ݐ ݋݈݅݋݂ݐݎ݋݌ ෍ ݅ߤ݅ݓ ൌ 0.0027082
ܰ

݅ൌ1

 

݋݈݅݋݂ݐݎ݋݌ ݄݁ݐ ݂݋ ݁ܿ݊ܽ݅ݎܽݒ ݄݁ܶ ෍ ෍ ݓ݆݅ݓ ݆݅ߪ ൌ 0.0004889
ܰ

݆ ൌ1

ܰ

݅ൌ1

 

 
Figure 4.9: Encoding/decoding scheme for classical portfolio optimization problem 
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Similar to the TSP problem in chapter 3, we built a separate class to get the input 
data, pre-calculate the covariance matrix and calculate the objective values based on 
positions of particles at each iteration.  The source code and the test problems can be 
found at “\GLNPSO manual\GLNPSO basic\PSO_MutiObjective-Portfolio 
Optimization\”. The defaulted name of the input file is “Example.txt” and the format of 
this file is give as: 

number of assets (N) 
for each asset i (i=1,...,N): 
   mean return, standard deviation of return 
for all possible pairs of assets: 
   i, j, correlation between asset i and asset j 

Figure 4.10 shows the application to solve portfolio optimization problem based on 
M3PSO library.  

 
Figure 4.10: Portfolio optimizer with M3PSO library 

 

4.8. Multi-objective optimization in Engineering Design 
Our objective is to find the dimension of an I-beam as shown in Figure 4.11, which 

have to satisfy the geometric and strength constraints and minimize following objective 
functions: 

• Cross section area of beam  
• Static deflection of the beam under a certain force 

 The mathematical model of this problem by Coello and Christiansen1 are given as 
follows: 
                                                            
1 Coello and Christiansen (1999), MOSES: a multiple objective optimization tool for engineering 
design. J Eng Optim 1999; 31(3):337–68. 
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ሺݔଵ െ ଷݔସሻଷݔ2
ଷ ൅ ଶݔସݔ2

ଷ ൒ 0  
 

10 ൑ ଵݔ ൑ 80,        10 ൑ ଶݔ ൑ 50, 0.9 ൑ ଷݔ ൑ 5,              0.9 ൑ ସݔ ൑ 5 

 
Figure 4.11: I-Beam design problem 

Since the objective functions of this problem are very well-defined, we can directly 
use the values of particle’s position as those of decision vector ݔሬሬԦ. Therefore, the 
dimension of particle needs is 4 and each dimension will have the upper and lower 
bounds corresponding to those defined in the mathematical model. The implementation 
of this problem can be found in the group of test problems in section 4.6. The illustrative 
example of the Pareto solution for this problem is given Figure 4.12. 

 
Figure 4.12: Solve I-Beam design problem with M3PSO 
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