
Object LibraryObject Library
for Evolutionary
T h iTechniques
(ET‐Lib)()

USER’S MANUAL

Object Library for Evolutionary
Techniques (ET-Lib)

version 1.0

Su Nguyen
T. J. Ai

Voratas Kachitvichyanukul

Industrial & Manufacturing Engineering
School of Engineering & Technology

Asian Institute of Technology
THAILAND

April 2010

High Performance Computing Group 2 Asian Institute of Technology

ACKNOWLEDGEMENT

The researchers working in the projects are supported by: Royal Thai
Government Scholarship Program, the RTG-AIT Joint Research Funding 2008.

Key Contributors

Voratas Kachitvichyanukul
T. J. Ai

Su Nguyen

Content of Public Release 1.0

User’s Manual, Version 1.0
Dynamic Link Library

Job Shop Scheduling Example
TSP Example,

Multi-objective PSO:
Portfolio Optimization

Beam Design Optimization

High Performance Computing Group 3 Asian Institute of Technology

PREFACE

The first version of the library of Evolutionary Techniques (ET-Lib) was developed in
2008 at the Asian Institute of Technology (AIT), Thailand. The purpose of this library is
to provide the researchers and students who are working on various optimization
problems with a general and effective tool based on various evolutionary techniques.
The first release contains mainly the Particle Swarm Optimization algorithm with
multiple social learning terms (GLNPSO).

Currently, GLNPSO algorithm is completely written in C# as an object-oriented
library. The library includes all the necessary classes and routines which can be used to
implement the PSO algorithm. Users with little programming knowledge can still use
classes provided in this ET-library to solve basic problems. For more complicated
problems, it is recommended that the users are familiar with C# programming language
at elementary level.

This manual is organized into 4 chapters. The first chapter will provide users who are
new to the PSO concept the first introduction to this algorithm. Chapter 2 is used to
explain the structure of the GLNPSO algorithm and a basic example are given to
explain how to solve a simple problem with GLNPSO algorithm. In chapter 3, some
practical applications of GLNPSO are presented with the introduction to such additional
features as re-initialization, and multi-stage PSO. Finally, Chapter 4 discusses an
extension of GLNPSO algorithm to deal with multi-objective optimization problems.

High Performance Computing Group 4 Asian Institute of Technology

CHAPTER 1

INTRODUCTION TO PARTICLE SWARM OPTIMIZATION

1.1. Overview

Particle Swarm Optimization (PSO) is a population based random search method
that imitates the physical movements of the individuals in the swarm as a searching
mechanism. The first PSO algorithm was proposed by Kennedy and Eberhart in 1995.
The key concept of PSO is to learn from the cognitive knowledge of each particle and the
social knowledge of the swarm to guide particles to better position.

In the PSO algorithm, a solution of a specific problem is represented by an n-
dimensional position of a particle. A swarm of fixed number of particles is generated and
each particle is initialized with a random position in a multidimensional search space.
Each particle flies through the multidimensional search space with a velocity. In each
step of the iteration the velocity of each particle is adjusted based on three components:

• current velocity of the particle which represents the inertia term or
momentum of the particle

• the position corresponds to the best solution achieved so far by the particle
normally referred as personal best

• the position corresponds to the best solution achieved so far by all the
particles, i.e., the global best

Once the velocity of each particle is updated, the particles are then moved to the new
positions. The cycle repeats until the stopping criterion is met. The specific expressions
used in the original particle swarm optimization algorithm will be discussed in the next
section.

1.2. The Basic Form of PSO

The notations used to describe the algorithms are given here and followed by a
summary description of the original PSO algorithm.

Notations:

τ : Iteration index; 1 Tτ = …
l : Particle index, 1l L= …
h : Dimension index, 1h H= …
u : Uniform random number in the interval []0,1
()w τ : Inertia weight in the thτ iteration
()lhω τ : Velocity of the thl particle at the thh dimension in the thτ iteration
()lhθ τ : Position of the thl particle at the thh dimension in the thτ iteration

lhψ : Personal best position (pbest) of the thl particle at the thh dimension
ghψ : Global best position (gbest) at the thh dimension

pc : Personal best position acceleration constant

gc : Global best position acceleration constant

High Performance Computing Group 5 Asian Institute of Technology

maxθ : Maximum position value
minθ : Minimum position value
lΘ : Vector position of the thl particle, []1 2l l lHθ θ θ"
lΩ : Vector velocity of the thl particle, []1 2l l lHω ω ω"
lΨ : Vector personal best position of the thl particle, []1 2l l lHψ ψ ψ"
gΨ : Vector global best position, 1 2g g gHψ ψ ψ⎡ ⎤⎣ ⎦"

lR The thl set of solution
()lZ Θ : Fitness value of lΘ

Algorithm PSO

1. Initialize L particles as a swarm:
Set iteration 1τ = . Generate the thl particle with random position ()l τΘ in the range

min max,θ θ⎡ ⎤⎣ ⎦ , velocity () 0l τΩ = and personal best l lΨ =Θ for 1l L= … .

2. Decode particles into solutions:
For 1l L= … , decode ()l τΘ to a solution lR . (This step is only needed if the particles
are not directly representing the solutions).

3. Evaluate the particles:
For 1l L= … , compute the performance measurement of lR , and set this as the
fitness value of ()l τΘ , represented by ()lZ Θ .

4. Update pbest:
For 1l L= … , update l lΨ =Θ , if () ()l lZ ZΘ < Ψ .

5. Update gbest:
For 1l L= … , update g lΨ =Ψ , if () ()l gZ ZΨ < Ψ .

6. Update the velocity and the position of each thl particle:

() () () ()1
1

Tw w T w w T
T

ττ −
= + ⎡ − ⎤⎣ ⎦−

 (1.1)

() () () ()() ()()1lh lh p lh lh g gh lhw c u c uω τ τ ω τ ψ θ τ ψ θ τ+ = + − + − (1.2)

() () ()1 1lh lh lhθ τ θ τ ω τ+ = + + (1.3)

If () max1lhθ τ θ+ > , then

() max1lhθ τ θ+ = (1.4)

()1 0lhω τ + = (1.5)

If () min1lhθ τ θ+ < , then

() min1lhθ τ θ+ = (1.6)

High Performance Computing Group 6 Asian Institute of Technology

()1 0lhω τ + = (1.7)

7. If the stopping criterion is met, i.e., Tτ = , stop. Otherwise, 1τ τ= + and return to
step 2.

The basic version of PSO algorithm described above contains the inertia term with
position boundary and linear decreasing weight introduced by Shi and Eberhart (1998)
to explore the solution space in the initial phase and following the cognitive and social
term to exploit the personal best and global best in the final phase. In addition, this
algorithm is applicable for minimization problem.

1.3. Key parameters of PSO

This section discusses possible qualifications and effects of each parameter on the
performance of PSO. The parameters analyzed in this section consist of the population
size (L), two acceleration constants (cp and cg), and the inertia weight (w). The discussion
is presented below.

Population size (L)

This parameter represents the number of particles in the system. It is one important
parameter of PSO, because it affects the fitness value and computation time.
Furthermore, increasing size of population always increases computation time, but
might not improve the fitness value. Generally speaking, too small a population size can
lead to poor convergence while too large a population size can yield good convergence at
the expense of long running time.

Acceleration constants (cp and cg)

The constants cp and cg are the acceleration constants of the personal best position
and the global best position, respectively. Each acceleration constant controls the
maximum distance that a particle is allowed to move from the current position to each
best position. The new velocity can be viewed as a vector which combines the current
velocity, and the vectors of the best positions. Each best position’s vector consists of the
direction which is pointed from the particle’s current position to the best position, and
the magnitude of the movement can be between 0 to the acceleration constant of the best
position times the distance between the best position and the current position.

Inertia weight (w)

The new velocity is produced from the combination of vectors. One of these vectors is
the current velocity. Inertia weight is a weight to control the magnitude of the current
velocity on updating the new velocity. For w = c, it means that this vector has the same
direction of the current velocity, and the magnitude which equals to c times the current
velocity’s magnitude. This weight is one of the parameters to control the search behavior
of the swarm.

High Performance Computing Group 7 Asian Institute of Technology

Velocity boundary (Vmax) and Position boundary (θmax)

Some PSO algorithms are implemented with bound on velocity. For each dimension,
the magnitude of a velocity cannot be greater than Vmax. This parameter is one of
parameters to control the search behavior of the swarm. The smaller value of this
parameter makes the particles in the population less aggressive in the search.

In the PSO particle movement mechanism, it is also common to limit the search space
of particle location, i.e. the position value of particle dimension is bounded in the
interval min max,θ θ⎡ ⎤⎣ ⎦ . The use of position boundary θmax is to force each particle to move

within the feasible region to avoid solution divergence. Hence, the position value of
certain particle dimension is being set at the minimum or maximum value whenever it
moves beyond the boundary. In addition, the velocity of the corresponding dimension is
reset to zero to avoid further movement beyond the boundary.

More detailed discussions of PSO behaviors in literatures include Ozcan and Mohan
(1999), Carlisle and Dozier (2000, 2001), Beielstein, Parsopoulos, and Vrahatis (2002).

1.4. GLNPSO

Pongchairerks and Kachitvichyanukul (2005, 2009) proposed PSO with multiple
social structures that were built by combining previously published structures. There
are two additional social structures which are local best (lbest) and near neighbor best
(nbest); this structure was presented in Veeramachaneni et al. (2003). Local best
receives the best fitness value from sub group; each particle can update the velocity
based on the best performance of neighbors in the population that is related on indices
of particles. Near neighbor best obtains the maximum Fitness Distance Ratio (FDR)
among all other particles.

The GLNPSO algorithm was described below following the notation that was added
from previous algorithm.

Notation

τ : Iteration index; 1 Tτ = …
l : Particle index, 1l L= …
h : Dimension index, 1h H= …
u : Uniform random number in the interval []0,1
()w τ : Inertia weight in the thτ iteration
()lhω τ : Velocity of the thl particle at the thh dimension in the thτ iteration
()lhθ τ : Position of the thl particle at the thh dimension in the thτ iteration

lhψ : Personal best position (pbest) of the thl particle at the thh dimension
ghψ : Global best position (gbest) at the thh dimension
L
lhψ : Local best position (lbest) of the thl particle at the thh dimension
N
lhψ : Near neighbor best position (nbest) of the thl particle at the thh

pc : Personal best position acceleration constant

gc : Global best position acceleration constant

lc : Local best position acceleration constant

High Performance Computing Group 8 Asian Institute of Technology

nc : Near neighbor best position acceleration constant
maxθ : Maximum position value
minθ : Minimum position value
lΘ : Vector position of the thl particle, []1 2l l lHθ θ θ"
lΩ : Vector velocity of the thl particle, []1 2l l lHω ω ω"
lΨ : Vector personal best position of the thl particle, []1 2l l lHψ ψ ψ"
gΨ : Vector global best position, 1 2g g gHψ ψ ψ⎡ ⎤⎣ ⎦"
L
lΨ : Vector local best position of the thl particle, 1 2

L L L
l l lDψ ψ ψ⎡ ⎤⎣ ⎦"

lR The thl set of solution
()lZ Θ : Fitness value of lΘ

FDR : Fitness-distance-ratio

Algorithm GLNPSO

1. Initialize L particles as a swarm:
Set iteration 1τ = . Generate the thl particle with random position ()l τΘ in the range

min max,θ θ⎡ ⎤⎣ ⎦ , velocity 0lΩ = and personal best l lΨ =Θ for 1l L= … .

2. Decode particles into solutions:
For 1l L= … , decode ()l τΘ to a solution lR . (This step is only needed if the particles
are not directly representing the solutions).

3. Evaluate the particles:
For 1l L= … , compute the performance measurement of lR , and set this as the
fitness value of lΘ , represented by ()lZ Θ .

4. Update pbest:
For 1l L= … , update l lΨ =Θ , if () ()l lZ ZΘ < Ψ .

5. Update gbest:
For 1l L= … , update g lΨ =Ψ , if () ()l gZ ZΨ < Ψ .

6. Update lbest:
For 1l L= … , among all pbest from K neighbors of the thl particle, set the personal
best which obtains the least fitness value to be L

lΨ .
7. Generate nbest:

For 1l L= … , and 1h H= … , set N
lh ohψ ψ= that maximizing fitness-distance-ratio (FDR

) for 1o L= … . Where FDR is defined as
() ()l o

lh oh

Z Z
FDR

θ ψ
Θ − Ψ

=
−

 which l o≠ (1.8)

8. Update the velocity and the position of each thl particle:

() () () ()1
1

Tw w T w w T
T

ττ −
= + ⎡ − ⎤⎣ ⎦−

 (1.9)

High Performance Computing Group 9 Asian Institute of Technology

() () () ()() ()()
()() ()()

1lh lh p lh lh g gh lh

L N
l lh lh n lh lh

w c u c u

c u c u

ω τ τ ω τ ψ θ τ ψ θ τ

ψ θ τ ψ θ τ

+ = + − + −

+ − + −
 (1.10)

() () ()1 1lh lh lhθ τ θ τ ω τ+ = + + (1.11)

If () max1lhθ τ θ+ > , then

() max1lhθ τ θ+ = (1.12)

()1 0lhω τ + = (1.13)

If () min1lhθ τ θ+ < , then

() min1lhθ τ θ+ = (1.14)

()1 0lhω τ + = (1.15)

9. If the stopping criterion is met, i.e. Tτ = , stop. Otherwise, 1τ τ= + and return to step
2.

GLNPSO has been successfully applied to solve many NP-hard combinatorial
problems. For examples, job shop scheduling problems, vehicle routing problems,
multicommodity distribution network design problems, continuous (no-wait) flow shop
problems, multi-mode resource constrained project scheduling problems, etc.

High Performance Computing Group 10 Asian Institute of Technology

CHAPTER 2

STUCTURE OF GLNPSO LIBRARY

Before discussing each component in PSO library, we will demonstrate how GLNPSO

work by a simple example. The source code of the example can be found in “\GLNPSO
basic\Basic Models\PSO basic”. The user can run this example with Microsoft Visual
C# 2005 or the free Microsoft Visual C # 2008 Express Editions which is free to
download at http://www.microsoft.com/express/download/.

2.1. First example

In this example, our objective is to minimize an objective
function ݂ሺݔԦሻ ൌ ∑ ሾ0.01ݔ௜

ଶ ൅ 2 כ sinሺݔ௜ሻ ሿ௡
௜ୀଵ Ԧݔ ݁ݎ݄݁ݓ ൌ ሼݔଵ, … , ,௡ሽݔ ௜ݔ א ሾെ100,100ሿ ݅׊ ݄ݐ݅ݓ.

The graph of this function with n=1 is shown in Figure. 2.1. This is an extensive version
of sphere function which includes some noise to make it more interesting. Here,
GLNPSO library is applied to find the optimal solution כݔሬሬሬሬԦ to minimize݂ሺݔԦሻ. For the ease
of interpretation of the results and the dynamic of PSO algorithm, we start by solving
the problem with n=1.

Figure 2.1: Function with multiple local minimum

For this simple problem, only problem formulation needs to be defined and this part

is written in GLNPSO.cs. The implementation of GLNPSO on this problem is presented
in Figure 2.2. In order to create a new class of PSO to solve a specific problem, three
important questions needs to be clarified:

• What is the dimension of a particle?
• How to evaluate the fitness of a particle?
• How can the swarm be initialized?

In case that n=1, the position of a particle is defined as a real number ݔ which ranges
from -100 to 100 and the particle’s dimension is 1. The objective function ݂ሺݔԦሻ ൌ ݂ሺݔሻ is

 100  50 50 100

 2

2

4

6

8

10

12

High Performance Computing Group 11 Asian Institute of Technology

used to measure the fitness of each particle (GLNPSO is designed to minimize the
objective function, in case of maximization we just simply change the sign of the
objective function to convert it to minimization problem). A particle is considered to be
located at better position if its position results in a smaller objective value (in figure 2.2.
the objective evaluation method is defined so that it can also handle the more
generalized problem where n>1). The initial swarm is created by randomly generating
the position of each particle in the swarm, which means that each position will follow
the Uniform Distribution with the lower bound of -100 and upper bound of 100.

Class spPSO : PSO
{ // this part is the problem specific code
 // Minimize f(x) = 0.001x^2 + 2*Sin(x), -100<=x<=100
public spPSO(int nPar, int nIter, int nNB, double dwmax, double dwmin,
double dcp, double dcg, double dcl, double dcn):
base(nIter, nNB, dwmax, dwmin, dcp, dcg, dcl, dcn)
{
 base.SetDimension(nPar, 1);
}
//Define objective function
public override double Objective(Particle P)
{
 double obj = 0;
 for (int i = 0; i < P.Dimension; i++)
 obj += 0.001 * Math.Pow(P.Position[i], 2) + 2 *
 Math.Sin(P.Position[i]);
 return obj;
}
//Initialize a swarm
public override void InitSwarm()
{
 for(int i=0; i<sSwarm.Member; i++)
 {
 for (int j = 0; j < sSwarm.pParticle[i].Dimension; j++)
 {
 sSwarm.pParticle[i].Position[j] = -100+200*rand.NextDouble();
 sSwarm.pParticle[i].Velocity[j] = 0;
 sSwarm.pParticle[i].BestP[j] = sSwarm.pParticle[i].Position[j];
 sSwarm.pParticle[i].PosMin[j] = -100;
 sSwarm.pParticle[i].PosMax[j] = 100;
 }
 sSwarm.pParticle[i].ObjectiveP = 1.7E308;
 }
 sSwarm.posBest = 0;
}
}

Figure 2.2: Define a new PSO class for single variable example
Figure 2.3 shows the main class in which we define the PSO parameters and run the

PSO algorithm with these parameters. In this experiment, only the global best and
personal best is used to guide the swarm like the traditional PSO algorithm. The
acceleration constants for local best and neighbor best are set to 0, and therefore the
position of the local best and neighbor best do not influence the movement of particles in
the swarm. The search space is explored by a swarm of size 10 in 200 iterations and
three replications are performed. The final solutions and some statistics are reported in
“MyPSO.xls” at the same folder of the execution file (\GLNPSO basic\PSO basic\PSO
basic\bin\Debug).

Dimension

Randomize initial positions
and velocity and set boundary
of position for each particle

Calculate
Objective
Value

High Performance Computing Group 12 Asian Institute of Technology

class MainClass
{
public static void Main(string[] args)
{
int noPar = 10;
int noIter = 200;
int noNB = 5;
double wMax = 0.9;
double wMin = 0.4;
double cP = 2;
double cG = 2;
double cL = 0;
double cN = 0;
string oFile = "MyPSO.xls";
int noRep = 3
// starting time and finish time using DateTime datatype
DateTime start, finish;
// elapsed time using TimeSpan datatype
TimeSpan elapsed;

// opening output file
 TextWriter tw = new StreamWriter(oFile);
 tw.WriteLine("{0} Number of Particle ", noPar);
 tw.WriteLine("{0} Number of Iteration ", noIter);
 tw.WriteLine("{0} Number of Neighbor ", noNB);
 tw.WriteLine("{0} Parameter wmax ", wMax);
 tw.WriteLine("{0} Parameter wmin ", wMin);
 tw.WriteLine("{0} Parameter cp ", cP);
 tw.WriteLine("{0} Parameter cg ", cG);
 tw.WriteLine("{0} Parameter cl ", cL);
 tw.WriteLine("{0} Parameter cn ", cN);
 tw.WriteLine("{0} Output File Name ", oFile);
 tw.WriteLine("");
for(int i=0; i<noRep; i++)
{
 Console.WriteLine("Replication {0}", i+1);
 tw.WriteLine("Replication {0}", i+1);
 // get the starting time from CPU clock
 start = DateTime.Now;

 // main program ...
 PSO myPSO = new spPSO(noPar, noIter, noNB, wMax, wMin, cP, cG, cL, cN);
 myPSO.Run(tw, true);
 myPSO.DisplayResult(tw);
 // get the finishing time from CPU clock
 finish = DateTime.Now;
 elapsed = finish - start;
 // display the elapsed time in hh:mm:ss.milli
 tw.WriteLine("{0} is the computational time", elapsed.Duration());
 tw.WriteLine("");
}
tw.Close();
}
}

Figure 2.3: Main class for single variable problem
In three replications, PSO needs less than 100 iterations to find the optimal solution.

The average fitness and best fitness of a replication can be found in the output file and
is presented in Figure 2.4 to show how fast PSO can converge to the optimal solution.

Define PSO
parameters

Create new PSO object
and pass the PSO
parameters

High Performance Computing Group 13 Asian Institute of Technology

Figure 2.4: PSO performance in single variable problem

To help the reader have a better understanding of the dynamics of PSO algorithm, an
animated version of this simple example is created (\GLNPSO basic\Basic
Models\PSO_Visual). The screen shot of this application is shown in Figure 2.5. The
user can choose the PSO parameters directly from the interface as well as select the
function to be optimized. The upper left chart is to plot the function and the final
solution found by PSO. The lower left chart shows the average of objective values for all
the particles in the swarm at each iteration to check the convergence of the algorithm.
In this application, users can perform a simple animation in x-y axis to observe the
movement of the swarm during the searching process. The red circle points indicate
current positions of particles. The personal best position of a particle is represented by
an orange diamond point and finally, the green triangle point is the global best position
found by the swarm. There are two options for animation so that the user can either
choose to let the program automatically simulate all steps in PSO algorithm or run step
by step (forward or backward) to observe the movement behavior carefully. In the step
animation mode, the line connecting the position of a particle and its personal best
position as well as the global best position is drawn to illustrate the direction for the
movement. The user can exploit this feature to test the sensitivity of PSO parameters on
the movement of the swarm. The 3D version of this application is also available at
“\GLNPSO basic\Basic Models\PSO_Visual - 3D” as shown in Figure 2.6.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2

98

198

298

398

498

598

698

798

0 50 100 150 200 250

Be
st
 F
it
ne

ss

A
ve
ra
ge

 F
it
ne

ss

Average Fitness

Best Fitness

High Performance Computing Group 14 Asian Institute of Technology

Figure 2.5: 2D Visual presentation of GLNPSO algorithm

Figure 2.6: 3D Visual presentation of GLNPSO algorithm

High Performance Computing Group 15 Asian Institute of Technology

2.2. GLNPSO components

In the remainder of this chapter, the structure of GLNPSO provided in ET-library is
discussed in detail. In Figure 2.7, the class view of GLNPSO is presented. Generally,
there are three important classes required for GLNPSO: Particle, Swarm and PSO.

Figure 2.7: Class view for GLNPSO in ET-library

2.2.1. Particle class
Particle is the basic class in ET-Lib which includes all the information related to a

particular particle. Here are the definitions of attributes of a particle:

Name Type Description

Position Array of
real number

m-dimension position of the particle

Dimension Integer the dimension of particles’ positions

PosMin/PosMax Array of
real number

the lower and upper bounds of position of at each
dimension

Velocity Array of
real number

m-dimension velocity of the particle

Objective Real the objective value or the fitness of the particle

BestP Array of
real number

m-dimension position of the particle which stores
its personal best experience

ObjectiveP Real the objective value corresponding to BestP

Particle
Class

Fields

BestP
Dimension
localBest
Neighbor
Objective
ObjectiveP
Position
PosMax
PosMin
Velocity

Methods

Particle

Swarm
Class

Fields

AvgObj
Dispersion
MaxObj
Member
MinObj
posBest
pParticle
VelIndex

Methods

DisplayBest
EvalDispersion
EvalStatObj
EvalVelIndex
Move
Swarm
UpdateBest

PSO
Class

Fields

cg
cl
cn
cp
Iter
NB
nDim
nPar
rand
sSwarm
wmax
wmin

Methods

DisplayResult
Evaluate
InitSwarm
Objective
PSO
Run
SetDimension

spPSO

PSO
Class

Methods

DisplayResult
InitSwarm
Objective
spPSO

MainClass
Class

Methods

Main

User’s Model

High Performance Computing Group 16 Asian Institute of Technology

localBest Integer the index (or location) of local best member in the
swarm

Neighbor Array of
Real

m-dimension position which is identified by
comparing the relative position and objective and
position of the particle with other members in the
swarm

The constructor public Particle(int nDim) is used to create a new particle. The

parameter nDim indicates the Dimension of a particle.

2.2.2. Swarm class

A swarm is consisted of many particles flying in the search space to look for good
position. The swarm class includes all the required routines to govern the movement
behavior of its members (particles). The attributes and methods of this class are listed
below:

Attributes

Name Type Description

Member Integer number of particles in the swarm (population size)

pParticle Array of
Particle

a set of particles in the swarm

MinObj/MaxObj Real the minimal and maximal objective value found by
the swarm through searching process

AvgObj Real the average objective values across all particles in
the swarm

postBest Integer the index (or location) of global best member in the
swarm (pParticle[postBest] refers to the particle
which found the position resulting in the best
objective value)

VelIndex Real the velocity index to measure how fast the swarm is
moving

Dispersion Real the Dispersion index to measure the dispersion of
particles in the swarm

High Performance Computing Group 17 Asian Institute of Technology

Methods
public Swarm(int nPar, int nDim) create a new swarm by determine the number

of particles in the swarm (nPar)and the
Dimension of each particle)

public void DisplayBest() show the information of the global best particle
on the screen

public void Move(double w,
double cp, double cg, double cl,
double cn, double[,] r1,
double[,] r2, double[,] r3,
double[,] r4)

calculate velocities of particles and move them
to new positions. The parameters passed to this
method include the inertia weight, acceleration
constants and random numbers.

public void UpdateBest(int
nbSize)

update information related to personal best,
global best, local best and neighbor best after
each flying attempt.

public void EvalStatObj() update statistics related to the objective values
of particles in the swarm.

public void EvalDispersion() evaluate Dispersion index
public void EvalVelIndex() evaluate Velocity index

2.2.3. PSO class

All the PSO parameters and routines are stored in this class. Some methods in this
class are problem-oriented and can be overridden when formulating new optimization
problems. In general, it has following attributes and methods:

Attributes:
Name Type Description

cp/cg/cl/cn Real personal/global/local/neighbor acceleration constant

Iter Integer number of iterations

NB Integer number of neighbor

nDim Integer dimension of particles in a swarm

nPar Integer Number of particles

Rand random
stream

random object used to generate random number

sSwarm Swarm the swarm used in the PSO algorithm

wmax/wmin Real the maximal/minimal inertia weight (normally the
inertia weight in our the default GLNPSO is
linearly reduced at each iteration from wmax to
wmin)

High Performance Computing Group 18 Asian Institute of Technology

Methods
public virtual void
DisplayResult(TextWriter t)

write the results of GLNPSO to a predefined
output file t

public virtual double
Objective(Particle p)

objective function

void Evaluate() Objective(Particle p) is called to evaluate
the objective value of each particle in the
sSwarm

public virtual void InitSwarm() initialize sSwarm with random particles

public PSO(int nIter, int nNB,
double dwmax, double dwmin,
double dcp, double dcg, double
dcl, double dcn)

create a new PSO object by passing all PSO
parameters

public void Run(TextWriter t,
bool debug)

perform GLNPSO algorithm

public void SetDimension(int
par, int dim)

set swarm size and particle’s dimension

The GLNPSO algorithm is implemented in Run method. The basic framework of this
algorithm is similar to that of the algorithm introduced in section 1.4. The algorithm
first initialize new swarm with user’s predefined parameters such as number of particle,
and dimension of a particle. After a random swarm is created, their fitness (objective
value) is evaluated and the learning terms are updated. Then, the swarm starts to
evolve until the stopping condition is met. The dispersion index and statistics collections
routines can be called optionally. The C# implementation of this algorithm is presented
in Figure 2.8.

When designing this library, our objective is to minimize the users’ effort to rewrite

the PSO algorithm. To solve an optimization problem with GLNPSO, the users only
need to focus on objective function evaluation procedure (encoding/decoding approach) to
make the program faster and more effective in finding high quality solutions. For easy
problem such as the first example, a simple class defined in Figure 2.2 is all the user
needs to create to use GLNPSO in ET-library. For more complicated problems, some
modifications in GLNPSO routines such as movement strategies, local search, and re-
initialization may be added as required. In the next chapter, we introduce some
practical applications of GLNPSO and also show the flexibility of the design.

High Performance Computing Group 19 Asian Institute of Technology

public void Run(TextWriter t, bool debug)
{
 //PSO main iteration
 double w = wmax;
 double decr = (wmax - wmin) / Iter;
 sSwarm = new Swarm(nPar, nDim);
 InitSwarm();
 Evaluate();
 sSwarm.UpdateBest(NB);

 if (debug)
 {
 sSwarm.EvalDispersion();
 sSwarm.EvalStatObj();
 }
 for (int i = 1; i < Iter; i++)
 {
 ## Generate random number u1, u2, u3, u4 ##

sSwarm.Move(w, cp, cg, cl, cn, u1, u2, u3, u4);
Evaluate();
sSwarm.UpdateBest(NB);

 if (debug)
 {
 sSwarm.EvalDispersion();
 sSwarm.EvalStatObj();
 }
 w -= decr;
 }
}

** the code in ## … ## contain the subroutine which can be found in the original code
Figure 2.8: C# implementation of GLNPSO algorithm

High Performance Computing Group 20 Asian Institute of Technology

CHAPTER 3

GLNPSO’s APPLICATIONS

3.1. Traveling Salesman Problem (TSP)
The Traveling Salesman Problem (TSP) is a traditional problem which is normally

used as a benchmark for many optimization methods. In TSP, a list of locations is given
and the task is to find the tour that minimizes the total distance through all locations
provided that each location can only be visited once.

For instance, the salesman begins his tour at location 0 and need to visit N location
before coming back to the starting location. Our objective is to find the shortest path
ߨ ൌ ሼ݈ଵ, ݈ଶ, … , ݈ேሽ for this task given that no location will be revisited (except for location
0). An example of a TSP’s solution is shown in Figure 3.1. With a set of predetermined
locations, a N+1 by N+1 distance matrix ܦ is defined and the distance, time, or the cost
to travel from location i to location j is defined by ܦሾ݅, ݆ሿ. The mathematical model of this
problem can be simply:

,ሾ0ܦ ݁ݖ݅݉݅݊݅ܯ ݈ଵሿ ൅ ∑ ,ሾ݈௞ܦ ݈௞ାଵሿ ൅ ,ሾ݈ேܦ 0ሿ ேିଵ
௞ୀଵ , (3.1) ݔ݁݀݊݅ ݊݋݅ݐܽܿ݋݈ ݄݁ݐ ݏ݅ ௞݈ ݄ݐ݅ݓ

Figure 3.1: TSP solution ߨ ൌ ሼ݈ଵ, ݈ଶ, … , ݈ହሽ

It is well known that TSP is in the class of NP-complete problems that the
computational time to find the optimal solution increase exponentially with the number
of locations. For that reason, a lot of heuristic approaches have been proposed for this
problem. In this section, the TSP is solved by using the GLNPSO algorithm. Different
from the example in chapter 2, the particle’s positions of TSP cannot be directly used to
calculate the objective value (total distance). Instead, particles must be decoded to get
TSP’ solutions. The encoding/decoding scheme is presented in Figure 3.2.

High Performance Computing Group 21 Asian Institute of Technology

Location

Particle’s position

Traveling route ߨ

Evaluate Objective value
,ሾ0ܦ ݈ଵሿ ൅ ෍ ,ሾ݈௞ܦ ݈௞ାଵሿ ൅ ,ሾ݈ହܦ 0ሿ

ସ

௞ୀଵ

ൌ ሾ0,3ሿܦ ൅ ሾ3,1ሿܦ ൅ ሾ1,2ሿܦ ൅ ሾ2,5ሿܦ ൅ ሾ5,4ሿܦ ൅ ሾ4,0ሿܦ

Figure 3.2: Encoding/Decoding approach for TSP with N=5
In figure 3.2, the position of a particle is an array of real number randomly

distributed from 0 to 1. Each position in the m-dimension position is used to indicate the
priority of a location. The locations with smaller position values will be visited before
those with larger position values. In the decoding method, the traveling is determined
by sorting the particle’s position in the ascending order. When the route ߨ has been
constructed, the total distance of the tour is calculated.

Figure 3.3: TSP optimizer with GLNPSO library

High Performance Computing Group 22 Asian Institute of Technology

At each iteration, the fitness (objective value) of each particle in the swarm is
evaluated by this decoding procedure. The user can find the source code of the
application in Figure 3.3 at “\GLNPSO basic\Applications\PSO_Visual_TSP\”. The
coordinate of each location is in the file "\GLNPSO
basic\Applications\PSO_Visual_TSP\PSO basic_visual_TSP\bin\DebugLocations.txt”
and the format of this file is:

Number of locations
For each location: x-coordinate, y-coordinate

3.2. Job Shop Scheduling (JSP)
The job shop scheduling problem (JSP) is a combinatorial optimization problem in

which a set of jobs need to be scheduled on a set of machines in order to optimize a
certain criterion followed by the constraints that each job has the precedence and
deterministic time-span which are known in advance. Each sequencing job that consists
of n operations will be processed on a set of m machines; hence, there are a total of nm
activities (operations) involved in such a job shop scheduling problem. In Table 3.1, an
example of JSP with 4 jobs and 3 machines are given and a feasible solution of this
problem is illustrated in Figure 3.4.

Table 3.1 The 4×3 example of JSP

Figure 3.4: Feasible solution for a job shop scheduling problem

Small size instances of the JSP can be solved within reasonable computational time
by exact algorithms. However, when the size of problem is increased, the computational
time of the exact approaches grow exponentially. Accordingly, many researchers develop
heuristic techniques to achieve near optimal solution instead. Nevertheless, the
heuristic approaches are problem specific and they might not be applicable to all
situations; thus, meta-heuristics are investigated to improve the quality of the solution
as well as increase the computational speed.

High Performance Computing Group 23 Asian Institute of Technology

3.2.1. JSP’s model

In this section, we will create a model of this problem with GLNPSO to minimize the
makespan Cmax (maximum completion time of all operations). Following is the
mathematical model of JSP:

Notations in the JSP

Indices:
j : The thj job in the problem, { }nj ,...,1=
k : The thk machine in the problem, { }mk ,...,1=

Decision variable:
kjx , : The start time of job j on machine k .

kjjy ,', : 1 if job j is scheduled before job j′ on machine k .
 0 Otherwise.
Parameters:

m : The number of machines.
n : The number of jobs.

kjp , : The process time of job j on machine k .

jr : The ready time of job j .

jd : The due date of job j .
M : An arbitrary large number.

Objectives:

The objective functions are frequently to minimize any of the performance measures
as the following. Some commonly used objectives in the JSP include the followings;

● Minimize: { }kjkjkj px ,,,max +
Subject to:
Precedence constraints kjkjkj xpx ′≤+ ,,, kkj ′∀ ,, (3.2)

Conflict constraints ()kjjkjkjkj yMxpx ,,,,, 1 ′′ −+≤+ kjj ,, ′∀ (3.3)

 kjjkjkjkj yMxpx ,,,,, ′′′ +≤+ kjj ,, ′∀ (3.4)

Readiness constraints jkj rx ≥, kj,∀ (3.5)

Nonnegative constraints 0, ≥kjx kj,∀ (3.6)

 binaryy kjj ,', kjj ,, ′∀ (3.7)

3.2.2. Encoding/Decoding

It is obvious that the solutions for JSP cannot be directly represented as the m-
dimension position as introduced in chapter 2. For that reason, we will use
encoding/decoding method so as to the solutions of this problem can be expressed as
particles’ positions which are evolved through PSO algorithm. Then, the position is
decoded to get the feasible solution to evaluate the objective value. In this example, we

High Performance Computing Group 24 Asian Institute of Technology

use an array of real numbers to represent the priority of each operation that needs to be
scheduled. The schematic illustration of this encoding/decoding procedure for JSP in
table 3.1 is shown in Figure 3.5.

Figure 3.5: Encoding/Decoding procedure

with the operation-based representation of a particle

First, each solution is encoded in a particle’s position as an array of real numbers
which are randomly generated in range [0, 1]. The dimension of each particle equals to
the number of jobs multiplied by the number of machines. In this example as shown in
Table 3.1, there are 4 jobs and 3 machines; thus, the dimension of particle for this
example equals to 12.

At each step in PSO algorithm, particles are decoded to get feasible schedules. The m-
repetition of job numbers permutation which was first introduced by Tasgetiren et al.
(2005) is applied along with sorting list rule. Firstly, the continuous numbers inside
particle will be sort then the permutation of 3-repetition of 4 jobs will be applied. After
that, the operation-based approach by Cheng et al. (1996) is used to represent a
schedule. The advantage of this approach is that any permutation of this representation
always leads to a feasible schedule. Nevertheless, it is possible that some of different
representations could possibly generate the same schedule. The particle as shown
previously is used, corresponding to the small size of JSP which is already mentioned.

High Performance Computing Group 25 Asian Institute of Technology

The decoded particle is then transferred to a schedule by taking the first operation
from the list, the second and so on. During the schedule generation, each operation is
allocated to a required machine in the best available processing time without delaying
other scheduled operation. The procedure yields an active schedule. For instance O122

(Job 1, Operation 2, Machine 2) is allocated to the machine 2 at time 3. It cannot be
scheduled before time 3 because the first operation of Job 1 is being processed.

The source code for JSP with GLNPSO can be found in the manual folder, which
mainly based on PSO algorithm proposed by Pratchayaborirak (2007). The main
different between this structure of this model and that of the example in chapter 2 is the
introduction of some specific classes to store data of JSP and perform decoding
procedure and evaluate objective value (except makespan, several other objective values
can be easily calculated after particles are decoded). The general view of this model is
given in Figure 3.6.

Figure 3.6: GLNPSO model for JSP

3.2.3. Reinitialize strategy

During the iterations, the particles are often trapped in a deep local minimum which
can cause trivial movement of the whole swarm. As a result, the reinitialize strategy is
applied to diversify the particles over the search space once again. Consequently, the
system could escape from that local trap. This approach can be applied to enhance PSO
as shown below.

Suppose that the algorithm met the re-initialize criteria which has been set in
advance then the re-initialize algorithm will start when the certain iteration number is
reached and the procedure will be repeated again every fixed number of iteration. To
accomplish the re-initialize strategy, a pre-defined number of particles are randomly
selected for re-initialization. This number is defined by the reinitialized ratio multiply
by the number of particles. In addition, the gbest particle is excluded from the selection.
The personal memories of each selected particle are reinitialized by randomly
regenerating its position, resetting its velocity to zero, and resetting pbest to null.

GLNPSO

 JSP class

 Decoding
class

Get JSP’s
data

Dimension

Position
Objective value

JSP’s
data

High Performance Computing Group 26 Asian Institute of Technology

3.2.4. Local search strategy

In general, a local search may apply to a certain group of particles in the swarm to
enhance the exploitation of search space. The local search typically attempts to improve
quality of the solution by searching the better solutions around its neighbors. In this
study, the neighborhood search adopts the critical block (CB) neighborhood of Yamada
and Nakano (1995). Concept of the search method is to move an operation inside a
critical block to the beginning or the end of that critical block. Figure 3.7 presents the
critical path and the set of neighborhood move according to the CB neighborhood.

Figure 3.7: The CB Neighborhood

The local search procedure used in the propose algorithm can be described as the
following.

Suppose the algorithm meet the local search criteria which already set in advance
then the local search algorithm will be activated by the reaching of a certain iteration
number and the local search procedure will repeat every fixed number of iteration.

To perform the local search, firstly, a critical path – the path with the longest length
from the first operation on any machine to the last operation on any machine – is
identified. A single critical path is arbitrarily selected if there is more than one critical
path. Any operation on the critical path is called a critical operation. The critical path is
naturally decomposed into critical blocks. The block is a maximal subsequence of critical
operations that are processed on the same machine. Therefore, two consecutive blocks
require different machines to process those operations.

A moving set of neighborhood is defined inside the block which contains at least three
operations, any operation between the first and last operation in a critical block is
moved to the beginning or the end of that critical block. Furthermore, a block which
contains two operations, two operations will be simply swapped.

For each move according to the defined set, if the fitness value is improved then the
new solution and the new fitness value are updated. The local search procedure ends
when all moves are completed.

The reinitialize and local search strategy are added to the original algorithm in order
to improve the quality of final solutions by making some attempts to escape from the
local optimal. LocalSearchParticle(sSwarm.pParticle[j], ref rand) and
ReInitSwarm()are new methods in PSO class. At the beginning of an iteration, if the
reinitialize or local search condition are met, the swarm will respectively reinitialize or
perform local search on its members instead of performing movement. Following is the
C# implementation of GLNPSO for JSP.

High Performance Computing Group 27 Asian Institute of Technology

public void Run(TextWriter t, bool debug)
{
 //PSO main iteration
 double w = wmax;
 double decr = (wmax - wmin) / Iter;
 sSwarm = new Swarm(nPar, nDim);
 InitSwarm();
 Evaluate();
 sSwarm.UpdateBest(NB);

 if (debug)
 {
 sSwarm.EvalDispersion();
 sSwarm.EvalStatObj();
 }
 for (int i = 1; i < Iter; i++)
 {
 bool reinit_locals = false;
 if (((i - startLS) % LSiterval == 0) && (i >= startLS))
 {
 for (int j=0; j<sSwarm.Member; j++)
 LocalSearchParticle(sSwarm.pParticle[j], ref rand);
 reinit_locals = true;
 }
 if (((i - startReinit) % ReInitIterval == 0) && (i >= startReinit))
 {
 ReInitSwarm();
 reinit_locals = true;
 }
 if (!reinit_locals)
 {
 ## Generate random number u1, u2, u3, u4 ##

 sSwarm.Move(w, cp, cg, cl, cn, u1, u2, u3, u4);
}
Evaluate();
sSwarm.UpdateBest(NB);

 if (debug)
 {
 sSwarm.EvalDispersion();
 sSwarm.EvalStatObj();
 }
 w -= decr;
 }

}

** the code in ## … ## contain the subroutine which can be found in the original code
Figure 3.8: C# implementation of GLNPSO algorithm for JSP

3.2.5. Migration strategy

After a swarm met the stopping criteria, some particles will migrate to the next
swarm, with random number, equal to the number of migrating particles which already
set in advance as a percentage of migration. The migration strategy can also diversify
the particles over the search space again. Consequently, the solution may be improved
by exploring new area in the search space and exploiting the good flying experience from
migrated particles.

Call reinitialize
and local search

High Performance Computing Group 28 Asian Institute of Technology

Pratchayaborirak (2007) used this concept in his two-stage PSO algorithm. The first
stage of the algorithm consists of k swarms which are serially executed using the same
objective function. When a certain swarm is terminated, a percentage of particles will be
randomly selected to migrate to the next swarm to join with the newly generated
particles. This can help boost the convergence of solution by using information from the
previous swarm. The first stage ends when the fourth swarm is terminated.

In the second stage, equal numbers of particles are randomly selected from the four
previous swarms to form a single swarm and the PSO algorithm is repeated until the
stopping condition is met. The best result yields at the end of the second stage will be
used as the best answer found. The two-stage PSO algorithm is performed in the Main
class as shown in Figure 3.9.

class MainClass
{
public static void Main(string[] args)
{
Read input from file ##
JD ## calculate dimension of particles based on JSP data ##

int noPar = 10;
int noIter = 200;
int noNB = 5;
double wMax = 0.9;
double wMin = 0.4;
double cP = 2;
double cG = 2;
double cL = 0;
double cN = 0;
string oFile = "MyPSO.xls";

double MigrateProp = 0.2;
bool multiSwarm = true;
int noSwarm = 5;

int startReinit = 150;
int ReInitIterval = 100;
int startLS = 210;
int LSinterval = 100;

int noRep = 3
// starting time and finish time using DateTime datatype
DateTime start, finish;
// elapsed time using TimeSpan datatype
TimeSpan elapsed;
opening output file ##
for(int i=0; i<noRep; i++)
{
 Console.WriteLine("Replication {0}", i+1);
 tw.WriteLine("Replication {0}", i+1);
 // get the starting time from CPU clock
 start = DateTime.Now;

 // main program ...
 PSO[] subSwarm=new PSO[noSwarm-1];
 #region Activate sub-swarms
 if (multiSwarm)
 {

parameters for two-
stage PSO algorithm

Parameters for local
search and re-
initialize strategy

High Performance Computing Group 29 Asian Institute of Technology

 for (int s = 0; s < noSwarm - 1; s++)
 {
 Console.WriteLine("Start swarm {0}", s);
 subSwarm[s] = new spPSO(noPar, noIter, noNB, wMax, wMin, cP, cG, cL,

 cN, Dimension, JD,ReInitIterval);
 if (s != 0) subSwarm[s].Migrate(subSwarm[s - 1].sSwarm,

 subSwarm[s].sSwarm, MigrateProp);
 subSwarm[s].Run(tw, true);
 subSwarm[s].DisplayResult(tw);
 Console.WriteLine("Obj {0} ",
subSwarm[s].sSwarm.pParticle[subSwarm[s].sSwarm.posBest].ObjectiveP[0]);
 }
 }
 #endregion
 Console.WriteLine("Start final swarm");
 PSO globalSwarm = new spPSO(noPar, noIter, noNB, wMax, wMin, cP, cG, cL,

 cN, Dimension, JD, ReInitIterval);
 if (multiSwarm)
 {
 for (int s = 0; s < noSwarm - 1; s++)
 globalSwarm.MigrateBest(subSwarm[s].sSwarm, globalSwarm.sSwarm, 1

 / ((double)noSwarm - 1));
 }
 globalSwarm.Run(tw, true);
 globalSwarm.DisplayResult(tw);
display results ##
}
tw.Close();
}
}

** the code in ## … ## contain the subroutine which can be found in the original code
Figure 3.9: C# implementation of two-stage PSO algorithm

In Figure 3.9, subSwarm[s].Migrate(subSwarm[s - 1].sSwarm,

subSwarm[s].sSwarm, MigrateProp) is a new method in Swarm class to randomly
migrate a proportion of particles from one swarm to another. On the other hand,
globalSwarm.MigrateBest(subSwarm[s].sSwarm, globalSwarm.sSwarm, 1 /

((double)noSwarm - 1)) is performed to equally collect top members in the sub-
swarms into a global swarm. The details of these methods are presented in source code.

The coordinate of each location is in the file “\GLNPSO basic\PSO JSP\PSO
basic\bin\Debug\JSP.txt” and the format of this file is:

Number of jobs, number of machines
For each job:
 For each operation: machine ID, processing time

Collect best members in
previous swarms evolve a
global swarm

Migrate and evole
sub-swarm

High Performance Computing Group 30 Asian Institute of Technology

CHAPTER 4

MULTI-OBJECTIVE OPTIMIZATION WITH PSO

Previous chapters have shown how GLNPSO can be used to solve optimization
problems with single objective. However, many real world applications required
optimization models to handle more than one objective function. As a result, multi-
objective optimization (MO) becomes increasingly attractive to both practitioners and
researchers. So far, there have been a large number of studies focusing on methodologies
to deals simultaneously with more than one objective function. The mathematical model
for a MO problem is given as follow:

ԦሻݔԦ݂ሺ ݁ݖ݅݉݅݊݅݉ ൌ ሾ ଵ݂ሺݔԦሻ, ଶ݂ሺݔԦሻ, … , ௄݂ሺݔԦሻሿ (4.1)

subject to:

݃௜ሺݔԦሻ ൑ 0 ݅ ൌ 1,2, … ݉ (4.2)
݄௜ሺݔԦሻ ൌ 0 ݅ ൌ 1,2, … ݈ (4.3)

where ݔԦ is the vector of decision variables, ௜݂ሺݔԦሻ is a function of ݔԦ , ܭ is the number of
objective function to be minimzed, ݃௜ሺݔԦሻ and ݄௜ሺݔԦሻ are the constraint functions of the
problem.

4.1. Review of methodologies for multi-objective optimization
One of the most intuitive methods to solve multi-objective problem is to combine the

objectives into a single aggregated objective function. In this method, each objective
function will be assigned a weight based on the preference of the decision makers and all
of these weighted functions are linearly combined. The only remaining task is to use any
available optimizer to find the solution for the problem with this single aggregated
objective function. However, this approach has two major drawbacks. Firstly, a single
solution is obtained based on a set of pre-defined, subjective weights on the objective
functions. Thus the requirement of prior preference of the decision makers may not lead
to a satisfactory result (another approach based on prior preference is goal programming
which normally solve MO problem as a series of linear programs). Secondly, the decision
maker’s knowledge about the range of each objective value may be limited. As a result,
even with a preference in mind, the single solution obtained provides no possibility for
tradeoffs of decisions. In order to be more objective, the approach based on a single
aggregative objective function needs to be run multiple times to see the effect of the
weights on the solutions obtained. Hence it is more preferable to provide means for the
decision maker to find the tradeoff by identifying the non-dominated solutions or Pareto
front, which usually consumes a relatively large amount of computational time. For that
reason, many methods are developed to search for the Pareto front. In this case, multi-
objective Evolutionary Algorithm (EA) is the most commonly selected solution
technique.

 One of the earlier attempts to solve multi-objective optimization problems using
Evolutionary Algorithm (MOEA) is Non-dominated Sorting Genetic Algorithm or NSGA
(Srinivas and Deb, 1995). This method was commonly criticized for its high

High Performance Computing Group 31 Asian Institute of Technology

computational complexity which made it inefficient with a large population size.
Another problem with this method is that its effectiveness depends mostly on the pre-
defined sharing parameter. To address the drawbacks of the original NSGA, the new
NSGA-II is proposed (Deb et al., 2002) by adopting a new non-dominated sorting
procedure, an elitism structure, and a measurement of crowdedness. In their paper,
NSGA-II had been demonstrated to outperform other MOEAs such as Pareto-archived
evolutionary strategy (PAES) and strength- Pareto EA (SPEA).

4.2. Pareto Optimality
For the formulation 4.1-4.3, given two decision vectors ݔሬሬԦ, ݕԦ א ܴ஽, the vector ݔԦ is

considered to dominate vector ݕԦ (denote ݔԦ ط ԦሻݔԦ), ݂݅ ௜݂ሺݕ ൑ ௜݂ሺݕԦሻ ݂݅׊ ݎ݋ ൌ 1,2, … , ݆׌ ݀݊ܽ ܭ ൌ
1,2, … |ܭ ௝݂ሺݔԦሻ ൏ ௝݂ሺݕԦሻ.

As shown Figure 4.1, for the cases that neither ݔԦ ط Ԧݕ Ԧ norݕ ط Ԧ are calledݕ ݀݊ܽ Ԧݔ , Ԧݔ
non-dominated solutions or “trade-off” solutions. A non-dominated front ࣨ is defined as
a set of non-dominated solutions if ݔ׊ א ݕ׍ ,ࣨ א Ԧݕ|ࣨ ط Ԧ . A Pareto Optimal front ࣪ is aݔ
non-dominated front which includes all solution ݔԦ non-dominated by any other ݕԦ א ࣠, Ԧݕ ്
࣠ Ԧ whereݔ א ܴ஽ is the feasible region.

Figure 4.1: ݔԦ ط Ԧ for the case with two objective functionsݕ

4.3. Multi-objective optimization with PSO
As discussed earlier, one of the approaches for solving problems with multiple

conflicting objective functions is to search for Pareto optimal front, i.e., to search for the
set of non-dominated solutions. This Pareto optimal front represents the best solution
for the problems with multiple conflicting objective functions. It is quite a different
proposition from searching for a single best point and it is necessary to modify the
original framework of PSO. The key components to be modified include the following:

• Storage of elite group or non-dominated solutions found so far
• Selection of a reference particles (or leaders) to guide the swarm toward

better positions
• Movement strategy, how to use the reference particles as search guidance

Ԧ݂ሺݔԦሻ

Ԧ݂ሺݕԦሻ
ଶ݂ሺݔԦሻ

ଶ݂ሺݕԦሻ

ଵ݂ሺݔԦሻ ଵ݂ሺݕԦሻ

High Performance Computing Group 32 Asian Institute of Technology

In the multi-objective optimization problems, the flying experience of the swarm
needs to be stored as a set of non-dominated solutions instead of a single solution. In
this case, the Elitist structure as mentioned in NSGA-II is adopted. After each update of
particle position, the objective functions of each particle are evaluated and they must all
be processed by a non-dominated sorting procedure. This sorting procedure identifies
the group of particles in the swarm which are non-dominated by other particles and put
all of these particles into an archive for the Elite group. Again, the Elite group is
screened to eliminate inferior solutions, i.e., solutions that were dominated by those in
the Elite group. As a result, the Elite group in the archive is the best non-dominated
solutions found so far in the searching process of the swarm.

When the Elite group is formed, one of the biggest challenges for most EAs is how to
select the candidates among the Elite group to help guide the evolution of the
population. The most common criterion is that the leader (or guidance) needs to lead the
population to the less crowded areas to obtain a better spread of the final front. A
successful implementation of this idea is given in NSGA-II with the introduction of
crowding distance (CD) as a measure of the spread of the non-dominated front. This
approach estimates the density of solutions surrounding a specific solution by
calculating the average distance of two points on either side of this point along each of
the objective (see Deb et al., 2002 for more details). The advantage of this approach is
that it does not require a pre-determined sharing parameter in NSGA. Coello el al., 2002
proposed a PSO algorithm with a geographically-based system to locate crowded
regions. They divided the objective space into a number of hypercubes and then each
member in the Elite archive is assigned to one of these hypercubes. After the archive is
classified, a hypercube with smallest density is considered and one of its members is
randomly selected to be used as the global guidance.

Finally, the movement of particles is very critical to improve the quality of the
Pareto front. Most of the proposed Multi-objective PSO (MOPSO) algorithms use only a
single global guidance from the Elite group similar to the traditional PSO movement
strategy. However, the existence of multiple candidates in the archive may open a large
number of choices for movements. In section 4.4, several potential movement strategies
are discussed as options to fully utilize the Elite archive as guidance for the search.

In Figure 4.2, a PSO framework for multi-objective optimization problems is
presented. This framework takes into account all the features that are mentioned above
and the implementation of this framework is described in algorithm A1. The
-ሺ࣭ሻ uses the sorting algorithm proposed in NSGA-II to identify non ݐݎ݋ܵ_݀݁ݐܽ݊݅݉݋݀_݊݋ܰ
dominated solutions. After each particle is evaluated, the set of non-dominated solutions
will be updated and stored in the Elite group. The number of solutions in the Elite group
is usually limited to reduce the computational time for sorting and updating procedures.
When the number of non-dominated solutions exceeds the limit, the particles located in
the crowded areas will be selectively removed, so the Elite group can still result in a
good Pareto front. The two procedures ݈ܵ݁݁ܿ݁ܿ݊ܽ݀݅ݑܩ_ݐ ሺࣟሻ and ܷݕݐ݅ܿ݋݈݁ݒ_݁ݐܽ݀݌ሺԭሻ are
movement strategy dependent and will be separately discussed in the next section.

High Performance Computing Group 33 Asian Institute of Technology

Yes

Elite group

No

Figure. 4.2: Framework for MOPSO

A1. Algorithm for MOPSO

i. Initialize the swarm ࣭ and set the velocities of all particle to zero
ii. For each particle ݅ א ࣭ with position Θ௜

Evaluate objective function ௞݂ሺΘ௟ሻ, ݇׊ ൌ 1,2, … , ܭ

iii. ࣭כ ՚ ࣭ is the set of non-dominated particles in כ࣭ - ሺ࣭ሻ ݐݎ݋ܵ_݀݁ݐܽ݊݅݉݋݀_݊݋ܰ
iv. Elite archive ࣟ ՚ ሻכ࣭ ڂ ሺࣟ ݐݎ݋ܵ_݀݁ݐܽ݊݅݉݋݀_݊݋ܰ
v. If the stopping criterion is satisfied, end procedure; otherwise, go to step vi
vi. ܷݏ݉ݎ݁ݐ_ ݃݊݅݊ݎ݈ܽ݁_ ݈ܽ݅ܿ݋ݏ_݁ݐܽ݀݌
vii. ݁ܿ݊ܽ݀݅ݑ݃ ݈ܾܽ݋݈ܩ ԭ ՚ ሺࣟሻ ݁ܿ݊ܽ݀݅ݑܩ_ݐ݈ܿ݁݁ܵ
viii. ܷݕݐ݅ܿ݋݈݁ݒ_݁ݐܽ݀݌ሺԭሻ using equation (1.10)
ix. ܷ݊݋݅ݐ݅ݏ݋݌_݁ݐܽ݀݌ by equation (1.11)
x. Return to step ii

High Performance Computing Group 34 Asian Institute of Technology

In this framework, the multiple social learning terms in GLNPSO are used to update
the new velocity. As a result, the new velocity is influenced by four social terms:
personal best, global best (global guidance), local best and near neighbor best. The global
guidance is the most important term in this framework and it depends mainly on the
movement strategy adopted by the swarm; therefore it will be discussed separately. The
modifications for other terms are adjusted in this framework to make it work for MO
problems.

In MO problems, there are two situations when the personal best need to be
updated. First, when the new position of a particle dominates its personal best
experience, it certainly becomes the personal best. However, if the new position and its
personal best are non-dominated, the issue to face is whether to update to the new value
or not. Keeping the current personal best position helps the particle explore the local
region deeper, which can lead to higher quality solutions. On the other hand, it is also
desirable to move to new position to spread out the non-dominated front. Because each
decision has its own advantages, the algorithm will randomly pick one of them to
become the personal best.

For the near neighbor best, a fitness distance ratio (FDR) which was originally
developed to find the neighbor best are modified to handle multiple objective functions
as shown in equation (4.4).

ெைܴܦܨ ൌ
∑ %Δ୩

௄
௞ୀଵ

௜ௗߠ| െ ߰௢ௗ| ݎ݋݂ ݈݈ܽ ݀ ൌ 1 … ,ܦ ݅ ൌ 1 … ܮ
(4.4)

%Δ୩ ൌ
ሾ ௞݂ሺΘ୧ሻ െ ௞݂ሺΨ୭ሻሿ

| ௞݂ሺΘ୧ሻ|

In equation (4.4), fk (.) is the kth objective function and θ୧ௗ, ψ୭ௗ are the values at
dimension d of particle i and its neighbor o and D and L are the dimension of a particle
and the number of particles in the swarm respectively (refer to Peram et al., (2003) and
Veeramachaneni et al., (2003) for more details about FDR with single objective). In the
implementation, a very small value ߝ should be included in the dominators to handle the
cases that a dominator might become zero. The amount of improvement that can be
made when a neighbor h is chosen is represented by %Δ୩. By using equation (4.4), the
near neighbor best should be the one that is expected to guide a particle to a position
that can achieve the most improvement across all objective functions.

In order to prevent the particle from being too sensitive to every change of the
swarm, the local best is only updated when the new local particles dominated the
current best one.

4.4. Movement strategies
As mentioned in the previous sections, MO problems require the swarm to store its

searching experience as a set of non-dominated solutions instead of a single best one.
Then, a very key research question is how can a particle effectively use the knowledge of
this Elite group to guide it to a better position? Because the target is to identify the near
optimal Pareto front, the definition of a better position is more complex than that for the

High Performance Computing Group 35 Asian Institute of Technology

cases of single objective optimization problems. In literature, the three common criteria
to measure the quality of a non-dominated front ࣨare:

• The average distance to the Pareto optimal front ࣪
• The distribution of non-dominated solutions in ࣨ
• The spread of ࣨ in the multi-objective space

Similar to any optimization problem, the gap between the solutions found and the
true optimal solutions should be as small as possible. Moreover, the solutions should
provide a good outline of the Pareto front so that the decision makers can make more
informed decisions. Based on the above criteria, six movement strategies are proposed.
These strategies are especially designed to obtain high quality Pareto front. The
procedures to perform these movements will be included in step vii and viii of the
MOPSO framework.

4.4.1. Ms1: Pick a global guidance located in the least crowded areas
This strategy aims at diversifying particles in the swarm so that they can put more

effort in exploring the less crowded areas, thereby increasing the spread of the non-
dominated front. For that reason, a particle in the Elite group with fewer particles
surrounding it is preferred when selecting the global guidance.

The crowded distance CD estimates the density of solutions located around a specific
solution by calculating the average distance of two points on either side of this point
along each of the objectives. A procedure to calculate the crowding distance (CD) for
each member in the Elite group is implemented as given in NSGA II. To make this
paper self-contained, the algorithm to calculate CDs is given in algorithm CD below.

Algorithm CD: ݁ܿ݊ܽݐݏ݅݀_݃݊݅݀ݓ݋ݎܿ_݁ݐ݈ܽݑ݈ܿܽܥ ሺࣟሻ (from Deb et al., 2002)
ܮ ൌ |ࣟ|
,݅ ݄ܿܽ݁ ݎ݋ܨ ݐ݁ݏ ࣟሾ݅ሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ 0
 ݉ ݁ݒ݅ݐ݆ܾܿ݁݋ ݄ܿܽ݁ ݎ݋ܨ

 ࣟ ൌ ,ሺࣟݐݎ݋ݏ ݉ሻ
 ࣟሾ1ሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ ࣟሾܮሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ ∞
݅ ݎ݋ܨ ൌ 1 ܮሺ ݋ݐ െ 1ሻ

ࣟሾ݅ሿ. ݁ܿ݊ܽݐݏ݅݀ ൌ ࣟሾ݅ሿ. ݁ܿ݊ܽݐݏ݅݀ ൅ ሺࣟሾ݅ ൅ 1ሿ. ݉ െ ࣟሾ݅ െ 1ሿ. ݉ሻ/ሺ ௞݂
௠௔௫ െ ௞݂

௠௜௡ሻ

Particles with higher CDs are located in less crowded area and they are considered
to be good candidates for global guidance in this movement strategy. ψ ԭ,ୢ and θ୧,ୢ are
dimension d of the global guidance ԭ and particle i in the swarm respectively.

The movement direction of Ms1 is shown in Figure 4.3 and the pseudo-code for this
movement strategy is presented in algorithm A2. In step i of algorithm A2, a procedure
to calculate the crowding distance (CD) for each member in the Elite group ࣟ is called.

High Performance Computing Group 36 Asian Institute of Technology

Figure 4.3: Movement strategy 1 in bi-objective space

A2. Algorithm for Ms1

i. ݁ܿ݊ܽݐݏ݅݀_݃݊݅݀ݓ݋ݎܿ_݁ݐ݈ܽݑ݈ܿܽܥ ሺࣟሻ
ii. Sort ࣟ by decreasing order of crowding distance (CD) values

iii. Randomly select a particle ԭ from top t% of ࣟ
iv. Update global term in particle i movement by

ܿ௚ݑ ሺψ ԭ,ୢ െ θ୧,ୢ ሻ for all dimension d with u ~ U(0,1)

4.4.2. Ms2: Create the perturbation with Differential Evolution concept
The fact that more than one global non-dominated solution exist has raised the

questions of whether it is better to combine the knowledge of two or more members in
the Elite group to guide a particle. In this strategy, the concept of Differential Evolution
(DE), proposed by Price and Storn (1995) for continuous function optimization, is
adopted to utilize the flying experience of two individual in the Elite group. The key idea
behind DE is to use vector differences for perturbing the vector population. In the
original DE algorithm, a new parameter vector is generated by adding the weighted
difference between two population members to a third member (all of these vectors are
randomly selected from the population). A fitness selection scheme similar to Genetic
Algorithm (GA) is carried out to produce offspring to form new population.

The inspiration for this strategy is that this PSO has the tendency to converge quite
fast to some best solutions in the swarm. This is counterproductive since this can reduce
its ability to search for a wider range of solutions in a Pareto front. Therefore, it is more
desirable to have a mechanism to perturb the swarm and move its members to the new
and less crowded areas. Figure 4 demonstrates the moving strategy Ms2 which adopts
the DE concept to create the moving direction for a particle. The algorithm for Ms2 is
presented in A3.

The points in Figure 4.4 show the objective values of each particle in objective space;
however, it is important to note that that the vectors also represent the corresponding
positions of particles as well as their movements in positional space (and these vectors
can only be plotted in higher dimension space).

High Performance Computing Group 37 Asian Institute of Technology

Figure 4.4: Movement strategy 2 in bi-objective space

A3. Algorithm for Ms2

i. ݁ܿ݊ܽݐݏ݅݀_݃݊݅݀ݓ݋ݎܿ_݁ݐ݈ܽݑ݈ܿܽܥ ሺࣟሻ
ii. Sort ࣟ by decreasing order of crowding distance (CD) values

iii. Randomly select a particle R1 from top t% of ࣟ
iv. Randomly select a particle R2 from bottom b% of ࣟ
v. Update global term in particle i movement by

ܿ௚ݑ ሺψோଵ,ௗ െ ψோଶ,ௗሻ for all dimension d with u ~ U(0,1)

4.4.3. Ms3: Explore the unexplored space in the non-dominated front
The two strategies discussed above focus mainly on moving particles to less crowded

areas and expand the spread of the non-dominated front. Here, strategy Ms3 is aimed at
filling the gap in the non-dominated front and hence improving the distribution of the
solutions in the front. Figure 4.5 shows how the information in the Elite group is used to
guide a particle to potential unexplored space within the current non-dominated front.

Figure 4.5: Movement strategy 3 in bi-objective space

High Performance Computing Group 38 Asian Institute of Technology

In this strategy, the first step is to identify the potential gap in the Elite group.
When the gap is determined, a pair of vectors is used to represent the gap. Algorithm A4
provides the procedure to identify pairs of unexplored vectors and how to move particle
based on this information.

A4. Algorithm for Ms3

i. Identify the unexplored areas in ࣟ
For each objective functions fkሺ.ሻ
Sort ࣟ in increasing order of objective function fkሺ.ሻ
For iൌ1 to | ࣟ| ‐1

 Gap ൌ ௞݂ሺΘ୧ାଵሻ െ ௞݂ሺΘ୧ሻ
 If Gap ൐ x% *ሺ ௞݂

௠௔௫ െ ௞݂
௠௜௡ሻ:

 add pair ሺi,i൅1ሻ in unexplored list ࣯
ii. Randomly select one pair ሺE1, E2ሻ from ࣯

iii. Update global term in particle i movement by

ܿ௚ ݑ ሾሺܧଵ,ௗ െ θ୧,ୢሻ ൅ ݎ כ ሺܧଵ,ௗ െ ଶ,ௗሻሿܧ for all dimension d with u, r ~ Uሺ0,1ሻ

The range of objective function fkሺ.ሻ in the Elite group is ሺ ௞݂
௠௔௫ െ ௞݂

௠௜௡ሻ. By using the
condition Gap ൐ x% *ሺ ௞݂

௠௔௫ െ ௞݂
௠௜௡ሻ, it is expected that the final non‐dominated front will only

include the gap less than x% of the any objective function range. Reducing the value of x can
improve the distribution of the final front but, at the same time, it may distribute the effort of
swarm across the front and slow down the process of searching for better solutions.

4.4.4. Ms4: Combination of Ms1 and Ms2
This strategy tries to balance between the exploration and exploitation abilities of

Ms2. Therefore, instead of moving purely to new areas by DE concept, a component
similar to Ms1 is added to the perturbation formula in A3 so that a particle not only
explores the new region but also benefits from the flying experience of the Elite group to
improve the solution quality. Ms4 uses the same algorithm as Ms2 with the following
updating formula:

ܿ௚ݑ ቂቀψோଵ,ௗ െ θ୧,ୢ ቁ ൅ ሺψோଵ,ௗ െ ψோଶ,ௗሻቃ ൌ ܿ௚ݑ ቀ2ψோଵ,ௗ െ θ୧,ୢ െ ψோଶ,ௗቁ

4.4.5. Ms5: Explore solution space with mixed particles
Since each of the movement strategies has its own advantages which can have

different contributions toward a high quality Pareto front, it would be beneficial to
include more than one search strategy in the algorithm. One of the straightforward
ways to perform this idea is to use a heterogeneous swarm, i.e., a single swarm with a
mixture of particles with different movement strategies. It is preferable that the
composition of a productive swarm should include groups of particles with the following
characteristics:

• Ones that prefer to explore based on its own experience and with some
influence from its neighbors – Group 1

High Performance Computing Group 39 Asian Institute of Technology

• Ones that prefer to follow the global trend but avoid the crowded areas (Ms1)
– Group 2

• Ones that like to explore new areas (Ms2) – Group 3
• Ones that fill the gaps left by previous movements (Ms3) – Group 4

In Ms5, these four groups of particles co-exist in the same swarm and all of their
flying experience is stored in a common Elite archive. A particle of the first group will
not directly use the global knowledge but will explore the space gradually based on its
own experience and a partial knowledge of its neighbor. For that reason, these particles
do not change their movement abruptly every time the global trend changed. This
feature helps them to better explore the local region. The second group, on the other
hand, searches by using the status of the Elite group and moves to the position that has
not been well explored. In the cases that particles in the Elite group have distributed
uniformly, members in this group will have similar movement behavior as those in the
first group. The responsibility of particles in group 3 is to explore the border to increase
the spread of the non-dominated fronts with their perturbation ability. Although the
first three groups have tried to explore the search in many different directions, they may
still leave some gaps unexplored because of their convergence at some segments on the
Pareto front. The task of the last group is to move to fill these gaps so that the final
front can have a better distribution.

4.4.6. Ms6: Adaptive Weight Approach
The sixth movement strategy Ms6 is the only one that does not use the global Elite

group. The swarm follow Ms6 is divided into n + 1 sub-swarms with n is the number
objective functions. The first n sub-swarms will search for the optimal solution
corresponding to each objective functions just like the tradition PSO. The last sub-
swarm will minimize the adaptive weighted function as defined in Gen et al. (2008) by
the following formula:

ሻݔሺܨ ൌ ෍ ௞ሺݓ ௞݂ሺݔሻ െ ௞݂
௠௜௡ሻ

௡

௝ୀଵ

݁ݎ݄݁ݓ ௞ݓ ൌ
1

௞݂
௠௔௫ െ ௞݂

௠௜௡ (4.5)

4.5. M3PSO library
It is noted that the traditional PSO algorithm needs to be changed to deal with MO

problems. Therefore, a new library called M3PSO (Multi-strategy Multi-Learning-Term
Multi-Objective Particle Swarm Optimization) is developed based on the original
framework of GLNPSO and includes the suggested modifications proposed in previous
sections as shown in Figure 4.2 and Algorithm A1. Basically, besides the available
routines in GLNPSO, some additional classes and routines are created to deal with
multi-objective problems. The new and modified components are listed below:

High Performance Computing Group 40 Asian Institute of Technology

Class Name Type Description

Particle

NoObj Integer
number of objective functions to be
minimized

Objective Array of
real number

the objective values or the fitness of the
particle

ObjectiveP Array of
real number

the objective values corresponding to
BestP

crowdDistance Real

the crowding distance value which is
used to indicate the crowdedness of the
current position of the particle

Trap
Array of
Integer
number

the indicator of how many iteration in
which the value at a specific dimension
stays unchanged

type Integer

the type of a particle (for movement
strategy 5 and 6 as introduced in
section 4.4)

Swarm

posBest
Array of
Integer
number

the index (or location) of global best
member in the swarm
(pParticle[postBest[k]] refers to the
particle which found the position
resulting in the best objective value of
objective function k)

MinObj/MaxObj
Array of

Real number

the minimal and maximal objective
value found by the swarm through
searching process

AvgObj Array of
Real number

the average objective values across all
particles in the swarm

movingStrategy Integer
the index of movement strategy used by
the swarm to explore the Pareto front

particleMix 2D array of
real number

particleMix[i,0] and particleMix[i,1] is
the accumulative probabilities which
are used indicate which particles in the
swarm use movement strategy i

constr Bool
Indicator of whether the MO problem
have constraints or not

public void
setMovingStrate Method Set the movement strategy of the

High Performance Computing Group 41 Asian Institute of Technology

gy(int mS) swarm

public void
setParticleMix(
ArrayList pMix)

Method
Set the particle mix

public void
setConstraintMo
de(bool ctr)

Method
Set the value of constr

private static
void
AssignUnexplore
P(Random rnd,
ArrayList
USpace, ref
Particle E1,
ref Particle
E2)

Method

Select a pair of particles used to
indicate the direction to unexplored
areas as described in movement
strategy 3

private static
void
AssignGlobalP(R
andom rnd,
ArrayList
Elist, ref
Particle P, ref
Particle S,
double topP,
double topS)

Method

Select a particle located in less crowded
area (P) and crowded areas (S) with the
probability top and tops as described in
movement strategy 1 and 2

private double
FDR_Calculate(i
nt n_temp,
double FDRBest,
int i, int j)

Method

Calculate the modified FDR index

public void
UpdateBest(int
nbSize, Random
rnd, bool
activeNeighbor)

Method

Update learning terms for movement
strategy 1 to 5

public void
UpdateBestSingl
e(int nbSize)

Method
Update learning terms for movement
strategy 6

PSO

nObj Integer
The number of objective functions to be
minimized

moveS Integer
The movement strategy used by the
swarm

ElististP Array List
The list of Elite solutions found through
the search

UnExploreSpace Array List
The list of pairs of particles which used
to indicate the direction to unexplored
areas as described in movement

High Performance Computing Group 42 Asian Institute of Technology

strategy 3

MaxElististMemb
er Integer Upper limit of the ElististP

parmix Array List

The proportion of members in the
swarm assigned to follow each
movement strategies

Constraint Bool
Indicator of whether the MO problem
have constraints or not

TopEPerc Real

The percentage of members on the top
of the Elite group (in less crowded
areas) which can be randomly picked to
become the global guidance in
movement strategy 1 and 2

BotEPerc Real

The percentage of members at the
bottom of the Elite group (in crowded
areas) which can be randomly picked to
become the global guidance in
movement strategy 2

GapPerc Real

Percentage of the range (corresponding
to each objective function) to identify
the value which is used as a threshold
to determine the gap in movement
strategy 3.

public void
RecruitElite(Ar
rayList E)

Method Recruit elite member from elite group E

void
updateElististG
roup(ArrayList
Front)

Method
Update the elite group to sort out the
dominated solutions

public void
SortEliteP(int
nf, bool
constr)

Method
Perform non-dominated sorting
procedure on the elite group

void
crowding_Distan
ce_assignment(A
rrayList
ElististP)

Method
Call the
Crowding_Distance_Calculate_perObj

procedure for each objective function

private void
Crowding_Distan
ce_Calculate_pe
rObj(ArrayList

Method

Method
Calculate the crowding distance
corresponding to each objective function

High Performance Computing Group 43 Asian Institute of Technology

ElististP, int
o)
public virtual
double[]
Objective(Parti
cle p)

Method
Evaluate the all objective values of a
particle

4.6. A simple example of multi-objective optimization problem
In this section, M3PSO is applied to solve a simple MO problem. For the ease of

illustration, this problem deals with two objective functions but it can be easily modified
to handle more than two objective functions. The problem below is the SCH problem
which is normally used to test the effectiveness of MO algorithm.

ሻݔଵ݂ሺ ݁ݖ݅݉݅݊݅ܯ ൌ ଶݔ

ଶ݂ሺݔሻ ൌ ሺݔ െ 2ሻଶ
א ݔ ݁ݎ݄ܹ݁ ሾെ10ଷ, 10ଷሿ

Similar to single objective optimization discussed in chapter 2, we have to determine

the dimension of a particle, the method to evaluate the objective values, and the method
to initialize the swarm. In general, M3PSO are designed so that problems can be easily
formulated without worrying too much about the optimization algorithms. Figure 4.6
shows how a new class is created to solve the problem with M3PSO.

class spPSO : M3PSO
{
 public spPSO(int nPar, int nIter, int nNB, double dwmax, double dwmin,
 double dcp, double dcg, double dcl, double dcn, int maxE, int moveStr,
ArrayList pm,double te,double be, double gap)
 :base(nIter, nNB, dwmax, dwmin, dcp, dcg, dcl, dcn,maxE,moveStr,pm)
 {
 //define problem
 int dimension=1; //dimension of a particle is 1
 bool constr = false; //there is no constraint
 int nObj=2; //two objective functions to be minimized
 if (moveStr==6)
 base.SetParameters(nPar,dimension,nObj+1,constr,te,be,gap);
 else
 base.SetParameters(nPar, dimension, nObj, constr, te, be, gap);
 //number of particles, dimension,
 //number of objective (+1 if ms6 is used, and +1 more if there are
constraints in the model
 //and constraint activator (true if there are any constrains in the
model
 }
 public override void DisplayResult(TextWriter t)
 {
 t.WriteLine("No. NonDom: " + "\t" + "{0}",ElististP.Count);
 for (int i = 0; i < this.ElististP.Count; i++)
 {
 for (int o = 0; o < ((Particle)this.ElististP[0]).NoObj; o++)
 t.Write(((Particle)this.ElististP[i]).Objective[o].ToString()+"\t");
 t.WriteLine();
 }
 t.WriteLine("");

High Performance Computing Group 44 Asian Institute of Technology

 t.WriteLine("Result:");
 t.WriteLine("-------");
 }
 public override double[] Objective(Particle p)
 {
 double[] obj=new double[p.NoObj];
 Function.SCH_Function(p, obj);
 return obj;
 }
 public override void InitSwarm()
 {
 for (int i=0; i<sSwarm.Member; i++)
 {
 for (int j = 0; j < sSwarm.pParticle[i].Dimension; j++)
 {
 sSwarm.pParticle[i].Position[j] = -1000 + 2000 * rand.NextDouble();
 sSwarm.pParticle[i].Velocity[j] = 0;
 sSwarm.pParticle[i].BestP[j] = sSwarm.pParticle[i].Position[j];
 sSwarm.pParticle[i].PosMin[j] = -1000;
 sSwarm.pParticle[i].PosMax[j] = 1000;
 }
 for (int o=0;o<sSwarm.pParticle[i].NoObj;o++)
 sSwarm.pParticle[i].ObjectiveP[o] = 1.7E308;
 }
 sSwarm.posBest=new int[sSwarm.pParticle[0].NoObj];
 }
}
class Function
{
 public static void SCH_Function(Particle p, double[] x)
 {
 double var = p.Position[0];
 x[0] = Math.Pow(var, 2);
 x[1] = Math.Pow(var - 2, 2);
 }
}

Figure 4.6: Formulate SCH problem in C#
 The formulation of MO problem is very similar to that of single objective

optimization problem except for the function evaluation method which returns multiple
objective values instead of a single value. The M3PSO’s parameters are defined in the
main class as presented in Figure 4.7.

class MainClass
{
 public static void PSO(int fx,double[] PSOparas, int strategy, bool
aniEnable, out double[] index, out ArrayList Pareto, out ArrayList Ani, out
ArrayList AniS, out ArrayList Average)
 {
 ## Animation declaration ##
 //parameter setting
 int noIter = Convert.ToInt32(PSOparas[0]);
 int noPar = Convert.ToInt32(PSOparas[1]);
 double wMin = PSOparas[2];
 double wMax = PSOparas[3];
 int noNB = Convert.ToInt32(PSOparas[4]);
 double cP = PSOparas[5];
 double cG = PSOparas[6];
 double cL = PSOparas[7];

High Performance Computing Group 45 Asian Institute of Technology

 double cN = PSOparas[8];
 int maxE = Convert.ToInt32(PSOparas[9]);
 double TopEp = PSOparas[10] / 100;
 double BotEp = PSOparas[11] / 100;
 double GapUnexplore = PSOparas[12] / 100;
 int moveStrategy = strategy;
 bool multiSwarm = false;
 int rSeed = (int)PSOparas[17];
 int noRep = (int)PSOparas[18];
 // end parameter setting
 if (moveStrategy == 6)
 {
 pMix.Add(0); pMix.Add((double)PSOparas[13] / 100);
 pMix.Add(1); pMix.Add((double)PSOparas[14] / 100);
 pMix.Add(2); pMix.Add((double)PSOparas[15] / 100);
 }
 if (moveStrategy == 5)
 {
 pMix.Add(0); pMix.Add((double)PSOparas[13] / 100);
 pMix.Add(1); pMix.Add((double)PSOparas[14] / 100);
 pMix.Add(2); pMix.Add((double)PSOparas[15] / 100);
 pMix.Add(3); pMix.Add((double)PSOparas[16] / 100);
 }
 // starting time and finish time using DateTime datatype
 DateTime start, finish;
 // elapsed time using TimeSpan datatype
 TimeSpan elapsed;
 ## Write parameter to text ##
 for (int i = 0; i < noRep; i++)
 {
 rSeed++;
 AvgVal[i] = new ArrayList();
 Console.WriteLine("Replication {0}", i + 1);
 tw.WriteLine("Replication {0}", i + 1);
 // get the starting time from CPU clock
 start = DateTime.Now;
 // main program ...
 M3PSO GlobalSwarm = new spPSO(fx,noPar, noIter, noNB, wMax, wMin, cP,
 cG ,cL, cN, maxE, moveStrategy, pMix, TopEp, BotEp, GapUnexplore;
 GlobalSwarm.SetRSeed(rSeed);
 GlobalSwarm.Run(tw, true, aniEnable, AvgVal[i], out sAni, out sAni2);
 // get the finishing time from CPU clock
 finish = DateTime.Now;
 elapsed = finish - start;
 // display the elapsed time in hh:mm:ss.milli
 ## Display output ##
 }
}
** the code in ## … ## contain the subroutine which can be found in the original code

Figure 4.7: C# implementation of M3PSO algorithm
The more generalized source code of this example, which includes a convenient

interface and a list of test problems, can be found in “\GLNPSO manual\GLNPSO
basic\PSO_MutiObjective\”. This small application also provides the animation feature
to help the user easily observe the movement behavior of the algorithm in bi-objective
space as shown in the Figure 4.8.

High Performance Computing Group 46 Asian Institute of Technology

Figure 4.8: Multi-objective optimizer with M3PSO

Figure 4.8 shows the interface built for research purpose. The figure on the upper left
corner presents the final Pareto front found by the M3PSO algorithm. The average
objective value of each objective function through each step is shown in the figure on the
lower left corner. The largest figure in the middle is used for animation. At each
animation step, the elite members are represented by triangle point and the current
position of each particle is represented by the circle point. The color of each point is used
to identify the type of a particle (in movement strategy 5 and 6). Table 4.1 shows how
meaning of colors used in animation screen.

Table 4.1: Color set used for animation
Color Ms1 Ms2 Ms3 Ms4 Ms5 Ms6

Yellow Type 0 Type 0 Type 0 Type 0 Type 0 Type 0
Gray Na Na Na Na Type 1 Type 1
Blue Na Na Na Na Type 2 Type 2
Red Na Na Na Na Type 3 Na

When movement strategies Ms1-Ms4 are used, all particles only follow single
movement behavior so only one color is used. In movement strategy Ms5, type 0, 1, 2, 3
indicate the particle in group 1, 2, 3, 4 respectively. Meanwhile, type 0 and type 1 in
Ms6 represent the particles in the sub-swarms that minimize single objective function 1
and 2 respectively. In Ms6, type 2 indicates the particles in the sub-swarm assigned to
minimized adaptive weighted function.

4.7. Portfolio optimization with M3PSO algorithm
Portfolio Optimization (PO) is a critical problem in finance in order to find an optimal

way to distribute a given budget on a set of available assets. Although many investment
decisions are normally made on qualitative basis, there are an increasing number of
quantitative approaches adopted.

Select test
problem

Determine M3PSO
parameters

Select experiment
options

Animation
control panel

High Performance Computing Group 47 Asian Institute of Technology

The most seminal mathematical model was initiated by Markowitz more than 50
years ago and there have been many extensions of his models since then. The classical
mean-variance portfolio selection problem of proposed by Markowitz can be given as:

෍ ݋݈݅݋݂ݐݎ݋݌ ݄݁ݐ ݂݋ ݁ܿ݊ܽ݅ݎܽݒ ݄݁ݐ ݃݊݅ݖ݅݉݅݊݅ܯ ෍ ௜௝ߪ௝ݓ௜ݓ

ே

௝ୀଵ

ே

௜ୀଵ

݋݈݅݋݂ݐݎ݋݌ ݄݁ݐ ݂݋ ݊ݎݑݐ݁ݎ ݀݁ݐܿ݁݌ݔ݁ ݄݁ݐ ݃݊݅ݖ݅݉݅ݔܽܯ ෍ ௜ߤ௜ݓ

ே

௜ୀଵ

 :݋ݐ ݐ݆ܾܿ݁ݑݏ

෍ ௜ݓ

ே

௜ୀଵ

ൌ 1

0 ൑ ௜ݓ ൑ ݅׊ ݎ݋݂ 1 ൌ 1 … ܰ
The basic assumption in this model is that asset returns follow multivariate normal

distribution. The decision variable ݓ௜ is the proportion of the budget which is distributed
to asset i. Parameter ߤ௜ and ߪ௜௝ are the expected return of asset i and the covariance
between asset i and j. Because it is difficult to weigh the two criteria before the
alternatives are known, the popular approach in this case is to search for the whole
efficient frontier. In this section, we will use M3PSO library to solve the portfolio
optimization problem.

In this problem the decision variable ݓ௜ can be modeled as the particle position which
ranging from 0 to 1. However, because the sum of all values of ݓ௜ must be equal to 1,
positions of particles cannot guarantee to provide feasible solutions. Fortunately, an
infeasible solution can be easily repaired to become a feasible one. To illustrate the
encoding/decoding scheme, we use a simple example with 4 assets. The data for this
problem is provided in Table 4.2. The encoding/decoding scheme for the portfolio
optimization problem is shown in Figure 4.9.

Table 4.2: Four asset example

Asset Expected
Return

Std.
Deviation

Corelation Matrix
1 2 3 4

1 0.004798 0.046351 1 0.118368 0.143822 0.252213
2 0.000659 0.030586 1 0.164589 0.099763
3 0.003174 0.030474 1 0.083122
4 0.001377 0.035770 1

݂݋ ݊ݎݑݐ݁ݎ ݀݁ݐܿ݁݌ݔ݁ ݄݁ܶ ݄݁ݐ ݋݈݅݋݂ݐݎ݋݌ ෍ ݅ߤ݅ݓ ൌ 0.0027082
ܰ

݅ൌ1

݋݈݅݋݂ݐݎ݋݌ ݄݁ݐ ݂݋ ݁ܿ݊ܽ݅ݎܽݒ ݄݁ܶ ෍ ෍ ݓ݆݅ݓ ݆݅ߪ ൌ 0.0004889
ܰ

݆ ൌ1

ܰ

݅ൌ1

Figure 4.9: Encoding/decoding scheme for classical portfolio optimization problem

High Performance Computing Group 48 Asian Institute of Technology

Similar to the TSP problem in chapter 3, we built a separate class to get the input
data, pre-calculate the covariance matrix and calculate the objective values based on
positions of particles at each iteration. The source code and the test problems can be
found at “\GLNPSO manual\GLNPSO basic\PSO_MutiObjective-Portfolio
Optimization\”. The defaulted name of the input file is “Example.txt” and the format of
this file is give as:

number of assets (N)
for each asset i (i=1,...,N):
 mean return, standard deviation of return
for all possible pairs of assets:
 i, j, correlation between asset i and asset j

Figure 4.10 shows the application to solve portfolio optimization problem based on
M3PSO library.

Figure 4.10: Portfolio optimizer with M3PSO library

4.8. Multi-objective optimization in Engineering Design
Our objective is to find the dimension of an I-beam as shown in Figure 4.11, which

have to satisfy the geometric and strength constraints and minimize following objective
functions:

• Cross section area of beam
• Static deflection of the beam under a certain force

 The mathematical model of this problem by Coello and Christiansen1 are given as
follows:

1 Coello and Christiansen (1999), MOSES: a multiple objective optimization tool for engineering
design. J Eng Optim 1999; 31(3):337–68.

High Performance Computing Group 49 Asian Institute of Technology

ଵ݂ሺݔԦሻ ൌ ସݔଶݔ2 ൅ ଵݔଷሺݔ െ ସሻ ሺܿ݉ሻݔ2

ଶ݂ሺݔԦሻ ൌ
60000

ଵݔଷሺݔ െ ସሻଷݔ2 ൅ ସݔସሾ4ݔଶݔ2
ଶ ൅ ଵݔଵሺݔ3 െ ସሻሿݔ2

Subject to:

݃ሺݔԦሻ ൌ 16 െ
ଵݔ180000

ଵݔଷሺݔ െ ସሻଷݔ2 ൅ ସݔସሾ4ݔଶݔ2
ଶ ൅ ଵݔଵሺݔ3 െ ସሻሿݔ2 െ

ଶݔ15000

ሺݔଵ െ ଷݔସሻଷݔ2
ଷ ൅ ଶݔସݔ2

ଷ ൒ 0

10 ൑ ଵݔ ൑ 80, 10 ൑ ଶݔ ൑ 50, 0.9 ൑ ଷݔ ൑ 5, 0.9 ൑ ସݔ ൑ 5

Figure 4.11: I-Beam design problem

Since the objective functions of this problem are very well-defined, we can directly
use the values of particle’s position as those of decision vector ݔሬሬԦ. Therefore, the
dimension of particle needs is 4 and each dimension will have the upper and lower
bounds corresponding to those defined in the mathematical model. The implementation
of this problem can be found in the group of test problems in section 4.6. The illustrative
example of the Pareto solution for this problem is given Figure 4.12.

Figure 4.12: Solve I-Beam design problem with M3PSO

High Performance Computing Group 50 Asian Institute of Technology

Bibliography Of Works Utilizing ET‐Lib
1. Kasemset, C. and Kachitvichyanukul, V.

Bi‐level multi‐objective mathematical model for job‐shop scheduling: the application of
Theory of Constraints, International Journal of Production Research, DOI:
10.1080/00207540903176705, November 2009.

2. Ai, The Jin, and Kachitvichyanukul, V.
A Particle Swarm Optimization for Vehicle Routing Problem with Time Windows,
International Journal of Operational Research, Vol. 6, No. 4, pp519‐537, 2009

3. Ai, The Jin, and Kachitvichyanukul, V.
A Particle Swarm Optimization for the Heterogeneous Fleet Vehicle Routing Problem,
International Journal of Logistics and SCM Systems, Vol. 3, No. 1, pp32‐39, 2009

4. Ai, The Jin, and Kachitvichyanukul, V.
A particle swarm optimization for the vehicle routing problem with simultaneous pickup
and delivery, Computers & Operations Research, 36, pp1693‐1702, 2009.

5. Ai, The Jin, and Kachitvichyanukul, V.
Particle Swarm Optimization and Two Solution Representations for Solving the Capacitated
Vehicle Routing Problem, Computers & Industrial Engineering, Volume 56, Issue 1, pp380‐
387, 2009.

6. Ai, The Jin, and Kachitvichyanukul, V.
A Particle Swarm Optimization for the Capacitated Vehicle Routing Problem, International
Journal of Logistic and SCM Systems, Volume 2, Number 1, pp50‐55, 2007

7. Kachitvichyanukul, V. and Dao Duc Cuong
A Mixed Particle Swarm Optimization Algorithm for Continuous‐flow‐shop Scheduling
Problem, the 20th International Conference on Production Research, Shanghai, China,
August 2009

8. Ai, The Jin, and Kachitvichyanukul, V.
A Study on Adaptive Particle Swarm Optimization for Solving Vehicle Routing Problems,
Proceedings of the 9th Asia Pacific Industrial Engineering and Management Systems
Conference (APIEMS 2008), Bali, Indonesia, December 2008.

9. Ai, The Jin, and Kachitvichyanukul, V.
Adaptive Particle Swarm Optimization Algorithms, Proceedings of the 4th International
Conference on Intelligent Logistics Systems（ILS2008）, Shanghai, China August 2008

10. Pratchayaborirak, T., and Kachitvichyanukul, V.
A Comparison of GA and PSO Algorithm for Multi‐objective Job Shop Scheduling Problem,
Proceedings of the 4th International Conference on Intelligent Logistics
Systems（ILS2008）, Shanghai, China August 2008

High Performance Computing Group 51 Asian Institute of Technology

11. Ai, The Jin, and Kachitvichyanukul, V.
Dispersion and Velocity Indices for Observing Dynamic Behavior of Particle Swarm
Optimization, IEEE Congress on Evolutionary Computation, Singapore, September 2007

12. Ai, The Jin, and Kachitvichyanukul, V.
A Particle Swarm Optimization for the Vehicle Routing Problem with Clustered Customers,
Proceedings of the APIEMS 2007 Conference, Taiwan, December 2007

13. Pratchayaborirak, T., and Kachitvichyanukul, V.
A Two‐Stage Particle Swarm Optimization for Multi‐Objective Job Shop Scheduling
Problems, Proceedings of the APIEMS 2007 Conference, Taiwan, December 2007

