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CHAPTER II 

LITERATUR REVIEW AND THEORETICAL BASIS 

2.1 Literature Review 

Banerji et al. (2000) conducted an experimental study on various  parameters 

of TLD for structural response control of structures. The TLD parameter such as, 

frequency ratio, ratio of depth and mass ratio, which affect TLD performance in 

controlling earthquake response structures, are verified experimentally. Various 

values of  frequency, base motion, and amplitude are considered in experiments to 

study the effectiveness of TLD for structures various movements of earthquake. 

Recent research studies have concentrated on innovative methods for controlling 

earthquake response structures by installing additional devices in the right locations 

in the structure. 

A similar study by  Banerji (2004)  concluded that the main emphasis in 

writing results obtained using extensive experimental and numerical simulation 

results to illustrate that TLD, which is one of the control devices the most economical 

currently available, can be designed to effectively control the response of structures 

experiencing a large amplitude of broad banded basic Excitation, as experienced 

during earthquakes. There are two main conclusions in this study: a numerical 

simulation procedure based on the TLD formula proposed by Sun [5] can adequately 

predict structural responses in TLD systems — structures that experience a large 

amplitude of broad banded base excitation, although slightly underestimating the 



6 
 

structural decline in response by TLD, perhaps due to underestimating energy 

dissipation by breaking waves during a strong shaking phase from the base of 

excitation . In addition The TLD-to-structure mass ratio and the ratio of depth (ratio 

of water depth to tank length in the direction of shaking) are TLD parameters which 

have a significant effect of TLD ability to control structural response to large 

amplitude base Excitation. A mass ratio of 4% and a ratio of 0.15 depths allow the 

TLD to be the most effective for wide banded soil movements. This optimal TLD can 

reduce the SDOF structure response usually around 30%, which is enough from a 

design point of view. 

Bhattacharjee at el. (2013)  a set of experiments were carried out for studying 

the sloshing phenomenon in a rectangular and a square tank under harmonic loading 

condition. Different water depth ratios varying from 0.05 to 0.3 and several excitation 

frequency ratios varying from 0.75 to 1.3 were considered. From this study, it has 

been observed that among all the water depth ratios for a given range of Excitation 

frequency ratios, there exists optimum water depth that corresponds to the minimum 

response amplitude for each damper. These values are 7.5, 5 and 7.5 cm, respectively, 

for TLD1, TLD2, and TLD3. It is seen that the square TLD is less effective in 

comparison with the rectangular TLD for the controlling response of the structure. 

Therefore, it is observed that TLD1 has better performance in comparison with 

TLD2. From this study, it has been found that TLD can be successfully used to 

control the response of the structure. 
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Pabarja at el. (2018) This study investigated experimentally the effectiveness 

of conventional Tuned Liquid Dampers (TLDs) for vibration mitigation of a 

vertically irregular structure. A three-story one-bay steel structure with the total 

height of 2.65 m was specifically designed and constructed in order to represent a 

vertically irregular structure. The test structure was subjected to free extracted. The 

test structure was equipped with TLDs that were tuned to its first and second 

resonance frequencies. The mass ratio for all studied TLDs was constant and equaled 

3%. The TLDs were placed on each floor separately and the dynamic responses of the 

structure-TLD systems were measured for all floors. It was concluded that 

conventional TLDs were able to mitigate structural vibrations of a vertically irregular 

structure when it was excited at its first  resonance frequency. However, TLDs were 

unsuccessful in reducing the peak displacement responses of all floors at the second 

resonance frequency. 

2.2 . Shallow water theory 

In the area of coastal hydrodynamics, concerned with modelling of flows in 

rivers, channels, estuaries etc, shallow water approximations of the incompressible 

Navier-Stokes equations are often used. The most popular model equations for 

studying near-shore hydrodynamics, Brocchini et al. (2001), and in general free 

surface flows in shallow water, are the Nonlinear Shallow Water Equations (NSW 

equations) also known as de Saint-Venant equations together with a large class of so-

called Boussinesq-type equations (BT equations). A comprehensive overview and 
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review of BT equations is given in Madsen (1999). In the shallow 

water models the momentum and mass conservation equations are depth-integrated 

resulting in a reduction of variables by one compared to the full problem described 

earlier. But more importantly, by substituting the nonlinear kinematic boundary 

condition into the depth integrated mass and momentum equations, the full nonlinear 

description of the free surface is retained exactly leaving only, for the 3D case, two 

equations for the conservation of momentum and one equation for the conservation of 

mass. The variable describing the free surface enters into the mass conservation 

equation and thus requires no special treatment. While these simplified models fail to 

give a detailed description of the local fluid behavior, a natural consequence of the 

averaging, they are very well suited for providinga description of the overall fluid 

behavior. The models though are by construction limited to the shallow water case 

which might be a serious limitation. However, and imperative for use in connection 

with describing TLDs, the models are often very fast to solve. 

2.3. Sloshing in rectangular tanks 

For accurately capturing the motion of sloshing water in a vibrating tank, 

nonlinear functions must be employed. If the conventional spring mass formula is 

used for modeling liquid sloshing behavior, then all the constants and will no longer 

be constants , andm k c , but rather functions of displacement i.e ( )m x , ( )k x and ( )c x . 

Most often, the numerical modeling is coupled with CFD (Computer Fluid 

Dynamics) software simulations and/or actual experimental setup simulations to 
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obtain various curve fits for , andm k c  and as functions of x . This is could be 

further complicated if water is confined in a complex geometry. Mondal, J. (2014) 

In experimental case, water was confined in a simple rectangular container. At high 

water amplitudes, the linear models are no longer valid, since various non linearities 

enter the system, such as wave breaking and slamming (instead of sloshing). In this 

paper, a rather simple approach has been taken to model the system. Linear theory 

existing in literature has been used to find the natural frequency of water confined 

rectangular, which is given by (Abramson, 1966): 

1 tanh
2

g hsqrt
a a
π πω

π
  =     

                                               (2.1) 

where,  ω =the natural frequency of sloshing in Hz 

h =height of the water in the container 

a  =the length of the container in the direction of excitation 

The dampening factor was also modeled linearly using the equation. 

3
2

vsqrt
a g

ζ
 
 =   
 

                      (2.2) 

where, v  =kinematic viscosity of the liquid Equations (1) and (2) are only valid for 

shallow water cases (cases when 0.15h
a
> ) 
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2.4.  Numerical method 

After establishing a mathematical model, equations must be solved to provide 

a solution. Analytical solutions are always preferred, but building analytical solutions 

for nonlinear partial differential equations is very difficult, time-consuming and often 

impossible. Instead the equation must be solved approximately using numerical 

methods. 

After building and applying numerical methods, it is important to verify that 

this method provides reliable results, namely solving mathematical problems with 

acceptable accuracy. The only way to verify this is to test the numerical method for 

the problem where the analytical solution exists. If there is no analytical solution then 

it must be built. 

This chapter focuses on the choice, development and verification of numerical 

methods. 

2.5. Genetic algorithm (GA) 

Genetic algorithm (GA) is a stochastic algorithm that mimics natural 

phenomena as operators in the processing. The idea behind the mechanics of GA is to 

resemble the adaptive process in nature based on Darwinian’s survival of the fittest 

mechanisms. GA has been used to obtain the optimum design of the function and has 

shown its superiority in obtaining nearly global optimum solution of the complex 
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problems. Originated by Hollandin 1960s (Goldberg, Holland ,Michalewicz). GA has 

been used to obtain optimum value in many areas. 

2.6.  Comparison with Den Hartog Method 

The comparison result with Den Hartog (1947) were calculated. In Den 

Hartog methods, the structure is converted to a single degree of freedom system then 

damper parameters are computed. The formula of Den Hartog [30] was based on the 

SDOF undamped structure with harmonic external load. According to Den Hartog the 

optimum tuning frequency (αopt=ωTMD/ωstructure) can be expressed as : 

µ
α

+
=

1
1

opt                   (2.3) 

whereas the optimum damping ratio of the damper ξ dopt is formulated as: 

( )µ
µξ
+

=
18
3

dopt                  (2.4) 

µ is the mass ratio of damper. To use the formula, the MDOF structure is then 

converted to SDOF structure following procedure  in Soong and Dargush [1] by 

normalizing the mode shape at the location of TMD to be 1 unit.  

The first modal mass:  

φφ 11
1 MM

T
=                  (2.5) 
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The mass ratio:  

1M
md=µ                              (2.6) 

The optimum frequency ratio from Eq.(3): 

µα +
=

1
1

opt                   (2.7) 

From which we can obtain: 

ωαω 1optd =                       (2.8) 

and 

ω 2

ddd mk =                   (2.9) 

From Eq.(4): 

)1(8
3

µ
µξ
+

=
dopt

                (2.10) 

Such that 

Cd= 2 dddm ξω                 (2.11) 
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2.7.  Equation of Motion  

The equations of motion for this building equipped with a dynamic absorber 

under wind-induced excitation can be written as chang and Qu2 (1998) : 

3 2( + )G w G TMX + CX + KX = F - H H X                (2.12) 

1 3+ +t tG w C w K w G= TH X                  (2.13) 

where M, C, K, X, X  and X  are the mass, damping and stiffness matrices, and the 

displacement, velocity and acceleration vectors for the tall building, respectively; F is 

the wind-induced loading vector; H is the location matrix for the dynamic absorber; 

the superscript T represents the matrix transpose; w , w  and w  are the displacement, 

velocity and acceleration for the dynamic absorber, respectively; tC  and tK  are the 

damping and stiffness coefficients for the dynamic absorber, respectively; and 1G , 2G  

and 3G  are the coefficients of the dynamic absorber.  

For the case of a rectangular tuned liquid damper (R-TLD), the expressions of these 

five coefficients become : 

mcÜ + cců + kcu + f (TLD) = - m ůj (TLD)                       (2.14) 

[M]ůԆ + [C]ů + [K]{ů} = F-

 

 (g3ẅ + g2

 

t ẍ )            (2.15) 

Giẇ+C1ẇ+k1w=g3

 

tu                                                                                                     (2.16)   G1 = d1F1Mt ;  G2 = Mt ;  G3 = d1F1Mt                                          
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(2.16a, b, c) Ct = 2Ҁ tωtMt ;    Kt = ωt
2G1                                                                                 

(2.16d, e) 

With 

 1 2
1

1
1

d
π

=
−

           (2.16f) 

 1 1
1 tanh hF

h
α π

π α
 =  
 

                                                                              (2.16g) 

 tM bhρα=                                                                              (2.16h) 

 2 tanht
g hω π π
α α

 =  
 

            (2.16i) 

From these equation we can formulate equation for find optimal h  (L) : 

2

tanh h tld
gl
l

π ω
π

  = 
 

              (2.17) 

2

tanh h l tld
l g
π ω

π
  = 
 

              (2.18) 

2

tanhl l tldh
g

ω
π π

=                     (2.19) 
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To determine the model used for this research table 2.1 is made to see the range of 

optimum h  depending on tank length (L) and structure fundamental Period (T). 

Table. 2.1 Optimum h  for period (T) in each tank length (L) 

T/L 10cm 20cm 30cm 40cm 50cm 60cm 70cm 80cm 90cm
10.00 4.07747E-05 0.000163 0.000367 0.000652 0.001019 0.001468 0.001998 0.00261 0.003303
5.00 0.0001631 0.000652 0.001468 0.00261 0.004078 0.005873 0.007995 0.010444 0.01322
3.33 0.000366989 0.001468 0.003304 0.005876 0.009184 0.013232 0.018021 0.023553 0.029832
2.50 0.000652487 0.002611 0.005879 0.010462 0.016367 0.023606 0.032189 0.042134 0.053456
2.00 0.001019717 0.004083 0.009203 0.0164 0.025705 0.037159 0.050812 0.066726 0.084976
1.67 0.001468932 0.005888 0.013296 0.023758 0.037369 0.054258 0.074594 0.098593 0.126532
1.43 0.002000591 0.008034 0.018199 0.032666 0.051693 0.075649 0.105048 0.140608 0.183351
1.25 0.002615452 0.010533 0.023978 0.043355 0.069313 0.102857 0.145563 0.200029 0.270931
1.11 0.003314682 0.013406 0.030745 0.056236 0.091465 0.13926 0.205188 0.302616 0.48344
1.00 0.004099997 0.016681 0.038683 0.072061 0.120799 0.194206 0.324205
0.91 0.004973831 0.020406 0.048096 0.092309 0.16436 0.316713
0.83 0.005939548 0.024648 0.059515 0.120414 0.255321
0.77 0.007001709 0.02951 0.073945 0.167637
0.71 0.008166424 0.035152 0.093616
0.67 0.009441815 0.041833 0.125241
0.63 0.010838667 0.050007 0.229522
0.59 0.01237134 0.060566
0.56 0.014059114 0.075654
0.53 0.015928247 0.103238
0.50 0.018015245  
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Figure. 2.1 Optimum h for period (T) in each tank length (L) 

In table 2.1 the blank portion are the part where the equation cannot be calculated and 

the marked table are the value that favorable to be used as the target h (water height 

more than 0.04 m). 

In Fig 2.1 we can observe that the shortest L that fulfill target water height, h  more 

than 4 cm are  20 cm tank with structure period around 0.67 second. Based from these 

parameter the experimental model are made. 
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Md = 0.00066 ton
T (s)/L (m) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10.00 161.8649115 20.23308 5.99497 2.529119 1.294902 0.74936 0.471897 0.316132 0.222027
5.00 40.46589586 5.058104 1.498632 0.632197 0.323659 0.187285 0.117927 0.078991 0.05547
3.33 17.98420316 2.247727 0.665845 0.280816 0.14372 0.083131 0.05232 0.035027 0.024582
2.50 10.11514579 1.263862 0.374215 0.157717 0.080648 0.046599 0.029291 0.019581 0.013718
2.00 6.472386027 0.808217 0.23906 0.10061 0.051351 0.029602 0.018556 0.012364 0.00863
1.67 4.493060942 0.560434 0.16546 0.06945 0.035323 0.020273 0.01264 0.008368 0.005796
1.43 3.299024581 0.410743 0.120887 0.050512 0.025535 0.014541 0.008975 0.005867 0.004
1.25 2.523464214 0.313289 0.091752 0.038058 0.019044 0.010694 0.006477 0.004124 0.002707
1.11 1.991141319 0.246164 0.071557 0.02934 0.014432 0.007899 0.004595 0.002726 0.001517
1.00 1.609757455 0.197824 0.056873 0.022897 0.010927 0.005664 0.002908
0.91 1.326945068 0.161715 0.045741 0.017875 0.008031 0.003473
0.83 1.11119572 0.133884 0.036965 0.013703 0.00517
0.77 0.942626977 0.111826 0.029752 0.009843
0.71 0.808187299 0.093878 0.0235
0.67 0.699018118 0.078885 0.017566
0.63 0.608930942 0.06599 0.009585
0.59 0.53349113 0.054486
0.56 0.469446375 0.04362
0.53 0.414358203 0.031965
0.50 0.366356391

Table. 2.2 Optimum tank width (B) for period (T) in each tank length (L) 

 

 

 

 

 

 

 

Figure. 2.2. Optimum tank width (B) for period (T) in each tank length (L) 
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In table 2.2 the blue shaded portion are the part where the result are reasonable for the 

dimension of the model which within range of 0 - 50 cm, therefore only these part 

will be shown in Fig 2.2. 

In Fig 2.2 we can observe that tank width for length of 20 cm tank with structure 

period around 0.67 second is around 8 cm, which is proportional to the tank length. 

Therefore, The parameter which already chosen is sufficient for experimental model. 
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