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CHAPTER 2 
LITERATURE REVIEW AND BASE THEORY 

2.1. Literature Review 

2.1.1. Frequency Domain Decomposition (FDD) 

The frequency-domain decomposition (FDD) technique that is based on 

singular value decomposition (SVD) of the spectral density (SD) matrix, makes it 

possible to analyze cases with closely spaced modes. Further, the FDD makes the 

frequency-domain technique more user friendly because it concentrates all 

information in one single plot; that is the plot of singular values of the SD matrix.  

The technique was introduced by Brincker et al. (2000) as improvement of 

basic “peak-picking” method to better separation of closely spaced modes and offer 

method to more accurately estimate the damping ratio. From the simulation proof 

given in the paper, FDD method can give very accurate result on natural frequency 

(0.1% difference in 20% noise) and quite good damping ratio (4-5% difference in 

20% noise). 

In analysis of Operational Modal Analysis of Large Bridge made by 

Schanke (2015) FDD is compared with others method both from time domain and 

frequency domain. Compared with other basic method as SOBI and peak-picking, 

FDD give the best result in estimating natural frequency for basic method and only 

better by more advanced method such as Cov-SSI while quite computationally 

efficient.  

Other analysis investigating damping ratio is of Damping Estimation of 

Large Wind-Sensitive Structures made by Cheynet et al. (2016). In the paper FDD 

method is compared with Cov-SSI method for measurement of long-span 
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suspension brige by comparing measurement result to a numerical model. From the 

experiment , AFDD algorithm was observed to estimate the MDRs with a larger 

bias than the SSI-COV method. This suggests that the frequency-domain based 

approach is not well suited for the modal parameters identification of long 

suspension bridges with eigen-frequencies around and below 0.1 Hz. 

2.1.2. Ambient Vibration Test 

Ambient vibration test or OMA is very attractive because tests are cheap 

and fast, and they do not interfere with the normal use of the structure. Moreover, 

the identified modal parameters are representative of the actual behavior of the 

structure in its operational conditions, since they refer to levels of vibration actually 

present in the structure and not to artificially generated vibrations.  

In some cases, such as testing of historical structures (where it reduces the 

invasiveness and the risk of damage) or vibration-based health assessment and 

monitoring (where the replacement of the artificial excitation with ambient 

vibrations makes it suitable for automation), OMA outperforms EMA. 

2.1.3. Accelerometer Sensor Micro-Electro Mechanichal System (MEMS) 

       Beskhyroun dan Ma (2012), in research of “Low-Cost Accelerometer for 

Experimental Modal Analysis” able to using accelerometer sensor X6-1A USB 

manufactured by Gulf Coast Data Concept (GCDC) record several aftershocks 

response of three high risereinforced concrete buildings in Christchurch city, New 

Zealand after the city with hit by two major earthquakes. The recorded data 

produced very accurate estimates of the modal parameters of the instrumented 
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buildings. Two commonly used system identification techniques, the frequency 

domain peak pick method and the more advanced time domain stochastic subspace 

identification method were implemented to extract modal parameters. 

2.2. Basic Theory 

2.2.1. Autocorrelation

 

Fig 2.1 Random signal correlation 

In varying signal ( )x t as shown in Figure 2.1, if the points are close, then 

the correlation is high, and as the separation between points increases then the 

correlation is lower – and finally if the points are far apart – then the correlation is 

for practical purposes zero. C two points ( )x t and ( )x t   with a time separation 

 in between them (see Figure 2.1). By taking the variable x as ( )x t and the 

variable y as ( )x t  Eq. (2.1) can be used to define the autocorrelation function 

defined as 

 ( ) E ( ) ( )xR x t x t               (2.1) 
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The autocorrelation is in practice obtained by using time averaging version of the 

function such as 

0

1
( ) ( ) ( )

T

xR x t x t dt
T

            (2.2) 

2.2.2. Power Spectral Density 

The auto spectral density function for a time series ( )x t is defined as the 

Fourier transform of the correlation function ( )xR   

1
( ) ( )

2
i

x xG R e d  







               (2.3) 

conversely the correlation function can be found from the inverse relation 

( ) ( ) i
x xR G e d  





           (2.4) 

2.2.3. Theory Background of Frequency Domain Decomposition 

According to Bendat and pearsol, the relationship between the unknown 

inputs ( )x t and the measured responses ( )y t  can be described as: 

( ) ( ) ( ) ( )T
yy xxG j H j G j H j            (2.5) 

Where ( )xxG j is the r r Power Spectral Density (PSD) matrix of the input, r is 

the number of inputs, ( )yyG j  is the m m  PSD matrix of the responses, m is the 

number of responses, ( )H j is the m r  Frequency Response Function (FRF) 

matrix, and "  " and superscript T denote complex conjugate and transpose, 

respectively. 

The FRF can be written in partial fraction, i.e. pole/residue form 
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( )
n

k k

k k k

R R
H j

j j


   

 
          (2.6) 

Where n is the number of modes, k  is the pole and kR is the residue 

T
k k kR               (2.7) 

Where ,k k   is the mode shape vector and the modal participation vector, 

respectively. Suppose the input is white noise, i.e. its PSD is a constant matrix, i.e. 

( )xxG j C  , then Equation (5) becomes 

1 1

( )
H

n n
k k s s

yy
k s k k s s

R R R R
G j C

j j j j


        

   
           
     (2.8) 

where superscript H denotes complex conjugate and transpose. Multiplying the two 

partial fraction factors and making use of the Heaviside partial fraction theorem, 

after some mathematical manipulations, the output PSD can be reduced to a 

pole/residue form as follows 

1

( )
n

k k k k
yy

k k k k k

A A B B
G j

j j j j


       

   
             (2.9) 

where kA  is the k th residue matrix of the output PSD. As the output PSD itself the 

residue matrix is an m m  hermitian matrix and is given by 

1

T Tn
s s

k k
s k s k s

R R
A R C

   

 
      

         (2.10) 

The contribution to the residue from the k  th mode is given by 

2

T
k s

k
k

R CR
A


            (2.11) 
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Where k is minus the real part of the pole k k kj     . As it appears, this term 

becomes dominating when the damping is light, and thus, is case of light damping, 

the residue becomes propotional to the mode shape vector 

T T
k k k k k k k

T
k k k

A R CR C

d

   

 

 


         (2.12) 

where kd  is a scalar constant. At a certain frequency   only a limited number of 

modes will contribute significantly, typically one or two modes. Let this set of 

modes be denoted by ( )Sub  .Thus, in the case of a lightly damped structure, the 

response spectral density can always be written 

( )

( )
T Tn

k k k k k k
yy

k Sub k k

d d
G j

j j

   
   

 
          (2.13) 

This is a modal decomposition of the spectral matrix. The expression is similar to 

the results one would get directly from Equation (2.5) under the assumption of 

independent white noise input, i.e. a diagonal spectral input matrix. 

 

2.2.4. Identification Algorithm 

In the Frequency Domain Decomposition (FDD) identification, the first step 

is to estimate the power spectral density matrix. The estimate of the output PSD 

ˆ ( )yy iG j known at discrete frequencies i   is then decomposed by taking the 

Singular Value Decomposition (SVD) of the matrix 

ˆ ( ) H
yy i i i iG j U S U            (2.14) 
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where the matrix  1 2, , K,i i i imU u u u  is a unitary matrix holding the singular 

vectors iju , and iS  is a diagonal matrix holding the scalar singular values ijs . Near 

a peak corresponding to the k  th mode in the spectrum this mode or may be a 

possible close mode will be dominating. If only the k  th mode is dominating there 

will only be one term in Equation (2.9). Thus, in this case, the first singular vector 

1iu is an estimate of the mode shape 

1
ˆ

iu              (2.15) 

and the corresponding singular value is the auto power spectral density function of 

the corresponding single degree of freedom system, refer to Equation (2.9). This 

power spectral density function is identified around the peak by comparing the 

mode shape estimate ̂  with the singular vectors for the frequency lines around the 

peak. As long as a singular vector is found that has high MAC value with ̂  the 

corresponding singular value belongs to the SDOF density function. 

From the piece of the SDOF density function obtained around the peak of the PSD, 

thenatural frequency and the damping can be obtained. In this paper the piece of the 

SDOF PSD was taken back to time domain by inverse FFT, and the frequency and 

the damping wassimply estimated from the crossing times and the logarithmic 

decrement of the corresponding SDOF auto correlation function. 

 

 

 

 


