6.1 CONCLUSION

Some conclusion from this thesis can be taken:

1. The problem in this thesis is how to develop a new schedule system that can solve the current schedule problem at Stamping Tools Division P.T. Mekar Armada Jaya.

2. The old schedule has problems in:
   a. Repetitive days
   b. Different Number of Demand
   c. Two items that are processed at the same time
   d. Machine hours that exceed working hours
   e. Time needed to generate a schedule

3. All the problems could be solved by using new schedule program.

4. The new program is developed using Microsoft Excel and Visual Basic for Application.

5. The new schedule program generate schedule using 3 priority rules.

6. The new schedule program can divide item Y-1579/80 and Y-1069 into 1 until 5 batches.

7. MWKR is the best priority rule for Stamping Tools Division in any given time.

8. The shortest makespan for MWRK always happens when Y-1579/80 is divided into 2 batches and Y-1069 is divided into 3 or 4 or 5 batches.

9. The shortest makespan for SPT always happens when Y-1579/80 and Y-1069 is divided into 5 batches.
6.2 RECOMMENDATION

There are several recommendations that can be used in the future project:

1. Adding 6 items that are not in demand.
2. The schedule program also considers not only the planning but also the controlling like material handling, production process, and machining.
REFERENCES


Chakraborty, U.K., 2009, Computational Intelligence in Flow Shop and Job Shop Scheduling, http://books.google.co.id/books?id=dCslIN8gtiOC&pg=PA235&dq=job+shop+scheduling+makespan&hl=id&ei=Qv9h9Tur3IYLtrAfD0s3ZDw&sa=X&oi=book_result&ct=result&resnum=1&ved=0CC8Q6AEwAA#v=onepage&q=job%20shop%20scheduling%20makespan&f=false, accessed on September 24th, 10.04 PM.


Microsoft Excel, 2007, Microsoft Office Excel Help, Microsoft, U.S.A.


