PERANCANGAN KONSTRUKSI *MOLD BASE* PRODUK ACETABULAR CUP PADA PT. AKADEMI TEKNIK MESIN INDUSTRI SURAKARTA

TUGAS AKHIR

Diajukan untuk memenuhi sebagian persyaratan mencapai derajat Sarjana Teknik Industri

ADHIMAS PUTRA UTAMA 14 06 07758

PROGRAM STUDI TEKNIK INDUSTRI
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2019

HALAMAN PENGESAHAN

Tugas Akhir Berjudul

PERANCANGAN KONSTRUKSI MOLD BASE PRODUK ACETABULAR CUP PADA PT. AKADEMI TEKNIK MESIN INDUSTRI SURAKARTA

yang disusun oleh

Adhimas Putra Utama

14 06 07758

dinyatakan telah memenuhi syarat pada tanggal 9 Januari 2020

Dosen Pembimbing 1

Tonny Yuniarto, S.T., M. Eng.

Tim Penguji,

Penguji₁1

Tonny Yuniarto, S.T., M. Eng.

Penguji 3

Penguji 2,

Dr. Paulus Wisnu Anggoro, S.T., M.T. Kristanto Agung Nugroho, S.T., M. Sc.

Yogyakarta, 21 Januari 2020

Universitas Atma Jaya Yogyakarta,

Fakultas Teknologi Industri,

Dekan,

Dr. A. Teguh Siswantoro, M. Sc.

PERNYATAAN ORIGINALITAS

Saya yang bertanda tangan dibawah ini:

Nama

: Adhimas Putra Utama

NPM

: 14 06 07758

Dengan ini menyatakan bawah tugas akhir saya dengan judul "Perancangan Konstruksi *Mold Base* Produk *Acetabular Cup* di PT. Akademi Teknik Mesin Industri Surakarta" merupakan hasil penlititan saya pada Tahun Akademik 2019/2020 yang bersifat original dan tidak mengandung plagiasi dari karya manapun

Bilamana dikemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai ketentuan yang berlaku termasuk untuk dicabut gelar Sarjan yang telah diberikan Universitas Atma Jaya Yogyakarta kepada saya.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenarnya.

Yogyakarta, 9 Januari 2020 Yang menyatakan,

Adhimas Putra Utama

KATA PENGANTAR

Puji syukur penulis mengucapkan kepada Tuhan Yang Maha Esa karena atas kasih dan karunia-Nya dalam menyertai penulis menyelesaikan tugas akhir ini dengan baik.

Tugas akhir ini disusun untuk melengkapi syarat dalam memperoleh gelar Sarjana di Program Studi Teknik Industri, Fakultas Teknologi Industri, Universitas Atma Jaya Yogyakarta. Tugas akhir ini berjudul "Perancangan Konstruksi Mold Base Produk Acetabular Cup di PT. Akademi Teknik Mesin Industri".

Terselesaikannya penyusunan tugas akhir ini juga tidak lepas dari bantuan dan motivasi serta partisipasidari semua pihak, untuk itu dengan segala kerendahan hati penulis menyampaikan penghargaan dan ucapan terim kasih kepada:

- Allah SWT atas rahmatnya yang luar biasa dan yang senantiasa memberikan bimbingan, kekuatan, serta menyerati penulis selama penyusunan Tugas Akhir.
- 2. Bapak Dr. A. Teguh Siswantoro, M.Sc. Selaku Dekan Fakultas Teknologi Industri, Universitas Atma Jaya Yogyakarta.
- 3. Ibu Ririn Diar Astanti, S.T., M.T., Dr.Eng. Selaku Ketua Program Studi Teknik Industri, Universitas Atma Jaya Yogyakarta
- 4. Bapak A. Tonny Yuniarto, S.T., M.Eng. Selaku Dosen Pembimbing yang telah bersedia meluangkan waktu, pikiran, dan saran pada saat penulisan tugas akhir ini.
- Ayahanda Suseno, Ibu Lis Rahayuningsih, Kakak Atika Dewi Saraswati, dan keluarga besar tercinta penulis yang memberikan dukungan dan materi dalam menyelesaikan penelitian ini.
- 6. Bapak Adi Nugroho, S.T., M.Sc. Selaku Kepala PUTP ATMI Surakarta yang telah mengizinkan penulis untuk melakukan penelitian tugas akhir.
- 7. Bapak Paulus Wisnu Anggoro, Bapak Budi Purwanto, mereka selalu memberi semangat, motivasi, dan bantuan kepada penulis.
- 8. Teman-teman Asisten Dosen Laboratorium Teknologi Manufaktur yang pernah bekerja sama dahulu yang selalu memberikan semangat, motivasi, dan bantuan kepada penulis.
- Teman-teman saya terkhusus Alvin Chandra, Stefanus Parlindungan, Dony Walyukris yang selalu menemani, membantu, memberikan masukan, memberi semangat, motivasi yang luar biasa kepada penulis.

- 10. Teman-teman Kost Mbah Sukatno yang selalu menemani penulis selama penulisan berjalan dan memberikan semangat dan motivasi kepada penulis.
- 11. Teman-teman seperjuangan Teknik Industri angkatan 2014 yang selalu memberikan semangat dan motivasi kepada penulis.
- 12. Teman-teman yang belum saya sebutkan yang sudah memberikan semangat dan bantuan kepada penulis.
- 13. Staff dan karyawan PT. ATMI Surakarta. Mereka telah membantu dalam proses penelitian tugas akhir ini.

Penulis menyadari penyusunan laporan tugas akhir ini masih jauh dari kata sempurna karena kurangnya pengalaman dan pengetahuan yang dimiliki penulis. Untuk itu, penulis sangat mengharapkan kritik dan saran yang membangun dari pembaca. Akhir kata, semoga laporan ini dapat berguna bagi rekan-rekan semua.

Yogyakarta, 9 Januari 2020 Yang menyatakan,

Adhimas Putra Utama

DAFTAR ISI

BAB	JUDUL	HAL
	HALAMAN JUDUL	i
	HALAMAN PENGESAHAN	ii
	PERNYATAAN ORIGINALITAS	iii
	KATA PENGANTAR	iv
	DAFTAR ISI	Vi
	DAFTAR TABEL	viii
	DAFTAR GAMBAR	ix
	DAFTAR TABEL DAFTAR GAMBAR INTISARI	xii
1	PENDAHULUAN	1
	1.1. Latar Belakang	1
	1.2. Perumusan Masalah	3
	1.3. Tujuan Penelitian	3
	1.4. Batasan Masalah	4
2	TINJAUAN PUSTAKA	
	2.1. Tinjauan Pustaka	5
	2.2. Dasar Teori	11
3	METODOLOGI PENELITIAN	
	3.1. Data	34
	3.2. Cara Pengambilan Data	34
	3.3. Bahan, Alat, dan Mesin	35
	3.4. Langkah-Langkah Penulisan	35
4	PROFIL DATA	
	4.1. PT. Akademi Teknik Mesin Indutri Surakarta	39
	4.2. Data Profil Tim Kreatif	40

	4.3. Data Mesin	40
	4.4. Bahan	42
5	ANALISIS DAN PEMBAHASAN	
	5.1. Analisis Proses Desain	44
	5.2. Analisis Perhitungan Perancangan	51
	5.3. Analisis Perancangan Konstruksi Moldbase	63
	5.4. Analisis CAD Part Konstruksi Mold Base	61
6	KESIMPULAN DAN SARAN	
	6.1. Kesimpulan 6.2. Saran	66
	6.2. Saran	66
	(e).	
DAFT	AR PUSTAKA	67
LAMP	IRAN	

DAFTAR TABEL

5,11,111,17,1522	
Γabel 4.1. Spesifikasi Mesin	40
Гabel 4.2. Perlakuan Suhu S50C dan S55C	41
Гabel 4.3. Perlakuan Suhu SS400	42
Гabel 5.1. Spesifikasi Produk	44
Гabel 5.2. Tabel Usulan Layout Runner	46
Tabel 5.3. Tabel Usulan Gate	46
Tabel 5.4. Tabel Usulan Ejector	46
Tabel 5.5. Tabel Fitur	48
Stiens textis	

DAFTAR GAMBAR

Gambar 1.1. Hip Joint	2
Gambar 2.1. Tampilan Awal PowerSHAPE	10
Gambar 2.2. Tampilan Awal Toolmaker	13
Gambar 2.3. Die Wizard	14
Gambar 2.4. Lock Wizard	14
Gambar 2.5. Core Cavity Wizard	15
Gambar 2.6. Moldbase Wizard	16
Gambar 2.6. Moldbase Wizard Gambar 2.7. Component Wizard	16
Gambar 2.8. Injection Molding	17
Gambar 2.9. Bagian Utama Mesin Injeksi	15
Gambar 2.10. Standart Mold	19
Gambar 2.11. Bagian <i>Ejector Plate</i>	19
Gambar 2.12. Gambar Return Pin	20
Gambar 2.13. Gambar <i>Ejector Pin</i>	21
Gambar 2.14. Gambar <i>Guide Bush dan Guide Pin</i>	21
Gambar 2.15. Hopper	22
Gambar 2.16. <i>Barrel</i>	23
Gambar 2.17. Reciprocating Screw	23
Gambar 2.18. Cara kerja <i>Non-Return Valve</i>	24
Gambar 2.19. Standard Mold Base	24
Gambar 2.20. Gambar Konstruksi <i>Angular Pin</i>	25
Gambar 2.21. Gambar Konstruksi <i>Hydraulic Slider</i>	25
Gambar 2.22. Konstruksi <i>Ejector Set</i>	26
Gambar 2.23. Gambar Runner System	26
Gambar 2.24. Gambar Side Gate	28
Gambar 2.25. Gambar <i>Pin Gate</i>	29

Gambar 2.26. Gambar Submarine Gate	29
Gambar 2.27. Gambar Fan Gate	30
Gambar 2.28. Gambar Film Gate	30
Gambar 2.29. Gambar Banana Gate	31
Gambar 3.1. Gambar Tahapan Metodologi Penelitian	38
Gambar 4.1. Mesin Injeksi LS LGE 280 II	41
Gambar 5.1. Dimensi Acetabular	44
Gambar 5.2. Dimensi Acetabular 2	45
Gambar 5.3. Cavity Insert Gambar 5.4. Core Insert	48
Gambar 5.4. Core Insert	48
Gambar 5.5. Acetabular Cup	52
Gambar 5.6. Bentuk Runner	53
Gambar 5.7. Pola Angular Pin	55
Gambar 5.8. Bentuk Angular Pin	55
Gambar 5.9. Pola Ejector Pin	56
Gambar 5.10. Bentuk Ejector Pin	56
Gambar 5.11. Urutan Pergerakan Angular Pin	57
Gambar 5.12. Sistem Cooling Cavity	58
Gambar 5.13. Sistem Cooling Core	58
Gambar 5.14. Konstruksi Moldbase	59
Gambar 5.15. Core Insert	60
Gambar 5.16. Support Block	60
Gambar 5.17. Cavity Plate	61
Gambar 5.18. Cavity Insert	62
Gambar 5.19. Core Plate	63
Gambar 5.20. Core Insert	63
Gambar 5.21. Pengganti Slider	64
Gambar 5.22. Top Clamping Plate	65

INTISARI

Operasi Injection Molding dianggap operasi yang memiliki kontribusi yang cukup besar di industry manufaktur, karena operasi injection molding merupakan salah satu cara untuk mendapatkan produk secara massal. Perkembangan alat bantu medis (ABM) membutuhkan teknologi untuk menumbuhkan industri kesehatan. Hal ini ditandai dengan permintaan konsumen yang tinggi untuk desain yang tepat, akurat, dan presisi. Hal tersebut dijadikan acuan dalam melakukan penelitian ini yang membahas teknologi *Computer Aided Engineering* (CAE) yang berbasis *Computer Aided Design* (CAD). Dalam proses ini yang dilakukan untuk mendapatkan desain 3D CAD model dan perancangan konstruksi moldbase. Agar menghasilkan produk *acetabular cup* yang memiliki kualitas yang baik dengan nilai *surface roughness* mencapai standar yang diterapkan,

Pada tahap proses desain 3D CAD model *acetabular cup* serta lengkap dengan detail dan dimensi yang sesuai dengan permintaan konsumen. Tahap proses konstruksi *moldbase* menggunakan software CAE yang berbasis *moldmaker* yaitu *Toolmaker 14.* Proses desain konstruksi *moldbase acetabular cup* dengan software *Toolmaker 14,* agar mendapatkan desain yang disesuaikan dengan mesin LS LGE 280 II. Proses perancangan konstruksi menggunakan metode pembobotan, lalu mengambil nilai yang terbaik. Maka didapat konstruksi dengan alternatif yang optimal yang digunakan sebagai konstruksi *moldbase acetabular cup*

Hasil dari penelitian ini adalah didapatnya desain 3D CAD model acetabular cup yang sesuai dengan standar ASME dan konstruksi moldbase yang sesuai dengan mesin injeksi LS LGE 280 II. Penelitian ini lebih menekankan ke nilai surface roughness untuk mencapai standar yang diterapkan. Sehingga proses desain konstruksi moldbase membutuhkan perlakuan khusus dan menggunakan desain yang memiliki nilai bobot yang tertinggi.

Kata kunci: ABM, CAE, *CAD, Toolmaker, PowerSHAPE, Acetabular cup, moldbase.*