- 1. Quality & Reliability Engineering
- 2. Work Design & Measurement

USULAN MINIMASI *WASTE* MENGGUNAKAN METODE DMAIC DI YANTO *POTTERY*

TUGAS AKHIR

Diajukan untuk memenuhi Sebagian persyaratan mencapai derajat sarjana Teknik Industri

FIRDAUS SINURAYA 17 06 09567

PROGRAM STUDI TEKNIK INDUSTRI
FAKULTAS TEKNOLOGI INDUSTRI
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2021

HALAMAN PENGESAHAN

Tugas Akhir Berjudul

USULAN MINIMASI WASTE MENGGUNAKAN METODE DMAIC DI YANTO POTTERY

yang disusun oleh

FIRDAUS SINURAYA

170609567

dinyatakan telah memenuhi syarat pada tanggal 28 Juni 2021

Dosen Pembimbing 1 : Ir. B. Kristyanto, M.Eng., PhD. Telah menyetujui
Dosen Pembimbing 2 : Ir. B. Kristyanto, M.Eng., PhD. Telah menyetujui

Tim Penguji

Penguji 1 : Ir. B. Kristyanto, M.Eng., PhD. Telah menyetujui Penguji 2 : Brilianta Budi Nugraha, ST., MT. Telah menyetujui Penguji 3 : Anugrah Kusumo Pamosoaji, S.T., M.T., Ph.D. Telah menyetujui

> Yogyakarta, 28 Juni 2021 Universitas Atma Jaya Yogyakarta Fakultas Teknologi Industri Dekan

> > ttd

Dr. A. Teguh Siswantoro, M.Sc

PERNYATAAN ORIGINALITAS

Saya yang bertanda tangan di bawah ini:

Nama : Firdaus Sinuraya

NPM : 170609567

Dengan ini menyatakan bahwa tugas akhir saya dengan judul "Usulan Minimasi *Waste* Menggunakan Metode DMAIC di Yanto *Pottery*" adalah hasil penelitian saya pada Tahun Akademik 2020/2021 yang bersifat *original* dan tidak mengandung plagiasi dari karya manapun.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku termasuk untuk dicabut gelar Sarjana yang telah diberikan Universitas Atma Jaya Yogyakarta kepada saya.

Demikian pernyataan ini saya buat dengan sesungguhnya dan dengan sebenarbenarnya.

Yogyakarta, 17 Juni 2021

Yang menyatakan

Firdaus Sinuraya

KATA PENGANTAR

Puji syukur kepada Tuhan Yang Maha Esa berkat karunia-Nya sehingga saya dapat menyelesaikan Tugas akhir ini dapat terselesaikan dengan baik dan tepat pada waktunya. Tugas akhir ini ditulis sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Industri.

Dalam penyusunan tugas akhir ini terdapat berbagai macam pihak yang telah membantu dalam penelitian ini. Dengan segala hormat, penulis ingin mengucapkan terima kasih secara khusus kepada:

- Bapak Dr. A. Teguh Siswantoro, M.Sc. selaku Dekan Fakultas Teknologi Industri Universitas Atma Jaya Yogyakarta.
- 2. Ibu Ririn Diar Astanti, S.T., M.MT, Dr. Eng. selaku Kepala Departemen Teknik Industri Universitas Atma Jaya Yogyakarta.
- Ibu Lenny Halim, S.T., M.Eng. selaku Kepala Program Studi Teknik Industri Fakultas Teknologi Industri Universitas Atma Jaya Yogyakarta.
- 4. Bapak Ir. B. Kristyanto, M.Eng., Ph.D. selaku Dosen Pembimbing tugas akhir yang telah membantu penulis untuk menyelesaikan tugas akhir ini.
- Bapak Brilianta Budi Nugraha, S.T., M.T. dan Bapak Anugrah Kusumo Pamosoaji, S.T., M.T., Ph.D. selaku Dosen Penguji yang telah memberikan masukan dan saran dalam tugas akhir ini.
- 6. Nande, Brisnip dan Keluarga Besar. My Father, thank you for everything.
- 7. Bapak Mujiono dan Ibu Puji selaku pemilik Yanto *Pottery* sekaligus Nash & Co., para karyawan serta pengrajin atas kesempatan untuk melakukan penelitian.
- Teman-teman Kelas TI-D 2017, TI-2017, JR (Alex, Andreas, Andhika, Bella, Deni, Feli, Hendri, Stevani, Tamara, Wilsen, Witson), Founders Packinyuk (Charles, Dion, Pita, Vina, Wimala), Staff dan Student Staff KSI UAJY, HMTI UAJY dan Asisten Dosen serta Kakak Tingkat TI UAJY.

Tentunya dalam proses penyusunan laporan ini masih tidak sempurna, oleh sebab itu penulis meminta maaf apabila terdapat kekurangan dalam proses maupun hasil penelitian ini.

Akhir kata, semoga penelitian ini dapat memberikan manfaat bagi para pembaca.

Yogyakarta, 17 Juni 2021

Firdaus Sinuraya

DAFTAR ISI

BAB	JUDUL	HAL
	Halaman Judul	i
	Halaman Pengesahan	ii
	Pernyataan Originalitas	iii
	Kata Pengantar	iv
	Daftar Isi	V
	Daftar Tabel	vii
	Daftar Gambar	ix
	Daftar Tabel Daftar Gambar Daftar Lampiran Intisari	xi
	Intisari	xii
1	Pendahuluan	1
	1.1. Latar Belakang	1
	1.2. Rumusan Masalah	2
	1.3. Tujuan Penelitian	2
	1.4. Batasan Masalah	2
1		
2	Tinjauan Pustaka dan Dasar Teori	4
	2.1. Tinjauan Pustaka	4
	2.2. Dasar Teori	6
3	Metodologi Penelitian	23
	3.1. Penelitian Awal	23
	3.2. Pemilihan Metode	23
	3.3. Pengumpulan Data	24
	3.4. Tahapan Penelitian	24
4	Profil Perusahaan dan Data	27
	4.1. Profil Perusahaan	27
	4.2. Waste Produksi	33
	4.3. Processing Time dan Non-Processing Time	39
	4.4. Fasilitas Produksi	47

5	Analisis dan Pembahasan	50
	5.1. Define	50
	5.2. Measure	87
	5.3. Analyze	90
	5.4. Improve	92
	5.5. Control	108
6	Kesimpulan dan Saran	112
	6.1. Kesimpulan	112
	6.1. Kesimpulan6.2. SaranDaftar Pustaka	112
	Daftar Pustaka	113
	Lampiran	116

DAFTAR TABEL

Tabel 2.1.	Pertanyaan WRM	12
Tabel 2.2	Kategori Jenis Hubungan	13
Tabel 4.1.	Hasil WRM Responden 1	34
Tabel 4.2.	Hasil WRM Responden 2	35
Tabel 4.3.	Hasil WRM Responden 3	36
Tabel 4.4.	Hasil WRM Responden 4	37
Tabel 4.5.	Hasil Jawaban WAQ	38
Tabel 4.6.	Waktu Pembentukan	40
Tabel 4.7.	Waktu Pewarnaan	42
Tabel 5.1.	Perhitungan Score WRM Responden 1	52
Tabel 5.2.	WRM Responden 1	52
Tabel 5.3.	Waste Matrix Value Responden 1	53
Tabel 5.4.	Perhitungan Score WRM Responden 2	54
Tabel 5.5.	WRM Responden 2	54
Tabel 5.6.	Waste Matrix Value Responden 2	55
Tabel 5.7.	Perhitungan Score WRM Responden 3	56
Tabel 5.8.	WRM Responden 3	56
Tabel 5.9.	Waste Matrix Value Responden 3	57
Tabel 5.10.	Perhitungan Score WRM Responden 4	58
Tabel 5.11.	WRM Responden 4	58
Tabel 5.12.	Waste Matrix Value Responden 4	59
Tabel 5.13.	Bobot WRM Responden 1	60
Tabel 5.14.	Pembagian Bobot Pertanyaan dibagi Ni Responden 1	62
Tabel 5.15.	Perhitungan Bobot Jenis Waste Responden 1	64
Tabel 5.16.	Hasil Perhitungan WAQ Responden 1	66
Tabel 5.17.	Bobot WRM Responden 2	66
Tabel 5.18.	Pembagian Bobot Pertanyaan dibagi Ni Responden 2	68
Tabel 5.19.	Perhitungan Bobot Jenis Waste Responden 2	71
Tabel 5.20.	Hasil Perhitungan WAQ Responden 2	73
Tabel 5.21.	Bobot WRM Responden 3	73
Tabel 5.22.	Pembagian Bobot Pertanyaan dibagi Ni Responden 3	75
Tabel 5.23.	Perhitungan Bobot Jenis Waste Responden 3	77
Tabel 5.24.	Hasil Perhitungan WAQ Responden 3	79

Tabel 5.25.	Bobot WRM Responden 4	80
Tabel 5.26.	Pembagian Bobot Pertanyaan dibagi Ni Responden 4	82
Tabel 5.27.	Perhitungan Bobot Jenis Waste Responden 4	84
Tabel 5.28.	Hasil Perhitungan WAQ Responden 4	86
Tabel 5.29.	Processing Time	87
Tabel 5.30.	Non-Processing Time	88
Tabel 5.31.	Perbandingan Waktu Pembentukan	94
Tabel 5.32.	Persiapan Sebelum Pembakaran	102
Tabel 5.33.	Pengeluaran Produk Setelah Pembakaran	104
Tabel 5.34.	Perkiraan Biaya Implementasi	108
Tabel 5.35.	Perkiraan Durasi Implementasi	108

DAFTAR GAMBAR

Gambar 2.1.	Hubungan Ketujuh Waste	12
Gambar 2.2.	Value Stream Mapping	19
Gambar 2.3.	Fishbone Diagram	20
Gambar 3.1.	Alur Penelitian	25
Gambar 3.2.	Alur WAM	26
Gambar 4.1.	Yanto <i>Pottery</i>	27
Gambar 4.2.	Alur Proses Produksi	28
Gambar 4.3.	Tata Letak Produksi	29
Gambar 4.4.	Proses Pembentukan	30
Gambar 4.5.	Proses Pengeringan	30
Gambar 4.6.	Proses Pembakaran	31
Gambar 4.7.	Bagian Dalam Tungku Pembakaran	31
Gambar 4.8.	Proses Finishing	32
Gambar 4.9.	Produk Jadi	33
Gambar 4.10.	Uji Kenormalan Proses Pembentukan	41
Gambar 4.11.	Peta Kendali Proses Pembentukan	42
Gambar 4.12.	Uji Kenormalan Proses Pewarnaan	43
Gambar 4.13.	Peta Kendali Proses Pewarnaan	44
Gambar 4.14.	Bagian Depan Tungku Sebelum Pembakaran	45
Gambar 4.15.	Bagian Atas Tungku Sebelum Pembakaran	45
Gambar 4.16.	Bagian Dalam Tungku Setelah Pembakaran	46
Gambar 4.17.	Produk Sesudah Proses Pewarnaan	46
Gambar 4.18.	Tempat Packing Produk	47
Gambar 4.19.	Cetakan dan Alat Putar	47
Gambar 4.20.	Tungku Pembakaran	48
Gambar 4.21.	Kompressor Cat	48
Gambar 4.22.	Flame Gun	49
Gambar 5.1.	Diagram SIPOC	50
Gambar 5.2.	Current Value Stream Mapping	89
Gambar 5.3.	Fishbone Diagram NPT-2	90
Gambar 5.4.	Penyusunan Rangka Tingkatan pada Tungku	91
Gambar 5.5.	Fishbone Diagram NPT-3	92
Gambar 5.6.	Pekerja Proses Pembentukan	93

Gambar 5.7.	Tanah Liat Sebelum Proses Pembentukan	95
Gambar 5.8.	Peletakan Tanah Liat	96
Gambar 5.9.	Ilustrasi Perpindahan Tanah Liat Saat Ini	96
Gambar 5.10.	Ilustrasi Perpindahan Tanah Liat Usulan Perbaikan	97
Gambar 5.11.	Plat atau Shelves Tungku Pembakaran	98
Gambar 5.12.	Tiang Penyangga Tungku Pembakaran	99
Gambar 5.13.	Penopang Tungku Pembakaran	99
Gambar 5.14.	Usulan Tungku Pembakaran	100
Gambar 5.15.	Usulan Tungku Pembakaran (Top View)	100
Gambar 5.16.	Bata Berlubang (Hollow Brick)	100
Gambar 5.17.	Usulan Tungku Pembakaran (Front View)	101
Gambar 5.18.	Future Value Stream Mapping	106
Gambar 5.19.	Dokumen Proses Pembentukan	109
Gambar 5.20.	Dokumen Proses Pembakaran	110
Gambar 5.21.	Dokumen Proses Pewarnaan	111

DAFTAR LAMPIRAN

Lampiran 1.	Diagram Keterkaitan	114
Lampiran 2.	Screenshot Bukti Komunikasi dan Bimbingan	115
Lampiran 3.	Lantai Produksi	116
Lampiran 4.	Produk dan Cetakan	116
Lampiran 5.	Produk WIP	116
Lampiran 6.	Tempat Proses Pembakaran	117
Lampiran 7.	Peletakan Produk dalam Proses Pembakaran	117
Lampiran 8.	Tempat Proses Packing	117
Lampiran 9.	WAQ	118
Lampiran 10.	Penjelasan Hubungan Waste	122

INTISARI

Yanto *Pottery* merupakan UMKM yang membuat atau memproduksi bermacammacam jenis gerabah seperti vas, guci, patung dan masih banyak lagi. Produk gerabah yang diproduksi adalah produk yang berbahan dasar dari tanah liat. Permasalahan yang ada dari UMKM ini adalah adanya lama waktu atau *lead time* produksi yang bisa mengakibatkan keterlambatan produksi gerabah. Faktor yang menyebabkan dari lamanya produksi adalah adanya *waste* atau pemborosan yang terjadi di bagian produksi. Penelitian ini memiliki tujuan untuk identifikasi jenis *waste* apa saja yang memliki pengaruh terhadap waktu produksi serta melakukan minimasi atau reduksi *waste* dengan tujuan untuk mengurangi lama waktu produksi keseluruhan.

Penelitian ini menggunakan metode DMAIC (*Define*, *Measure*, *Analyze*, *Improve*, *Control*) untuk menyelesaikan permasalahan. Pada tahapan *define* melakukan definisi permasalahan dengan menggunakan *tools* diagram SIPOC dan *waste assessment model* dan *waste* yang paling berpengaruh pada lama waktu produksi adalah *waste* jenis *waiting*. Tahap *measure* melakukan pengukuran waktu proses pada produksi, waktu yang diukur merupakan waktu yang memberikan *value* dan yang tidak memberikan *value* pada produk dan *tools* yang digunakan untuk memetakan waktu tersebut adalah *value stream mapping*. Tahap *analyze* melakukan analisis sebab-akibat pada waktu yang tidak memberikan *value* pada produk dengan tujuan untuk menemukan akar penyebab dan *tools* yang digunakan adalah *fishbone diagram*.

Tahapan *improve* memberikan usulan perbaikan menggunakan MOST untuk bisa memberikan gambaran waktu pada saat usulan perbaikan diterapkan. Tahap *control* merupakan cara pengendalian yang dilakukan untuk mempertahankan usulan perbaikan untuk kedepannya yaitu berupa dokumen produksi untuk mengetahui output dari proses. Usulan perbaikan akan memberikan kemungkinan penurunan *non-processing time* sebesar 45,43% dan memberikan penurunan waktu produksi untuk satu produk adalah sebesar 1,56%.

Kata Kunci: DMAIC, Waste, Waiting, Gerabah