THE USE OF MAGNETORHEOLOGICAL DAMPERS AS SEMI ACTIVE DEVICE FOR STRUCTURES SUBJECTED TO EARTHQUAKE

Final Project

by:

ALDORIO PRASTYAWAN SATRIAJAYA

081313080

INTERNATIONAL S1 PROGRAM
DEPARTMENT OF CIVIL ENGINEERING
FACULTY OF ENGINEERING
ATMA JAYA YOGYAKARTA UNIVERSITY

May 2013
DECLARATION

I hereby declare this final project report with the title:

THE USE OF MAGNETORHEOLOGICAL DAMPERS AS SEMI ACTIVE DEVICE FOR STRUCTURES SUBJECTED TO EARTHQUAKE

is my own work and not plagiarism. Idea, results or quotations which are from other sources are stated in this final report.

Yogyakarta, April 2013

[Signature]

Aldorin Prastyawan Satriajaya
LEGISLATION

Final Project Report

THE USE OF MAGNETORHEOLOGICAL DAMPERS AS SEMI ACTIVE DEVICE FOR STRUCTURES SUBJECTED TO EARTHQUAKE

By:

Aldorio Prastyawan Satriajaya

Student ID: 08 13 13080

Has been examined and approved by

Name
1. Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D
2. Dr. Ir. A.M. Ade Lisantono, M.Eng.
3. Ir. Pranawa Widagdo, M.T.

Signature

Date
13/06/2013
07/06/2013
LEGISLATION

Final Project Report

THE USE OF MAGNETORHEOLOGICAL DAMPERS AS SEMI ACTIVE DEVICE FOR STRUCTURES SUBJECTED TO EARTHQUAKE

By:

Aldorio Prastyawan Satriajaya

Student ID: 08 13 13080

Has been approved

Yogyakarta, 13 June 2013

Advisor

Prof. Ir. Yoyong Arliadi, M.Eng., Ph.D

Has been legalized by

Head of Civil Engineering Department

J. Januar Sudjati, S.T., M.T.
Acknowledgement

I wish to express my profound gratitude to my supervisor, Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D for his invaluable advice and guidance during the completion of this report. I would like also to thank to Dr. Ir. A.M Ade Lisantono, M.Eng, dean of civil engineering department at Universitas Atma Jaya Yogyakarta and all lecturers in Engineering Faculty UAJY.

I would like to thank to PCMI and Australia-Indonesia Youth Association as my youth organization for allowing me to learn and give new experience in my life.

Finally, I would like to express my deepest gratitude to my parents whose support and prayer become my strength during this completion.
TABLE OF CONTENT

DECLARATION ii

LEGISLATION iii

ACKNOWLEDGEMENT v

TABLE OF CONTENT vi

LIST OF FIGURES viii

LIST OF TABLES x

NOTATIONS xi

ABSTRACT xiv

CHAPTER 1: INTRODUCTION 1

1.1 General View 1

1.2 Objective and Scope 4

1.3 Benchmark Problem 5

1.4 Problem Boundaries 6

1.5 Advantages 7

CHAPTER 2: LITERATURE REVIEW 8

CHAPTER 3: BASIC THEORY 12

3.1 Structural Analysis 12

3.2 Static Analysis 12

3.2a. General 12

3.2b. Stiffness Matrix in terms of Global-Frame Coordinate System 14

3.2c. Static Condensation of Stiffness Matrix and Load Vector 16
<table>
<thead>
<tr>
<th>3.2d. Formation of Stiffness Matrix in terms of Global Building Coordinate</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 Dynamic Analysis</td>
<td>20</td>
</tr>
<tr>
<td>3.4 The Bingham Viscoplastic Model</td>
<td>22</td>
</tr>
<tr>
<td>3.5 Lyapunov Stability Theory</td>
<td>23</td>
</tr>
</tbody>
</table>

CHAPTER 4: Analysis

4.1. General Description	24
4.2. Mass Matrices	24
4.2a. Column and Beam Material Properties	24
4.2b. Translational Mass	25
4.2c. Rotational Mass	26
4.3. Stiffness Matrices	27
4.4. Damping Matrices	28
4.5. Dynamic Analysis with Additional Bracing	28
4.6. Time History Analysis	29

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS

| 5.1. Conclusions | 34 |
| 5.2. Recommendations | 34 |

REFERENCES

| 35 |

APPENDIX

| 38 |
LIST OF FIGURES

Fig. 1.1. 3D view of three storey building

Fig. 1.2. Plan view of three storey building

Fig. 2.1. Schematic of MR Damper

Fig. 3.1. Three-dimensional building model

Fig. 3.2. Degree of Freedom each Nodes

Fig. 3.3. Transformation of group b displacements in terms of Global Building Coordinate Systems, with different choice of Global Building Coordinate Systems

Fig. 3.4. Bingham Model of a controllable Fluid Damper (Stanway, et al. 1985, 1987)

Fig. 4.1. Column-beam section

Fig. 4.2. Center Mass

Fig. 4.3. Model with additional dampers

Fig. 4.4. Displacement of 3rd floor due to El Centro1940 NS excitation, dashed = uncontrolled, solid = passive off

Fig. 4.5. Displacement of 3rd floor due to El Centro1940 NS excitation, dashed = uncontrolled, solid = passive on (3 V)

Fig. 4.6. Displacement of 3rd floor due to El Centro1940 NS excitation, dashed = uncontrolled, solid = Lyapunov Stability Control

Fig 4.7 Semi-Active System Using MR Damper

Fig 4.8 MR damper System
Fig 4.9 Lyapunov Controller System

Fig 5.0 Subsystem in Lyapunov Controller

Fig 5.1 Building Model System
LIST OF TABLES

Table 1.1. Summary of the Physical Characteristic of MR and ER Fluids

Table 1.2. Natural Frequency Comparison MATLAB and ETABS

Table 1.3. Comparison of Peak Response
NOTATIONS

\(a_k \) = proportional constant that relates damping and stiffness

\(A \) = system matrices in state space equation \(\dot{Z} = AZ + Bu + Ew \)

\(B \)

\(E \)

\(A_b \) = area of the beam

\(A_c \) = area of the column

\(b_i \) = vector representing the location of the ith control force

\(b_s \) = control force location matrix

\(c \) = damping

\(C_{3D} \) = damping matrix of three-dimensional building

\(C_s \) = damping matrix

\(C_y \) = measurement matrix

\(d_C \) = displacement to be condensed

\(d_R \) = displacement to be retained

\(E \) = modulus of elasticity

\(f \) = external force

\(I \) = matrix identity

\(\text{ID} \) = destination vector

\(I_x \) = second moment area of the floor with respect to X axis
\(I_{yb} \) = second moment area of the beam with respect to \(y_m \) axis

\(I_{yc} \) = second moment area of the column with respect to \(y_m \) axis

\(I_{zb} \) = second moment area of the beam with respect to \(z_m \) axis

\(I_{zc} \) = second moment area of the column with respect to \(z_m \) axis

\(I_y \) = second moment area of the floor with respect to \(Y \) axis

\(J \) = torsional constant

\(k \) = stiffness

\(K_{3D} \) = stiffness matrix of three-dimensional building

\(K_{cc} \)

\(K_{cr} \)

\(K_{rc} \)

\(K_{RR} \)

\(K_{c} \) = element stiffness in terms of Global Frame Coordinate Systems

\(K_s \) = stiffness matrix

\(m \) = mass

\(M \) = total mass of the floor

\(M_{3D} \) = mass matrix of three-dimensional building

\(M_s \) = mass matrix

\(MMI \) = mass moment of inertia of the floor

\(n \) = total degrees of freedom

\(N \) = total number of floors
\(NRJ \) = total number of restrained joints

\(NTF \) = total number of joints at the floor

\(NTJ \) = total number of joints of the structure

\(T_R \) = transformation matrix

\(u \) = control force vector

\(V \) = Lyapunov function

\(X_{3D} \) = displacement vector of three-dimensional structures

\(X_s \) = displacement vector

\(\dot{X}_s \) = velocity vector

\(\ddot{X}_s \) = acceleration vector

\(y \) = storey drift

\(y \) = measurement vector

\(Z \) = state vector

\(\Delta F \) = displacement of the structure in terms of Global Frame Coordinate Systems

\(\Delta_{FC} \) = displacement of the structure to be condensed out

\(\Delta_{FR} \) = displacement of the structure to be retained
ABSTRACT

Awareness of engineers in designing earthquake resistant building is arising nowadays. Many strategies have been developing by the researchers to get high performance in reducing earthquake responses. Semi-active control strategy under earthquake loading is discussed in this report will be applied in three dimensional three-storey building. In addition, the device has been added with magnetorheological fluid which will act as the liquid damper.

Firstly is to fulfill all parameters in non-linear control strategy based on the building properties. Furthermore, the force of the device in semi-active control strategy will be analyzed with MATLAB to get displacement response by comparing passive on, passive off control and Lyapunov method.

The results of the simulation comparing the uncontrolled building result with semi-active control strategies (uncontrolled-passive off; uncontrolled-passive on; uncontrolled-Lyapunov method) show satisfactory result with displacement response reduction on the first floor are 31.5%, 37.5% and 48.35%, the results on the second floor are 30.7%, 30.5% and 40.2% and the results on the third floor are 26.5%, 29.8% and 40%.

Keywords: semi-active control strategy, magnetorheological fluid, passive on, passive off, Lyapunov method, MATLAB