SURABAYA, INDONESIA APRIL 09-11, 2021

PROCEEDINGS

THE 3RD EAST INDONESIA CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (EICONCIT) 2021

ISBN: 978-1-6654-0514-0

The 3rd 2021 East Indonesia Conference on Computer and Information Technology (EIConCIT)

9 – 11 April 2021 Surabaya, Indonesia (Virtual Conference)

ISBN: 978-1-6654-0514-0

Editor

Rayner Alfred, Haviluddin, Aji Prasetya Wibawa, Joan Santoso, Fachrul Kurniawan, Hartarto Junaedi, Purnawansyah, Endang Setyati, Herman Thuan To Saurik, Esther Irawati Setiawan, Eka Rahayu Setyaningsih, Edwin Pramana, Yosi Kristian, Kelvin, Devi Dwi Purwanto, Eunike Kardinata, Prananda Anugrah

All rights reserved. Copyright ©2021 by IEEE

No parts of this publication may be reproduced, stored in a retrieval system of transmitted by any form or means without permission of the publisher. For reprint or republication permission, email to IEEE Copyrights Manager at:

pubs-permissions@ieee.org

ORGANIZING COMMITTEE

ADVISORY BOARD

Prof. Ir. Arif Nur Afandi, ST, MT, IPM., MIAEng., MIEEE., Ph.D,

Ir. Arya Tandy Hermawan, MT.

Dr. Ir. Gunawan, M.Kom.

Ir. Herman Budianto, MM.

Ir. FX Ferdinandus, MT.

GENERAL CHAIR

Dr. Ir. Endang Setyati, MT.

GENERAL CO-CHAIR

Dr. Hartarto Junaedi, S.Kom, M.Kom

Assoc. Prof. Dr. Rayner Alfred

Ir. Haviluddin, S.Kom, M.Kom, IPM., Ph.D.

TECHNICAL PROGRAM COMMITTEE CHAIR

Dr. Joan Santoso, S.Kom., M.Kom

Aji Prasetya Wibawa, ST., M.MT., Ph.D.

Dr. Ir. Fachrul Kurniawan, ST., M.MT, IPM

TREASURER

Hendrawan Armanto S.Kom, M.Kom.

Yuliana Melita, S.Kom, M.Kom.

REGISTRATION AND SECRETARIATE

Dr. Esther Irawati Setiawan, S.Kom., M.Kom

Eka Rahayu Setyaningsih, S.Kom, M.Kom

PUBLICATION

Herman Thuan To Saurik S.Kom, M.T

PROCEEDING

Kelvin S.T., M.M.

Eunike Kardinata S.SI, M.Kom

Devi Dwi Purwanto S.Kom, M.Kom

INFRASTRUCTURE

Iwan Chandra, S.Kom, M.Kom.

SESSION AND EVENT

Ir. Edwin Pramana, M.AppSc., Ph.D.

Dr. Yosi Kristian, S.Kom, M.Kom.

HOSTED BY

Institut Sains dan Teknologi Terpadu Surabaya, Jawa Timur, Indonesia

TECHNICALLY CO-SPONSORED BY

IEEE Indonesia Section

PARTNERSHIP WITH

Universitas Mulawarman, Indonesia
Universitas Muslim Indonesia, Indonesia
Universitas Negeri Malang, Indonesia
Universitas Islam Negeri Maulana Malik Ibrahim Malang, Indonesia
Universitas Ahmad Dahlan, Indonesia
Universitas Hasanuddin, Indonesia
Universitas Cokroaminoto Palopo, Indonesia
Politeknik Negeri Samarinda, Indonesia
Politeknik Negeri Bali, Indonesia

SUPPORTED BY

Ministry of Education, Research and Technology (KEMDIKBUD-RISTEK) Indonesia

CONTACT DETAILS

Institut Sains dan Teknologi Terpadu Surabaya (ISTTS)

Surabaya, Jawa Timur, Indonesia, 60284

Telp: (+62 31) 5027920, Email: eiconcit@istts.ac.id, Website: https://eiconcit.org

Table of Content

No	Title	Page
1.	A Performance of ES920LR LoRa for the Internet of Things: A Technology Review	1
2.	A Performance Evaluation of ZigBee Mesh Communication on the Internet of Things (IoT)	7
3.	Designing Information Security Risk Management on Bali Regional Police Command Centre	14
707	Based on ISO 27005	27/21
4.	Monitoring Design of Temperature and Humidity Issues in IoT-Based Train Passenger cars	20
5.	Predicting Frequently Asked Questions (FAQs) on the COVID-19 Chatbot using the DIET	25
	Classifier	
6.	Analysis Classification Opinion of Policy Government Announces Cabinet Reshuffle on	30
	YouTube Comments Using 1D Convolutional Neural Networks	
7.	Analysis of the Spread of COVID-19 in Local Areas in Indonesia	36
8.	A Comparison of Naive Bayes Methods, Logistic Regression and KNN for Predicting Healing	41
	of Covid-19 Patients in Indonesia	
9.	Time Series Forecasting for the Spread of Covid-19 in Indonesia Using Curve Fitting	45
10.	A New Approach for Spear phishing Detection	49
11.	Detection of Online Prostitution Account in Twitter Platform Using Machine Learning	55
12	Approaches Application of Deep Learning for Foulty Detection of COVID-10 Using CT Seep Images	61
12.	Application of Deep Learning for Early Detection of COVID-19 Using CT-Scan Images Control Design of Information Security Related to Privacy in The Smart SIM Business Process	66
13. 14.	Bus Scheduling in The City of Surabaya Using Smooth Transition Method and Equal Average	73
14.	Load	13
15.	Indonesian Abstractive Summarization using Pre-trained Model	79
16.	Banana Ripeness Classification Based on Deep Learning using Convolutional Neural Network	85
17.	Smart Watering Plant Design in Apartment Lifecycle using Mobile Application	90
18.	Development of an online PTT voice transmission system between cell phones, computers, and	95
	embedded systems over the internet	
19.	Sentiment Analysis of Indonesia's National Economic Endurance using Fuzzy Ontology-Based	99
	Semantic Knowledge	14
20.	Accuracy Comparison of Home Security Face Recognition Model in The Several Lighting	105
	Condition Using Some Kinect Produced Image	
21.	Sheep Face Classification using Convolutional Neural Network	111
22.	Unsupervised Corpus Callosum Extraction for T2-FLAIR MRI Images	116
23.	Sentiment Analysis on Covid19 Vaccines in Indonesia: From the Perspective of Sinovac and	122
	Pfizer	100
24.	Data Augmentation and Faster RCNN Improve Vehicle Detection and Recognition	128
25.	Automation and Optimization of Course Scheduling Using the Iterated Local Search Hyper-	134
	Heuristic Algorithm with the Problem Domain from the 2019 International Timetabling Competition	
26.	4G LTE Experience: Reference Signal Received Power, Noise Ratio and Quality	139
27.	Batik Clothes Auto-Fashion using Conditional Generative Adversarial Network and U-Net	145
28.	Multi Camera Positioning Behaviour Based on A Director Style Using Fuzzy Logic for	151
20.	Machinima	101
29.	Talent management in agile software development: The state of the art	156
30.	Scheduling control of air-conditioning system based on electricity peak price	161
31.	Design of Sign Language Recognition Using E-CNN	166
32.	Optimization of the 5G VANET Routing Protocol on AODV Communication with Static	171
	Intersection Node	
33.	Monitoring and Controlling Smart Hydroponics Using Android and Web Application	177
34.	Predicting Student's Failure in Education Based on Dropout Status	183
35.	3D Printer Operational Robustness on Polylactic Acid based Product Printing	189
36.	Helmet Usage Detection on Motorcyclist Using Deep Residual Learning	194
37.	Short Message Service (SMS) Spam Filtering using Machine Learning in Bahasa Indonesia	199
38.	Improving Machine Learning Accuracy using Data Augmentation in Recruitment	203
20	Recommendation Process	200
39.	Evaluation of the Customs Document Lane System Effectiveness: A Case Study in Indonesia	209

No	Title	Page
40.	A Policy Strategy Evaluation for Covid-19 Pandemic in the City of Surabaya Using Vensim	215
	Ventana Dynamic System Simulation	
41.	System Evaluation of RFID-Based User Localization	222
42.	Mobile Network Experience in Forest Research and Conservation Areas	227
43.	Analysis of User Acceptance for Rumah Belajar Mobile Application	232
44.	Multivariate Data Model Prediction Analysis Using Backpropagation Neural Network	239
45.	Information Extraction from ICMD Documents to Determine the Ratio Factors Function	244
16	Performance using Fuzzy	240
46.	Energy Efficient Fog Computing with Architecture of Smart Traffic Lights System	248
47.	Developing Machine Learning Framework to Classify Harmonized System Code. Case Study: Indonesian Customs	254
48.	Position Control Using Linear Quadratic Gaussian on Vertical Take-Off Landing	260
49.	The Mobile Payment Adoption: A Systematic Literature Review	265
50.	CBES: Cloud Based Learning Management System for Educational Institutions	270
51.	Technology Acceptance Model in One Stop Service Systems during the Covid-19 Pandemic	276
52.	Communication Media Rankings to Support Socialization at PPATK	281
53.	Measuring the UX of Mobile Application Attendance Lectures Feature Using Short-User Experience Questions (UEQ-S)	286
54.	Cloud-based COVID-19 Patient Monitoring using Arduino	292
55.	Performance Analysis of GPU-CPU for The Face Detection	297
		302
56.	Bank Account Classification for Gambling Transactions How to the Need for Personal Protective Equipment (PPE) during the current Covid 19	309
57.	Pandemic: Smart Products Solution	309
58.	Detecting Social Media Influencers of Airline Services Through Social Network Analysis on Twitter: A Case Study of the Indonesian Airline Industry	314
59.	Classification of Male and Female Sweat Odor in the Morning Using Electronic Nose	320
60.	Recent Trends and Opportunities of Remote Multi-Parameter PMS using IoT	325
61.	Categorization of Exam Questions based on Bloom Taxonomy using Naïve Bayes and Laplace	330
01.	Smoothing	330
62.	Social Media Emotion Analysis in Indonesian Using Fine-Tuning BERT Model	334
63.	Customer Complaints Clusterization of Government Drinking Water Company on Social Media	338
.togare.	Twitter Using Text Mining	0.000.0000
64.	Improvement of Xception-ResNet50V2 Concatenation for COVID-19 Detection on Chest X-Ray Images	343
65.	Analysis of End-user Satisfaction of Zoom Application for Online Lectures	348
66.	Intelligent Decision Support Systems of Medicinal Forest Plants for Skin Disease	354
67.	Ontology-Based Sentiment Analysis on News Title	360
68.	Prediction the Condition of Tuberculosis Patients Who Can Recover Normally Using a Support	365
55.	Vector Machine with Radial and Polynomial Kernels	303
69.	Fuzzy Logic and IoT for Smart City Lighting Maintenance Management	369
70.	Decision Support System Two-Dimensional Cattle Weight Estimation using Fuzzy Rule Based	374
7.0.	System	2,4
71.	Performance Comparison of Naïve Bayes and Neural Network in Predicting Student Violation	379
72.	Detection Jellyfish Attacks Against Dymo Routing Protocol on Manet Using Delay Per-Hop	385
	Indicator (Delphi) Method	500
73.	Network Traffic WLAN Monitoring based SNMP using MRTG with Erlang Theory	391
74.	Strawberry Ripeness Identification Using Feature Extraction of RGB and K-Nearest Neighbour	395
75.	A backpropagation neural network algorithm in agricultural product prices prediction	399
76.	Recognition of Indonesian Sign Language Alphabets Using Fourier Descriptor Method	405
77.	Measurement of Iodine Levels in Salt Using Colour Sensor	410
78.	Tiny Encryption Algorithm on Discrete Cosine Transform Watermarking	415
79.	Lung X-Ray Image Enhancement to Identify Pneumonia with CNN	421
80.	Applying Hindsight Experience Replay to Procedural Level Generation	427
81.	The Edge Feature Subtraction for Completing Video Matting	433
82.	A fuzzy Mamdani Approach on Community Business Loan Feasibility Assessment	438
	Multi-Branch Company Enterprise Resource Planning Solution using Open ERP System in	443
83.	IVIIIII-DIAICH COIDIAIN EIRCIDHSC RESONICE FIAINNING SOURION USING CHER ERF SYSTEM III	

No	Title	Page
84.	SDN: A Different Approach for the Design and Implementation of Converged Networks	450
85.	Answer Ranking with Weighted Scores in Indonesian Hybrid Restricted Domain Question	456
	Answering System	

Sheep Face Classification using Convolutional Neural Network

Muhammad Zharfan Bimantoro Magister Informatika Universitas Atma Jaya Yogyakarta 205303258@uajy.students.ac.id Andi Wahju Rahardjo Emanuel Magister Informatika Universitas Atma Jaya Yogyakarta andi.emanuel@uajy.ac.id

Abstract

Monitoring sheep species identification and classification in the farming environment can be a tedious task and can be a significant workload for a starting farmer. In this paper, Convolutional Neural Network is proposed to reduce the workload of sheep farmers. This experiment compares which neural architecture model is more useful to classify sheep species based on its face. The experiment was conducted using the training dataset obtained from Kaggle. The dataset contains 420 of each Marino sheep, Suffolk sheep, White Suffolk sheep, and Poll Dorset sheep, totaling 1680 sheep face images. This experiment was run on Google Colab, using the Resnet50 network architecture model and VGG16 network architecture model. The experiment shows good accuracy results on the dataset achieving 86% using the Resnet50 network architecture model. Better accuracy results were achieved using VGG16 network architecture, with an accuracy value of 94%.

Keywords—Sheep breed identification, Convolutional neural network, Image classification, Computer vision

I. Introduction

Indonesia is a country where sheep are suitable for farmed in lowland areas with rice monoculture and grazing lands. Development programs in Indonesia are more focused on goats than sheep, even though based on its Muslim religious festivities culture, sheep are often used as sacrifices rather than goats [1]. The surveillance system of wild animals as a non-invasive approach in monitoring animals can now classify and recognize animal species using a camera [2]. Sheep are commercially valued based on their meat or carcass weight and their wool [3]. Different breeds of sheep may produce additional meat yield and wool vield, so it is essential to know the difference between them. For a farmer who just started or still low in experience, an automation system that can help them identify each breed will reduce their workload to focus on other tasks efficiently. Machine learning, especially computer vision approaches, may benefit them.

There are many kinds of research with sheep as subjects. The study by Abu Jwade *et al.* implements the automation of sheep breed classification using deep learning. Usually, it is not easy to estimate the sheep's productivity as it is only counted during its slaughter [4]. The sheep's weights are needed to estimate how much meat the sheep farm is producing. As different breeds may have different meat yield, it is essential to know which species produce specific meat yield [4]. Shahinfar *et al.* use Artificial Neural Network, Model Tree, and Bagging to predict wool growth and quality in adult Australian Merino Sheep [5]. The study

suggests that Model Tree and Bagging are the most effective for predicting adult sheep wool growth [5]. Machine learning was also used in predicting sheep carcass traits from early-life records [6]. One study uses five machine learning algorithms: Deep Learning, Gradient Boosting Tree, K-Nearest Neighbor, Model Tree, and Random Forest. The analysis was most accurate when utilizing birth, weaning, and pre-slaughter weight to predict intramuscular fat and Greville rule fat depth [6]. The result is most accurate when using weaning, six-monthly weight measures after weaning and pre-slaughter weight to predict hot carcass weight, loin weight, and computer tomography lean meat yield [6]. Prediction of carcass traits is crucial as it led to better management of the sheep farm [7].

Convolutional Neural Network (CNN) is an algorithm that has become a tool for pattern recognition and object detection [8]. In this experiment, sheep species classification using the sheep faces extracting features on the sheep's faces. For this task, the Resnet50 network architecture model and VGG16 network architecture model will be employed to identify sheep species based on features on the sheep's face. The evaluation will be based on the model's precision, recall, F1-score, support, accuracy, macro average, and weighted average.

II. PROPOSED METHODOLOGY

The dataset of this experiment was obtained from Kaggle.com. These images were pre-processed to enable training and testing CNN models. Dataset consists of 1680 photos of sheep face with dimensions of each photo 156x181 pixels, and resolution of both vertical and horizontal are 96 dpi. The dataset is divided into four folders of Marino sheep, Suffolk sheep, White Suffolk sheep, and Poll Dorset sheep. The dataset's images contain a picture of a sheep face with its eyes, mouth, and nose. Fig. 1 includes samples of each species' sheep faces.



Fig.1 Sample images from the dataset of sheep faces of each species

CNN Architecture used in this experiment is Resnet50 and VGG16. Dataset then was reuploaded to Google Drive, then mounted to Google Colab and arranged into dataset fit for training and testing for machine learning. The dataset is then divided into a training dataset and a testing dataset. The

dataset is then trained and tested using Resnet50 CNN Architecture and then VGG16 CNN Architecture. The accuracy result from each CNN architecture is then compared for the best results. The experiment was run on a laptop computer with Intel Core i7-7700HQ (2.80 GHz), a GPU of Nvidia GeForce GTX 1050, and 8 GB of memory, running on a Windows 10 64-bit system. The experiment was implemented in Google Colab.

1. Resnet50

The Resnet50 was put forward by Kaiming [9]. Resnet has successfully trained 152 deep neural networks to win the ILSVRC 2015 championship and achieving 3,57% in error rate classification for the top 5 classes [9]. Resnet50 is a convolutional neural network that contains 50 layers deep. The pre-trained network can classify images into 1000 object categories [10]. Resnet50 network was utilized as CNN in wildlife detection and provided satisfactory results. It provided 96% accuracy in animal detection and 90% accuracy in identifying the most common animals such as birds, rats, and bandicoot [2]. The study by Weber et al. experiment of recognition of Pantaneira cattle breed also uses Resnet50 and achieves accuracy training of 99.20% and an accuracy test of 99.78%. [11]. Whereas the study by Deeba and Amutha experiment in developing a deep learning-based system for prediction and classification of vegetable leaf compares different neural network types [12]. Among these results, Resnet50 achieved a higher prediction accuracy of 98% compared to LeNet, AlexNet, VGG16, and VGG19 [12].

2. VGG16

VGG16 is a convolutional neural network proposed by Simonyan and Zisserman [13]. The model achieves 92.7% accuracy in ImageNet, a dataset of over 14 million images belonging to 1000 images [14]. The VGG16 network has achieved favorable results in

detecting objects. Song *et al.* have constructed a kiwifruit detection system resulting precision of 87.61% using the VGG16 network model. The system can detect several categories of fruits in the field, providing firm support for automatic harvest system using robots that can work all day during the busiest season [15]. In Lian *et al.* experiment with diabetic retinopathy detection, the VGG16 network model was used to classify eye images to detect illnesses caused by complications of diabetes, resulting in an accuracy of 48.13% using randomly initialized parameters. Still, after classified using hyperparameter tuning, VGG16 achieved an accuracy of 93.17% [9].

III. EXPERIMENTAL RESULT

The metric to evaluate machine learning performance to assess the classifier algorithm's performance in this experiment is accuracy. In this section, the accuracy between CNN Architecture of Resnet50 and VGG16 will be compared.

1.1 Resnet50

The results obtained using Resnet50: 86% accuracy during training with a processing time of 11 minutes and 32 seconds. The training had stabilization from one epoch to another, from 0.8698 to 0.9970, by increasing and decreasing its validation accuracy. Fig. 2 and Table 1 show the results described. The performance of the Resnet50 can be seen in Fig. 4

1.2 VGG16

The results obtained using VGG16 shows 94% accuracy during training with a processing time of 12 minutes and 23 seconds and having improvisation of validation accuracy from one epoch to another, from 0.79762 to 0.94345. Fig. 3 and Table 2 shows the results described. The performance of the VGG16 can be seen in Fig. 5.

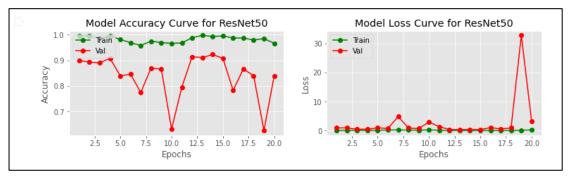


Fig.2 Training accuracy and testing accuracy and loss results for Resnet50

 Table 1 Accuracy results in training for Resnet50

Precision	Recall	F1-Score	Support
0.90	0.55	0.68	82
0.85	0.85	0.85	95
0.96	0.96	0.96	74
0.73	1.00	0.84	85

Accuracy	0.84
Macro Avg	0.83
Weighted Avg	0.83

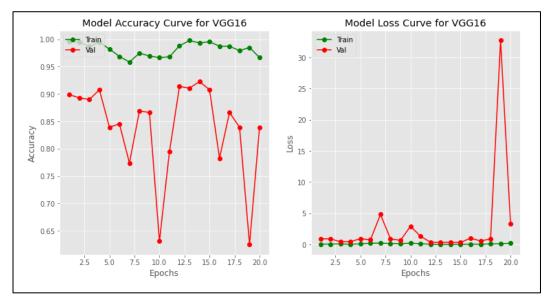


Fig. 3 Training accuracy and testing accuracy and loss results for VGG16

Table 2 Accuracy results in training for VGG16

Precision	Recall	F1-Score	Support
0.96	0.90	0.93	82
0.93	0.93	0.93	95
0.97	0.96	0.97	74
0.92	0.99	0.95	85
Accuracy			0.94
Macro Avg			0.94
Weighted Avg			0.94

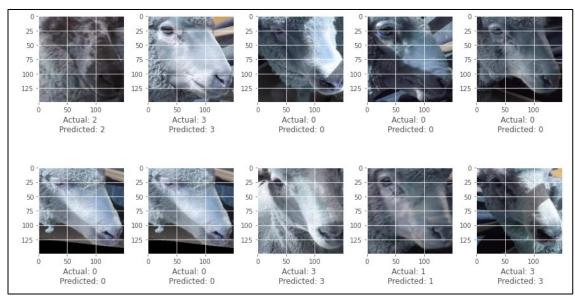


Fig. 4 Performance of Resnet50 Network Architecture Model

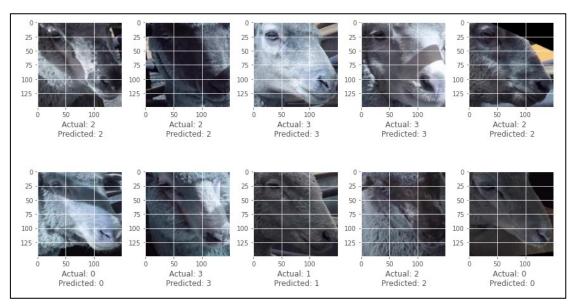


Fig. 5 Performance of VGG16 Network Architecture Model

IV. CONCLUSION

The task of sheep species recognition in the farming environment may pose a tedious challenge caused by repetitive tasks. It may cause a loss in the identifier's focus, causing wrong species classification. This experiment studied the practicality of using computer vision and comparing machine learning techniques to better accuracy. Using the camera and computer vision using the VGG16 network model for sheep face recognition may reduce stress and workload for both sheep and the farmers. The best result was obtained using VGG16, compared to Resnet50, with VGG16 achieving an accuracy result of 94%, compared to Resnet50 achieving an accuracy result of 84% with both Resnet50 and VGG16 uses 20 epochs. This experiment's classifier may help sheep farmers identify and differentiate sheep species without help from experienced people, allowing low-cost and accurate estimation of meat yield, wool yield, and cost management. It is also possible to integrate the technique developed here to predict sheep carcass condition and wool growth prediction developed by others [5], [6] to further efficiently estimate yield from the sheep.

ACKNOWLEDGMENT

This research was fully supported by Universitas Atma Jaya Yogyakarta.

V. BIBLIOGRAPHY

- [1] I. G. Budisatria, H. M. Udo, C. H. Eilers, E. Baliarti and A. J. van der Zijpp, "Preferences for sheep or goats in Indonesia," *Small Ruminant Research*, pp. 16-22, 2010.
- [2] M. Favorskaya and A. Pakhirka, "Animal species recognition in the wildlife based on muzzle and shape features using joint CNN," *Procedia Computer Science*, vol. 159, pp. 933-942, 2019.

- [3] D. L. Hopkins, "Estimating carcass weight from liveweight in lambs," *Small Ruminant Research*, vol. 6, no. 4, pp. 323-328, 1991.
- [4] S. Abu Jwade, A. Guzzomi and A. Mian, "On farm automatic sheep breed classification using deep learning," *Computers and Electronics in Agriculture*, vol. 167, 2019.
- [5] S. Shahinfar and L. Kahn, "Machine learning approaches for early prediction of adult wool growth and quality in Australian Merino sheep," *Computers* and Electronics in Agriculture, vol. 148, pp. 72-81, 2018.
- [6] S. Shahinfar, K. Kelman and L. Kahn, "Prediction of sheep carcass traits from early-life records using machine learning," *Computers and Electronics in Agriculture*, vol. 156, pp. 159-177, 2019.
- [7] S. R. Silva, "Use of ultrasonographic examination for in vivo evaluation of body composition and for prediction of carcass quality of sheep," *Small Ruminant Research*, vol. 152, pp. 144-157, 2017.
- [8] S. Kulik and A. Shtanko, "Using convolutional neural networks for recognition of objects varied in appearance in computer vision for intellectual robots," *Procedia Computer Science*, vol. 169, pp. 164-167, 2020.
- [9] C. Lian, Y. Liang, R. Kang and Y. Xiang, "Deep convolutional neural networks for diabetic retinopathy classification," ACM International Conference Proceeding Series, vol. 72, pp. 68-72, 2018.
- [10] I. The Mathworks, "Resnet-50 convolutional neural network," [Online]. Available: https://www.mathworks.com/help/deeplearning/ref/resnet50.html. [Accessed 18 December 2020].
- [11] F. d. L. Weber, V. A. d. M. Weber, G. V. Menezes, A. d. S. Oliveira Junior, D. A. Alves, M. V. M. de Oliveira, E. T. Matsubara, H. Pistori and U. G. P. d. Abreu, "Recognition of Pantaneira cattle breed using computer vision and convolutional neural networks,"

- Computers and Electronics in Agriculture, vol. 175, 2020.
- [12] K. Deeba and B. Amutha, "ResNet Deep Neural Network architecture for leaf disease classification," *Microprocessors and Microsystems*, 2020.
- [13] M. u. Hassan, "Neurohive," 20 November 2018. [Online]. Available: https://neurohive.io/en/popular-networks/vgg16/. [Accessed 18 December 2020].
- [14] K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image recognition," *3rd International Conference on Learning Representations*, pp. 1-14, 2015.
- [15] Z. Song, L. Fu, J. Wu, Z. Liu, R. Li and Y. Cui, "Kiwifruit detection in field images using Faster R-CNN with VGG16," *IFAC-PapersOnLine*, vol. 52, no. 30, pp. 76-81, 2019.

2021 3rd EAST INDONESIA CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY (EIConCIT 2021)

Hosted by INSTITUT SAINS DAN TEKNOLOGI TERPADU SURABAYA 9 - 11 April 2021, SURABAYA, INDONESIA

CERTIFICATE OF PARTICIPATION

awarded to

Muhammad Zharfan Bimantoro, Andi Wahju Rahardjo Emanuel

for participation and contribution as **AUTHOR**

in recognition of notable contribution in 3rd EICONCIT 2021

Surabaya, INDONESIA

Assoc. Prof. Dr. Ir. Endang Setyati, M.T.

General Chair

Dr. Hartarto Junaedi, S.Kom., M.Kom.

General Co Chair

Dr. Joan Santoso S.Kom., M.Kom.

General Co Chair