Redesain Mesin *Spinner* pada UMKM Putri 21 Menggunakan *Finite Element Analysis* Software *SOLIDWORK 2018*

Disusun oleh:

Rafael Prakosa N 170609241

FAKULTAS TEKNOLOGI INDUSTRI
PROGRAM STUDI TEKNIK INDUSTRI
UNIVERSITAS ATMA JAYA YOGYAKARTA
YOGYAKARTA
2020

HALAMAN PENGESAHAN

Tugas Akhir Berjudul

REDESAIN MESIN SPINNER PADA UMKM PUTRI 21 MENGGUNAKAN FINITE ELEMENT ANALYSIS SOFTWARE SOLIDWORK 2018

yang disusun oleh

RAFAEL PRAKOSA NUGROHO

170609241

dinyatakan telah memenuhi syarat pada tanggal 15 Oktober 2021

Dosen Pembimbing 1 : A. Tonny Yuniarto, ST., M.Eng.

Telah menyetujui
Dosen Pembimbing 2 : Dr. T. Paulus Wisnu Anggoro, S.T., MT.

Keterangan
Telah menyetujui
Telah menyetujui

Tim Penguji

Penguji 1 : A. Tonny Yuniarto, ST., M.Eng. Telah menyetujui
Penguji 2 : Theodorus B. Hanandoko, ST., MT. Telah menyetujui
Penguji 3 : Dr. T. Baju Bawono, ST., MT. Telah menyetujui

Yogyakarta, 15 Oktober 2021 Universitas Atma Jaya Yogyakarta Fakultas Teknologi Industri

Dekan

ttd

Dr. A. Teguh Siswantoro, M.Sc

PERNYATAAN ORISINALITAS

Saya yang bertanda tangan di bawah ini:

Nama: Rafael Prakosa N.

NPM: 17 06 09241

Dengan ini menyatakan bahwa laporan tugas akhir saya berjudul "Redesain Mesin Spinner pada UMKM Putri 21 Menggunakan Finite Element Analysis Software SOLIDWORK" adalah hasil penelitian saya pada Tahun Akademik 2020/2021 yang bersifat otentik dan tidak mengandung plagiasi dari karya manapun. Jika di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia diberi sanksi dan diproses sesuai dengan ketentuan yang berlaku termasuk untuk dicabut gelar Sarjana Teknik yang telah diberikan Universitas Atma Jaya Yogyakarta kepada saya. Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenar-benarnya.

Yogyakarta, 19 April 2021

Yang Menyatakan,

Rafael Prakosa N.

KATA PENGANTAR

Puji syukur pada ke hadirat Tuhan Yang Maha Esa karena berkat rahmat dan karunia-Nya Laporan Tugas Akhir dengan judul "Redesain Mesin Spinner pada UMKM Putri 21 Menggunakan Finite Element Analysis Software SOLIDWORK 2018" dapat terselesaikan dengan baik. Laporan Tugas Akhir ini dibuat sebagai syarat untuk mengikuti Sidang Pendadaran Tugas Akhir Universitas ATMA JAYA Yogyakarta. Semoga yang tertulis pada laporan ini suatu saat dapat berguna bagi siapa saja yang membutuhkan. Terima kasih peneliti ucapkan pada beberapa pihak yang membantu penyusunan laporan Tugas Akhir ini:

- a. Bapak Dr. A. Teguh Siswantoro, M.Sc. Selaku Dekan Fakultas Teknologi Industri Universitas Atma Jaya Yogyakarta.
- b. Ibu Ririn Diar Astanti, S.T., M.MT., D.Eng. selaku Ketua Departemen Teknik Industri Universitas Atma Jaya Yogyakarta
- c. Ibu Lenny Halim, S.T., M.Eng. Selaku Ketua Program Studi S1 Teknik Industri Universitas Atma Jaya Yogyakarta.
- d. Bapak Tonny Yuniarto, S.T., M.Eng. selaku Dosen Pembimbing 1 Tugas Akhir
- e. Paulus Dr. T. Wisnu Anggoro, S.T., M.T. selaku Dosen Pembimbing 2 Tugas Akhir
- f. Dan beberapa pihak yang tidak dapat disebutkan satu persatu

Akhir kata penulis mengucapkan terima kasih sebesar besarnya atas perhatian dan dukungan yang bisa penulis terima, apabila ada kesalahan kata maka penulis mohon maaf dan semoga laporan ini bisa berguna dimasa yang akan datang.

Yogyakarta, 15 Juni 2021

Penulis

Rafael Prakosa N.

DAFTAR ISI

BAB	JUDUL	HAL
	Halaman Judul	i
	Halaman Pengesahan	ii
	Pernyataan Orisinalitas	iii
	Kata Pengantar	iv
	Daftar Isi	V
	Daftar Gambar	vii
	Daftar Gambar Daftar Tabel Daftar Lampiran Intisari	ix
	Daftar Lampiran	Х
	Intisari	xi
	5 4	
1	Pendahuluan	1
	1.1. Latar Belakang	1
	1.2. Perumusan Masalah	4
	1.3. Tujuan Penelitian	4
	1.4. Batasan Masalah	5
2	Tinjauan Pustaka dan Landasan Teori	6
	2.1.Tinjauan Pustaka	6
	2.2. Landasan Teori	12
3	Metodologi Penelitian	23
	3.1. Data Penelitian	23
	3.2. Alat Bantu dan Mesin Penelitian	24
	3.3. Metodologi Peneltian	25
4	Profil Data dan Tahapan Simulasi	33
	4.1. Hardware	33
	4.2. Data Material	34
	4.3. Desain 3D Mesin	36
	4.4. Tahapan Simulasi	43
	4.5. Hasil Simulasi	51
	4.6. Perbaikan Desain	54

	4.7. Hasil Simulasi Perbaikan Desain	55
5	Analisis	60
	5.1. Analisis Teknik Industri	60
	5.2. Brainstroming Permasalahan UMKM	62
	5.3. Analisis Proses Simulasi	63
	5.3. Analisis Hasil Simulasi Desain Awal	66
	5.4. Analisis Perbaikan Desain Mesin	68
	5.5. Analisis Hasil Perbaikan Desain Mesin	70
	Kesimpulan dan Saran 6.1. Kesimpulan 6.2. Saran	
6	Kesimpulan dan Saran	72
	6.1. Kesimpulan	72
	6.2. Saran	72
	Daftar Pustaka	73
	Lampiran	75

DAFTAR GAMBAR

Gambar 1.1.	Mie Ayo Mocaf	2
Gambar 1.2.	Mesin Spinner Pada UKM Putri 21	3
Gambar 2.1.	Hasil Simulasi Poros	7
Gambar 2.2.	Hasil Simulasi Rangka	7
Gambar 2.3.	Glass Handling Robot Desain	8
Gambar 2.4.	Hasil Analisis ANSYS Pada Space Frame Race Car	9
Gambar 2.5.	Grafik Getaran Motor	10
Gambar 2.6.	Grafik Spektrum Getaran beberapa Motor Listrik	11
Gambar 2.7.	Hasil Meshing 2D	14
Gambar 2.8.	Interface SOLIDWORK 2018	15
Gambar 2.9.	Contoh Simulasi FEA SOLIDWORK 2018	16
Gambar 2.10.	Pemberian Struktur Damper pada Gedung Tinggi untuk	19
	Menahan Getaran	
Gambar 2.11.	Vector Diagram dari Harmonic Motion	19
Gambar 2.12.	Grafik Amplitude terhadap Frequency Ratio	20
Gambar 3.1.	Meteran Titan	24
Gambar 3.2.	Vernier Kaliper Qtr	24
Gambar 3.3.	Desain Mesin Spinner	27
Gambar 3.4.	Modul SOLIDWORK 2018 Simulation	28
Gambar 3.5.	Modul Fixture	29
Gambar 3.6.	Modul External Loads	29
Gambar 3.7.	Modul Mesh	30
Gambar 3.8.	Penentuan Level Mesh	30
Gambar 3.11.	Flowchart Penelitian	32
Gambar 4.1.	Spesifikasi Sistem Komputer Peneliti	33
Gambar 4.2.	Spesifikasi Grafis Komputer Peneliti	
Gambar 4.3.	Desain Potongan 3D Tabung Luar dan Data Berat	37
	Tabung	
Gambar 4.4.	Desain 3D Tabung Penyaring Spinner dan Data Berat	37
Gambar 4.5.	Desain 3D Poros Mesin	38
Gambar 4.6.	Desain 3D Rangka dan Data Berat	39

Gambar 4.7.	Desain 3D dan Data Berat Pulley Ø120 mm		
Gambar 4.8.	Gambar 3D dan Data Berat Pulley Ø 60 mm		
Gambar 4.9.	Desain Motor Listrik		
Gambar 4.10.	Penjelasan Notasi Housing Bearing		
Gambar 4.11.	Gambar Potongan Rakitan Mesin Spinner		
Gambar 4.12.	Simulasi yang Digunakan		
Gambar 4.13.	Penyederhanaan Part Simulasi		
Gambar 4.14.	Modul Connection Simulasi		
Gambar 4.15. Fixture Module		46	
Gambar 4.16.	Data Berat dan Titik Berat Rangkaian Poros		
Gambar 4.17.	Penambahan Mass Poros pada Sistem	47	
Gambar 4.18.	Data Berat dan Titik Berat Rangkaian Motor	48	
Gambar 4.19.	Penambahan Mass Rangkaian Motor Pada Sistem	48	
Gambar 4.20.	Gaya Getaran Motor	49	
Gambar 4.21.	Level Density Mesh	50	
Gambar 4.22.	Penyederhanaan Gambar Desain Tabung Luar	50	
Gambar 4.23.	Damping Ratio dan Run Simulation	51	
Gambar 4.24.	Hasil Simulasi Natural Frekuensi	52	
Gambar 4.25.	Harmonic Response Pada Frekuensi 117.6 Hz	53	
Gambar 4.26.	Tiga Titik Pengamatan Pergeseran	53	
Gambar 4.27.	Grafik Harmonic Response pada 3 Titik Pengamatan	54	
Gambar 4.28.	Desain Alternatif Rangka	54	
Gambar 4.29.	Modul Fixture hasil redesain	55	
Gambar 4.30.	Contoh Hasil Natural Frequency Desain Alternatif	56	
Gambar 4.31.	Harmonic Response pada Frekuensi 120 Hz	57	
Gambar 4.32.	Grafik Pergeseran 3 Titik Desain Alternatif	58	
Gambar 4.33.	Grafik Pergeseran Skala Kecil	59	
Gambar 5.1.	Kemungkinan sumber Getaran	63	
Gambar 5.2.	Pesan Error pada Percobaan Meshing Pertama	65	
Gambar 5.3.	Detail Mode Shape 1 dan 2 Mesin Spinner	66	
Gambar 5.4.	Hasil Perhitungan Momen Inertia Software	69	

DAFTAR TABEL

Tabel 2.1.	Getaran Yang Terjadi	Pada Space Frame Race Car	9
Tabel 2.2.	Nilai Damping Ratio		21
Tabel 3.1	Spesifikasi Umum Par	t Spinner	23
Tabel 4.1.	SOLIDWORK 2018 Sy	ystem Requirement	33
Tabel 4.2.	Karakteristik Besi St. 3	37	34
Tabel 4.3.	Karakteristik Aluminiur	m 6061	35
Tabel 4.4.	Karakteristik Cast Car	bon Steel	35
Tabel 4.5.	Spesifikasi Motor Listr	ik	40
Tabel 4.6.	Spesifikasi Housing Bo	earing	41
Tabel 4.7.	Natural Frekuensi dan	Pergeseran	52
Tabel 4.8	Natural Frequency De	sain Alternatif	56
Tabel 5.1.	Perbandingan Nilai Mo	omen Inersia	69

DAFTAR LAMPIRAN

Lampiran 1.	Catatan Observasi	75
Lampiran 2.	Drafting Assembly Mesin Spinner	76
Lampiran 3.	Drafting Tabung Luar	77
Lampiran 3.	Drafting Tabung Penyaring	78
Lampiran 4.	Drafting Rangka Bawah	79
Lampiran 5.	Drafting Shaft	80
Lampiran 6.	Drafting Pulley kecil	81
Lampiran 7.	Drafting Pulley Besar	82
Lampiran 8.	Drafting Rangka Bawah Alt 1 (besi Hollow)	83
Lampiran 9.	Drafting Rangka Bawah Alt 2 (Besi lwf)	84
Lampiran 10.	Drafting Support Alt 3	85
Lampiran 11.	Surat Persetujuan Penelitian	86
Lampiran 12.	Bukti Chat dosen Pembimbing	87

Intisari:

Industri kreatif merupakan sebuah industri yang memanfaatkan kreativitas, keterampilan untuk menciptakan lapangan kerja dengan mengeksploitasi daya kreasi dan cipta individu tersebut. Perkembangan industri kreatif di Indonesia sudah cukup banyak dibuktikan dengan presentasi penyumbangan sektor industri kreatif pada PDB Indonesia yang cukup signifikan. Kemunculan industri kreatif di Indonesia tidak selalu berjalan dengan apa yang diharapkan, ada banyak industri kreatif yang mengalami permasalahan mengenai efisiensi proses produksi. Salah satu contoh industri kreatif yang mengalami masalah efisiensi produksi adalah UMKM Putri 21. Masalah efisiensi yang terjadi pada UMKM ini ada pada proses penirisan tepung dan keripik menggunakan mesin Spinner. Foundational Bolt yang ada pada mesin Spinner di UMKM sering melonggar sehingga membuat mesin tidak aman ketika digunakan karena memiliki risiko untuk jatuh menumpahkan isi yang ada pada mesin. Pemilik UMKM sebelumnya memilih memberhentikan produksi selama foundational bolt masih longgar dan menunggu pihak ketiga untuk melakukan maintenance mesin. Mesin Spinner merupakan mesin yang sangat penting pada proses produksi di UMKM sebab produk UMKM yang berupa Mie Instan dan keripik perlu ditiriskan agar lebih awet Ketika dijual. permasalahan ini dapat diselesaikan secara preventif yaitu dengan melakukan perbaikan desain rangka mesin spinner.

Tujuan dari penelitian ini adalah mendapatkan alternatif desain mesin spinner yang dapat memperkecil kemungkinan melonggarnya foundational bolt. Tools yang digunakan untuk mendapatkan desain yang optimal adalah Finite Element Analysis terutama yang menguji tentang getaran lebih spesifik pada Natural Frequency dan Harmonic Response. Proses Finite Element Analysis dilakukan menggunakan bantuan software SOLIDWORK 2018. Proses awal dari penelitian ini adalah redrawing assembly mesin spinner yang dimiliki UMKM Putri 21. Hasil desain redrawing kemudian diproses menggunakan simulasi Natural Frequency dan Harmonic Response, dari hasil analisis tersebut maka dapat dirancang alternatif desain baru yang lebih tahan terhadap perambatan getaran motor. Alternatif desain mesin spinner yang didapat adalah mesin dengan rangka bawah besi profil Hollow, Iwf, atau penambahan support mesin pada bagian kanan-kiri mesin.

Luaran dari penelitian ini berupa desain mesin *Spinner* yang paling optimal bagi UMKM Putri 21 dari ketiga alternatif yang didapatkan. Dasar yang digunakan untuk menentukan desain yang paling optimal adalah hasil FEA berupa simulasi *Natural Frequency* dan *Harmonic Response* pada desain alternatif. Hasilnya didapatkan rangka bawah besi Hollow menjadi desain yang paling optimal dalam meminimalisir melonggarnya foundational bolt.

Kata Kunci: Industri Kreatif; UMKM Putri 21; *Finite Element Analysis;* SOLIDWORK 2018; Natural Frequency; Harmonic Response.