COMPUTATIONAL MODELS FOR REINFORCED ULTRA HIGH-PERFORMANCE FIBER REINFORCED CONCRETE COLUMNS UNDER AXIAL LOAD.

Final Project Report As one of the requirements to receive bachelor degree of Universitas Atma Jaya Yogyakarta

> By: Christianus Bertho 16 13 16532

INTERNATIONAL CIVIL ENGINEERING PROGRAM FACULTY OF ENGINEERING UNIVERSITAS ATMA JAYA YOGYAKARTA 2020

APPROVAL SHEET

Final Project

COMPUTATIONAL MODELS FOR REINFORCED ULTRA HIGH-PERFORMANCE FIBER REINFORCED CONCRETE COLUMNS UNDER AXIAL LOAD.

By:

Christianus Bertho

Student Number: 16 13 16532

Has been checked and supervised by:

Tainan, July 2019

Yogyakarta, July 2020

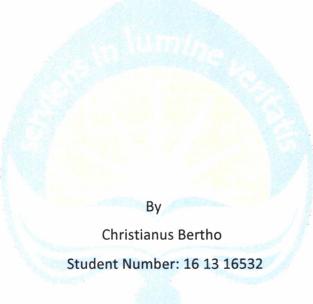
Supervisor I,

Supervisor II,

Prof. Chung-Chan Hung

Dr. Ade Lisantono AM, Ir., M.Eng.

Approved by:


Department of Civil Engineering

Ir. A. Y. Harijanto Setiawan, M. Eng., Ph. D.

Final Project

COMPUTATIONAL MODELS FOR REINFORCED ULTRA HIGH-PERFORMANCE FIBER REINFORCED CONCRETE COLUMNS UNDER AXIAL LOAD.

Has been examined and approved

Name

Chief Dr. Ir. AM. Ade Lisantono, M.Eng

Secretary Prof. Ir. Yoyong Arfiadi, M.Eng., Ph.D.

Member Dr.Eng. Luky Handoko, S.T., M.Eng.

Signature

DECLARATION

Author, the one whom sign below:

Name	: Christianus Bertho
Student Number	: 16 13 16532
Field Specialization	: Structural and Material Engineering

Declare that the research which title is written below is original and does not a copy or refer to any plagiarism action:

"COMPUTATIONAL MODELS FOR REINFORCED ULTRA HIGH-PERFORMANCE FIBER REINFORCED CONCRETE COLUMNS UNDER AXIAL LOAD"

If there is any proof claimed that the research is a copy or is done by other individuals, author is willing to receive any consequences even if the research is stated fail by the authorities.

Tainan, Taiwan, July 2020

Author,

Christianus Bertho

PREFACE

The research is one of the requirements of fulfilling bachelor's degree of Universitas Atma Jaya Yogyakarta. This research is finished under "3+2 Program" in Taiwan, where Universitas Atma Jaya Yogyakarta and National Cheng Kung University has an agreement and collaboration. The background of this research is to study and calibrate the behavior of UHPFRC column under axial load conducted by Sugano et al. in 2007 using a compression test by numerical simulation. The strength and confinement of concrete column will influence the compressive behavior of column. The study of concrete confinement and how it influences the behavior of column will be discussed in this report.

Chapter I of the report contains the introduction, research background, and scope and limitation. Chapter II is literature review about basic knowledge. Chapter III the methodology of this result. Chapter IV is the numerical simulation result and discussion. Chapter V contains conclusion and suggestion of this study. Author realizes that this report is not perfect and thus author apologizes sincerely.

Tainan, July 5th 2020

Author

ACKNOWLEDGEMENTS

Sincerely authors give the praises and thanks to Jesus Christ, with all His Graces and Blessings, author finished this final report without any problems, in timely manner. Authors realize that this final report would not be done without the help from others. For that, author would like to thank these people mentioned below:

- 1. Professor Chung-Chan Hung as author's academic counselor in Taiwan that has guided author on writing the final report.
- 2. Dr. Ade Lisantono., Ir., M.Eng. as author's academic counselor in Indonesia that has guided author on report writing.
- 3. Mother and Father who have given their supports and prayers for me on writing and finishing this final project.
- 4. Christina Flora and Kornelia Sekar Lintang who have always given their advice and motivation on writing and finishing this final project.
- 5. Friends from 3+2 Program who have always given their supports on writing this final project.

Finally, authors really hope that the report is beneficial to all sides and the readers.

TABLE OF CONTENTS

Title Page	i
Approval Sheet	ii
Examiners Sheet	iii
Declaration	jaga v
Preface	v v
Acknowledgement	vi
List of Figures	ix ix
Abstract	x
	1
	4
CHAPTER II: LITERATURE REV	IEW5
3.1. Finite Element software	
3.2. Model Calibration	
3.3. Material	

3.4. Column Modeling Detail	16
3.5. Research Flow Chart	
CHAPTER IV: RESULT AND DISCUSSI	ON22
4.1. Column Compression Test	
4.2. Discussion	
CHAPTER V: CONCLUSION AND SUG	
5.1. Conclusion	
5.2. Suggestion	

Reference...... xii

LIST OF FIGURES

Figure 2.1. UHPFRC Stress-Strain Graph Under Compression (Shaikh et al,				
2020)				
Figure 2.2. UHPFRC Stress-Strain Graph Under Tension (Wille et al, 2014)6				
Figure 2.3. Result of Column Compressive Test (Sugano et al., 2007)8				
Figure 2.4. Column Instrumental and Test Setup for Compression9				
Figure 2.5. Load-Strain Result of UHPFRC Columns (Hosinieh et al., 2015)10				
Figure 2.6. Load-Displacement Result of ECC columns (Wong, 2018)12				
Figure 3.1. Column Specimen Design (Sugano et al., 2007)16				
Figure 3.2. OpenSees Schematic of Column Model17				
Figure 3.3. ECCO1 Stress-strain Model Under Compressive Stress (Han et al.,				
2003)				
Figure 3.4. ECCO1 Stress-strain Model Under Tensile Stress (Han et al., 2003).19				
Figure 3.5. OpenSees Steel02 Stress Strain Model Under Tensile Stress				
Figure 3.6. OpenSees Column Cross Section Mesh Model				
Figure 3.7. Research Flowchart				
Figure 4.1. Stress-strain Graph of Sugano et al UHPFRC Column Experimental				
Result				
Figure 4.2. Stress-strain Graph of Column with 120 Mpa Compressive Strength 23				
Figure 4.3. Stress-strain Graph of Column with 160 Mpa Compressive Strength 23				
Figure 4.4. Stress-strain Graph of Column with 200 Mpa Compressive Strength 24				

LIST OF TABLES

Table 3.1.	UHPFRC Concrete Prop	perties	 14
	1		
Table 3.2.	UHPFRC Confined Con	crete Properties.	 15

ABSTRACT

COMPUTATIONAL MODELS FOR REINFORCED ULTRA HIGH-PERFORMANCE FIBER REINFORCED CONCRETE COLUMNS UNDER AXIAL LOAD., Christianus Bertho, Student Number 161316532, the Year 2020, Field of Specialization Structural and Material Engineering, International Civil Engineering Program, Faculty of Engineering, Universitas Atma Jaya Yogyakarta.

Reinforcing concrete is one of the most common of construction material for a building. These days a new generation of concrete known as Ultra High-Performance Fiber Reinforced Concrete (UHPFRC) has been discovered to the world. UHPFRC is not well known in Indonesia and just recently being study in Indonesia. It is important to know the behavior of this type of material, so in the future construction in Indonesia can use this type of concrete. UHPFRC is well known for its superior compressive strength and ductility. With higher compressive strength and ductility UHPFRC is more suitable for heavy loaded structural component such as column. The behavior of column under axial load is affected by the concrete strength and column steel reinforcement especially transverse reinforcement. The transverse reinforcement enhances the concrete core of column by confined it, making it have more strength and more ductility. Compressive test of column can also be done numerically by various finite element software. This study will perform computational model for UHPFRC column and calibrate the result with the experimental result performed by Sugano et al. in 2007. The computational model will be done in OpenSees Platform. Result indicates that the numerical model gives a good agreement with experimental data. There is still the need of development in the model to make the result closer to accuracy.

Keyword: UHPFRC, Column, Axial loading, Finite element method, Concrete confinement.