ECONOMIC DESIGN OPTIMIZATION OF PREFABRICATED VERTICAL DRAIN CONSTRUCTION

Final Project Report As one of the requirements to receive Bachelor Degree of Universitas Atma Jaya Yogyakarta

By:

ALVIN SANTO PUTRA

17 13 16787

INTERNATIONAL CIVIL ENGINEERING PROGRAM FACULTY OF ENGINEERING UNIVERSITAS ATMA JAYA YOGYAKARTA 2021

VALIDATION SHEET

Final Project

ECONOMIC DESIGN OPTIMIZATION OF PREFABRICATED VERTICAL DRAIN CONSTRUCTION

By:

ALVIN SANTO PUTRA

Student ID Number: 171316787

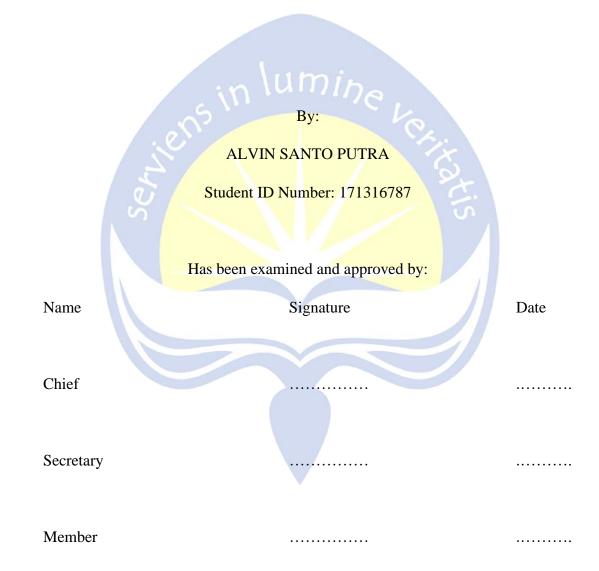
Has been checked and approved by:

Yoyakarta,.....

Supervisor,

Dr. Luky Handoko, S.T., M.Eng.

Approved by:


Department Head of Civil Engineering

(Ir. AY. Harijanto S., M.Eng., Ph.D.

VALIDATION SHEET OF EXAMINERS

Final Project

ECONOMIC DESIGN OPTIMIZATION OF PREFABRICATED VERTICAL DRAIN CONSTRUCTION

DELCARATION

Author, the one whom signed below:

Name

: Alvin Santo Putra

Student Number

: 171316787

Area of Concentration

: Geotechnical Engineering

Declare that the research with title written below:

"ECONOMIC DESIGN OPTIMIZATION OF PREFABRICATED VERTICAL DRAIN CONSTRUCTION"

is original and does not copy or refer to any king of plagiarism action. If there are any proof that this research is a form of copy from others, or it is done by other individual, me as author is willing to receive any kind of consequences including the statement of failure by the authorities.

Yogyakarta, June 2021

Author,

Alvin Santo Putra

PREFACE

The author would like to thank the Almighty God for His guidance and blessing so that this final project could be done and the author could write this report based from it.

The author also would like to express gratitude towards all people involved in creating this final project report. Those people are:

- Dr. Eng. Luky Handoko, ST., M.Eng., as Dean of Faculty of Engineering of Universitas Atma Jaya Yogyakarta and as Supervisor of this alternative on-site practice, who had already given directions and guidance during on-site practice.
- Johan Ardianto, S.T., M. Eng., as coordinator of International Civil Engineering Program of Universitas Atma Jaya Yogyakarta.
- 3. Both parents that always support me
- 4. All people that gave the author helps and support the author during final project and finish this report.

Finally, the author would like to accept and appreciate any critics and suggestions for future improvements because this final project report is far from perfect and have many errors. At last, the author would like to express gratitude and thankyou to all readers and supervisor. Hopefully, this report could be helpful towards author and all of the readers.

Yogyakarta, June 2021

Alvin Santo Putra

TABLE OF CONTENT

COVER P	AGE	i	
VALIDATION SHEET ii			
VALIDATION SHEET OF EXAMINERS iii			
DECLARATION iv			
PREFACE			
TABLE OF CONTENT vi			
TABLE OF CONTENT vi LIST OF TABLES viii			
TABLE OF FIGURES			
ABSTRA	CT.S.	X	
CHAPTE	R 1 INTRODUCTION	1	
1.1	Background	1	
1.2	Problem Statement	3	
1.3	Objective	4	
1.4	Limitation		
1.5	Research Benefit		
1.6	Originality of the research	5	
CHAPTE	R 2 LITERATURE REVIEW	6	
CHAPTE	R 3 BASIC THEORY	10	
3.1	PVD Installation	10	
3.2	Consolidation Theory	12	
3.3	Consolidation in PVD	15	
3.4	Cost Estimation	18	
3.5	Optimization	20	
3.6	Sensitivity Study	21	
CHAPTER 4 METHODOLOGY		22	
4.1	Optimization Software	22	
4.2	Soil Properties	22	
4.3	Calculating Stress Increment and Degree of Consolidation	23	
4.3.1	Vertical Degree of Consolidation	23	

24
24
25
26
27
27
28
31
31
36
38
38
39
41
41
42
43

LIST OF TABLES

Table 3-1 Relationship between Vertical Time Factor and Vertical Degree of	
Consolidation	17
Table 4-1 Soil Properties Data	22
Table 4-2 PVD Proeprties	26
Table 4-3 Example of Soil Properties Used in Sensitivity Study	28

TABLE OF FIGURES

Figure 2.1 Smear Zone Effect	7
Figure 3.1 PVD Appearance	10
Figure 3.2 Heavy Equipment for PVD Installation	11
Figure 3.3 Three Phase Diagram of Soil	13
Figure 3.4 e-log σ Curve and Virgin Curve	14
Figure 4.1 Soil Layers with PVD Installed	25
Figure 4.2 Research Flowchart	
Figure 5.1 Cost Optimization Result	31
Figure 5.2 Relation between Cost and Length of PVD	32
Figure 5.3 Relation between Cost and Space of PVD	33
Figure 5.4 Degree of Consolidation Optimization Result	34
Figure 5.5 Relation between DoC and Length of PVD	35
Figure 5.6 Relation between DoC and Space of PVD	
Figure 5.7 Sensitivity Study Result with 10% Deviation	37
Figure 5.8 Sensitivity Study Result with 20% Deviation	37
Figure 5.9 Economic Model of PVD	39

ABSTRACT

ECONOMIC MODEL OPTIMIZATION OF PREFABRICATED VERTICAL DRAIN CONSTRUCTION, Alvin Santo Putra, Student ID Number 171316787, year of 2021, Geotechnical Engineering, International Civil Engineering Program, Department of Civil Engineering, Universitas Atma Jaya Yogyakarta

Soft soil, a soil which is considered as poor soil as it has low shear strength, low permeability, and time-dependent settlement causing consolidation phenomena, currently exist in major parts of unused land. In order to solve consolidation problem in soft soil, ground improvement method called vertical drain has been developed. One of the better methods of ground improvement is called Prefabricated Vertical Drain (PVD), as it could resist shear load from the soil and considered cheaper compared to other alternatives. However, in practice, the installation of PVD is still producing high amount of overall construction cost, which may raise it up to 30%. Thus, in order to minimalize the fluctuation of cost in construction cost, optimization of PVD is being researched in this Study.

Optimization in construction is a method that consider the optimum performance of structure, indicated by fulfilling design criteria needed for the structure, while producing least cost possible for the project. In this study, the optimization performed is exact optimization solution for PVD installation. The optimization used PVD dimension length and spacing to determine the minimum cost as optimization target, with design criteria of Degree of consolidation reaching \geq 95% in one year period. The process of optimization will then be coded using MATLABR2013a, using data from previous study regarding optimization of PVD.

The result of the optimization in this study is an economic model of PVD modelled in MATLAB software, with the dimension of length = 33 m and spacing = 2 m, resulting in 95.2% of Degree of Consolidation in half year period. Furthermore, sensitivity study is also being performed, to determine which soil properties affect PVD installation cost, in order to choose the most optimum soil treatment for other projects. The sensitivity study determines that the soil properties affecting PVD installation cost the most comes from soil Coefficient of Volume Change (Mv) and Vertical Coefficient of Permeability (kV).

Keywords: Prefabricated Vertical Drain, Optimization Method, Cost Estimation