BAB VI

KESIMPULAN DAN SARAN

6.1 Kesimpulan

Dari hasil penelitian yang sudah dilakukan, dapat disimpulkan sebagai berikut:

- 1. Nilai kuat tekan beton geopolimer normal dengan rata-rata yaitu 42,50 MPa. Pada variasi dengan menggunakan tambahan subtitusi serbuk kaca mendapat nilai kuat tekan rata-rata yaitu 45,54 MPa. Variasi dengan tambahan subtitusi dengan *epoxy* mendapatkan nilai kuat tekan rata-rata yaitu 41,12. Hasil ini menunjukkan bahwa beton dengan penggunaan serbuk kaca tanpa *epoxy* memiliki kuat lebih tinggi dibandingkan dengan menggunakan tambahan *epoxy*.
- 2. Nilai kuat tarik belah beton geopolimer normal dengan rata- rata yaitu 4,28 MPa. Dengan variasi dengan menggunakan tambahan subtitusi serbuk kaca mendapat nilai kuat tekan rata-rata yaitu 4,56 MPa. Variasi dengan tambahan subtitusi dengan epoxy mendapatkan nilai kuat tekan rata-rata yaitu 4,19 MPa..
- 3. Hasil modulus elastisitas beton geopolimer normal dengan rata-rata yaitu 30275,8 MPa. Pada variasi dengan menggunakan tambahan subtitusi serbuk kaca mendapat nilai kuat tekan rata-rata yaitu 31568,5 MPa. Variasi dengan tambahan subtitusi dengan *epoxy* mendapatkan nilai kuat tekan rata-rata yaitu 29514,8 MPa..
- Dengan penggunaan serbuk kaca dapat mengurangi pori-pori beton, sehingga dapat menaikkan mutu beton.

 Dengan adanya epoxy campuran antara serbuk kaca dengan beton kurang rekat.

6.2 Saran

Dari hasil penelitian yang sudah dilakukan, Saran dari penulis untuk peulis selanjutnya, antara lain:

- Perlu dilakukan penelitian selanjutnya mengenai beton geopolimer dengan penambahan serbuk kaca dan *epoxy* dengan persentase proporsi *epoxy* yang tepat.
- 2. Proses *setting time* beton geopolimer terlalu cepat, sehingga harus ada penambahan bahan agar *setting time* lebih lama.
- 3. Melakukan uji trial sebelum membuat sampel.
- 4. Berat Jenis *epoxy* lebih berat dibandingkan air, harus dicarikan bahan untuk mengencerkan *epoxy*.

DAFTAR PUSTAKA

- ASTM C39-86., 2002, Standard Test Method for Compressive Strenght of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA.
- ASTM C403 / C403M-16, 2016, Standard Test Method for Time of Setting
 of Concrete Mixtures by Penetration Resistance, ASTM
 International, West Conshohocken, PA.
- ASTM C618 12a., 2012, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International, West Conshohocken, PA.
- Departemen Pekerjaan Umum, 1990, Pernyaratan Mutu Abu Terbang Sebagai Bahan Tambahan Dalam Campuran Beton , SK. SNI S-15-1990-F, Yayasan LPMB, Bandung.
- Dipohusodo, I., 1996, Struktur Beton Bertulang, Berdasarkan SK SNI T-15-1991-03 Departemen PU RI, Gramedia Pustaka Utama, Jakarta.
- Fanisa , E.G.P., Tanzil,G., 2013., Pengaruh Sulfat Terhadap Kuat Tekan Beton Dengan Variasi Bubuk Kaca Substitusi Sebagian Pasir. Jurnal Teknik Sipil dan Lingkungan Vol. 1, No. 1, Desember 2013, Universitas Sriwijaya.
- Hanafiah, N., 2011, Pengaruh Penambahan Bubuk Kaca Sebagai Bahan Pengganti Sebagian Semen dengan Variasi 2%,4%, 6% dan 8%

- terhadap Kuat Tekan dan Nilai Slump, Yogyakarta: Tugas Akhir Jurusan Teknik Sipil Universitas Muhammadiah Yogyakarta.
- Ilmiah, R., 2017, Pengaruh Penambahan Abu Sekam Padi Sebagai Pozzolan
 Pada Binder Geopolimer Menggunakan Alkali Aktivator Sodium
 Silikat Serta Sodium Hidroksida, Institut Teknologi Sepuluh
 Nopember.
- Joksan, A., 2015, Pengaruh Resin Epoxy Terhadap Mortar Polimer Ditinjau dari Kuat Tekan, Kuat Tarik Belah, Daya Serap Air dan Scanning Electron Microscope. Jurnal Teknik Sipil, Vol. 3 No. 3 September 2015, Universitas Lampung.
- Joseph,B dan Mathew, G., 2012, Influence of aggregate content on the behavior of fly ash based.
- Lisantono, A., Husin., Utomo, J., Purba, Y.H.D., 2018, Pemanfaatan Batu Bauksit Sebagai Pengganti Agregat Kasar Pada Beton Geopolimer Berbasis Fly Ash.
- Nisa Latifah Gandina, Y. Djoko Setiyarto., 2020, Studi Eksperimental

 Beton Geopolimer Dengan Memanfaatkan Fly Ash Sebagai

 Pengganti Semen Dan Serat Mat Sebagai Aditif.
- Purnomo,H., Hisyam, S.E., 2014, Pemanfaatan Serbuk Kaca Sebagai Substitusi Parsial Semen.
- Risdareni, P., Triwulan., Ekaputri, JJ., 2014, Pengaruh Molaritas Aktifator Alkalin Terhadap Kuat Mekanik Beton Geopolimer Dengan Tras Sebagai Pengisi.

- SNI 1972-2008, Cara uji slump beton.
- SNI 1974-2011, 2011, Cara Uji Kuat Tekan Beton Dengan Benda Uji Silinder.
- SNI 2491 -2014, Metode Uji Kekuatan Tarik Belah Spesimen Beton Silinder.
- SNI 2847-2013, Persyaratan Beton Struktural Untuk Bangunan Gedung.
- SNI 03-2491-2014, Metode Uji Kekuatan Tarik Belah Spesimen Beton Silinder.
- SNI-03-6827-2002, Metode Pengujian Waktu Ikat Awal Semen Portland.
- SNI-06-6867-2002, Spesifikasi Abu Terbang Dan Pozolan Lainnya Untuk Digunakan Dengan Kapur.
- SNI-1969-2008, Cara Uji Berat Jenis Dan Penyerapan Air Agregat Kasar.
- SNI-1970-2008, Cara Uji Berat Jenis Dan Penyerapan Air Agregat Halus.
- SNI-2816-2014, Metode Uji Bahan dalam Agregat Halus untuk Beton.
- Sudjati, J.J.and Atmaja, A.E. and Suwignyo, G.A.L., 2013, Pengaruh Substitusi Sebagian Agregat Halus dengan Serbuk Kaca dan Bahan Tambah Silica Fume Terhadap Sifat Mekanik Beton. Universitas Atma Jaya Yogyakarta.
- Suhartini, A., Gunarti, A.S.S, Hasan, A., 2012, Pengaruh Tumbukan Limbah Botol Kaca Sebagai Agregat Halus terhadap Kuat Tekan Dan Kuat Lentur Beton, Bekasi.

- Tandean, Evan, 2018, Pengaruh Penggunaan Zat Epoxy Terhadap Beton
 Normal Dengan Bahan Tambah Kaca Sebagai Substitusi Agregat
 Halus, Universitas Atma Jaya Yogyakarta.
- Tsauri, A.H, 2018, Pengaruh Proporsi Limbah Kaca Sebagai Pengganti Sebaian Agregat Halus Pada Campuran Beton Terhadap Kuat Lekatan (Bond Strength) Tulangan Baja, Universitas Mataram.
- Wang, C. K., Salmon, C.G., dan Binsar H., 1986, Disain Beton Bertulang, Edisi keempat, Penerbit Erlangga, Jakarta.
- Yulius, R, 2015, Kuat Tekan Beton Polimer Berbahan Abu Vulkanik Gunung Sinabung dan Resin Epoxy, Jurnal Teknik Sipil, Vol. 5 No. 2 September 2015, Universitas Malikussaleh.