STUDI KELAYAKAN MATERIAL GALIAN EKS. SPILLWAY SEBAGAI MATERIAL SUBTITUSI ZONA ROCKFILL DENGAN MENGANALISA STABILITAS LERENG DAN PIPING

(Studi Kasus: Proyek Bendungan Leuwikeris, Jawa Barat)

Laporan Tugas Akhir

Sebagai salah satu syarat untuk memperoleh gelar Sarjana dari

Universitas Atma Jaya Yogyakarta

Oleh:

FELICIA FEBRIANTI

NPM: 16 02 16437

PROGRAM STUDI TEKNIK SIPIL

FAKULTAS TEKNIK

UNIVERSITAS ATMA JAYA YOGYAKARTA

YOGYAKARTA

SEPTEMBER 2020

PERNYATAAN

Saya yang bertandatangan di bawah ini menyatakan dengan sunggunh-sungguh bahwa Tugas Akhir dengan judul:

STUDI KELAYAKAN MATERIAL GALIAN EKS. SPILLWAY SEBAGAI MATERIAL SUBTITUSI ZONA ROCKFILL DENGAN MENGANALISA STABILITAS LERENG DAN PIPING

(Studi Kasus: Proyek Bendungan Leuwikeris, Jawa Barat)

Benar-benar merupakan hasil karya saya sendiri dan bukan merupakan hasil plagiasi dari karya orang lain. Ide, data, hasil penelitian maupun kutipan baik langsung dan tidak langsung bersumber dari tulisan atau ide orang lain dinyatakan secara tertulis dalam Tugas Akhir ini. Apabila terbukti dikemudian hari bahwa Tugas akhir ini merupakan plagiasi, maka ijazah yang saya terima dinyatakan batal dan akan saya kembalikan kepada Rektor Universitas Atma Jaya Yogyakarta.

YogyakartA, 15 Oktober 2020

Yang membuat pernyataan

Felicia Febrianti

PENGESAHAN

Laporan Tugas Akhir

STUDI KELAYAKAN MATERIAL GALIAN EKS. SPILLWAY SEBAGAI MATERIAL SUBTITUSI ZONA *ROCKFILL* DENGAN MENGANALISA STABILITAS LERENG DAN *PIPING*

(Studi Kasus: Proyek Bendungan Leuwikeris, Jawa Barat)

Oleh:

FELICIA FEBRIANTI

NPM: 160216437

telah disetujui oleh Pembimbing

Yogyakarta, 15 Oktober 2020

Pembimbing

(Ir. John Tri Hatmoko, M. Sc.)

Disahkan oleh:

Program Studi Teknik Sipil

Ketua

(Ir. AY. Harijanto Setiawan, M.Eng., Ph.D.)

PENGESAHAN PENGUJI

Laporan Tugas Akhir

STUDI KELAYAKAN MATERIAL GALIAN EKS. SPILLWAY SEBAGAI MATERIAL SUBTITUSI ZONA ROCKFILL DENGAN MENGANALISA STABILITAS LERENG DAN PIPING

(Studi Kasus: Proyek Bendungan Leuwikeris, Jawa Barat)

Oleh:

FELICIA FEBRIANTI

NPM: 160216437

Telah diuji dan disetuji oleh:

Tanda Tangan

Nama

Ketua : Ir. John Tri Hatmoko, M. Sc.

Sekretaris : Dr. Eng. Luky Handoko, S.T., M.Eng.

Anggota : Ir. Haryanto YW, M.T.

Tugas Akhir ini dipersembahkan untuk

Ibu Vivi Suyanti dan Bapak Ming Hong

Serta Adik Devika Augelita

KATA HANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa karena atas berkat, cinta dan karunia-Nya sehingga penulis dapat menyelesaikan Tugas Akhir ini dengan baik sebagai syarat menyelesaikan pendidikan tinggi Program Strata-1 di Fakultas Teknik Program Studi Teknik Sipil Universitas Atma Jaya Yogyakarta.

Penulis menyadari bahwa Tugas Akhir ini tidak mungkin diselesaikan tanpa bantuan dari berbagai pihak. Oleh karena itu, dalam kesempatan ini penulis mengucapkan terimakasih kepada pihak-pihak yang telah membantu penulis dalam menyelesaikan penulisan Tugas Akhir ini, antara lain :

- 1. Bapak Dr. Eng. Luky Handoko, S.T., M.Eng., selaku Dekan Fakultas Teknik Universitas Atma Jaya Yogyakarta.
- 2. Bapak Ir. AY. Harijanto Setiawan, M.Eng., Ph.D., selaku Ketua Program Studi Teknik Sipil Universitas Atma Jaya Yogyakarta.
- 3. Bapak Ir. John Tri Hatmoko, M. Sc., selaku Dosen Pembimbing yang telah bersedia meluangkan waktu dan sabar dalam membimbing penulis sehingga Tugas Akhir ini dapat diselesaikan dengan baik.
- 4. Bapak Dinar Gumilang Jati, S.T., M.Eng, selaku koordinator Tugas Akhir, Program Studi Teknik Sipil, Fakultas Teknik, Universitas Atma Jaya Yogyakarta.
- 5. Seluruh Dosen Program Studi Teknik Sipil Universitas Atma Jaya Yogyakarta yang telah bersedia mengajarkan ilmu pengetahuan dalam bidang teknik sipil.
- 6. Kedua orang tua, kakek, nenek dan adik yang telah mendukung, memberi restu dan memberikan semangat dalam proses perkuliahan dan pembuatan Tugas Akhir ini sehingga dapat berjalan dengan lancar
- Semua pihak Bendungan Leuwikeris yang telah membantu dan memberikan ilmu untuk penulis selama melaksanakan magang dan menyelesaikan Tugas Akhir.
- 8. Wahyu Pratama yang selalu memberi semangat dalam pembuatan tugas akhir.

- 9. Sahabat-sahabat terbaik antara lain Risma, Andika, Fide dan Somia yang telah memberikan semangat dan warna dalam proses perkuliahan dan penelitian tugas akhir ini.
- 10. Teman-teman Biro Akademis HMS tahun 2018 dan 2019 antara lain Fide, Honggo, Risma, Laurent, Ode, Wilson dan Catherine.
- 11. Semua pihak yang tidak bisa penulis sebutkan satu persatu yang telah memberi warna dan semangat dalam masa perkuliahan serta pihak yang membantu penulis menyelesaikan Tugas Akhir ini.

Penulis menyadari bahwa Tugas Akhir ini masih jauh dari sempurna. Oleh karena itu, penulis sangat mengharapkan kritik dan saran yang membangun demi kesempurnaan Tugas Akhir ini.

Yogyakarta, September 2020 Penulis,

Felicia Febrianti

DAFTAR ISI

HALA	AMAN JUDUL	i
HALA	AMAN PERNYATAAN	ii
LEMI	BAR PENGESAHAN	iii
KATA	A PENGESAHAN PENGUJI	iv
HALA	AMAN MOTTO DAN PERSEMBAHAN	v
KATA	A HANTAR	vi
	CAR ISI	
DAFT	TAR TABEL	xii
DAFT	AR GAMBAR	xiii
DAFT	TAR PERSAMAAN	xv
DAFT	TAR LAMPIRAN	xvi
INTIS	SARI	xvi
BAB 1	I PENDAHULUAN	1
1.1	Latar Belakang	1
1.2	Rumusan Masalah	3
1.3	Batasan Masalah	3
1.4	Keaslian Tugas Akhir	4
1.5	Tujuan Penelitian	4
1.6	Manfaat Penelitian	4
BAR 1	II TINJAUAN PUSTAKA	5

2.1	An	alisa Stabilitas Lereng	5
2.1	.1	Analisis Stabilitas dengan Bidang Longsor Berbentuk Lingkaran	5
2.1	.2	Metode Bishop	6
2.2	An	alisa Terjadinya Piping	9
2.3	Stu	ıdi Sebelumnya	9
2.3	.1	Analisis Stabilitas Lereng pada Bendungan Titab	9
		11 (20)	
BAB	III I	ANDASAN TEORI	13
3.1	Be	ndungan Urugan Tipe Zonal	13
3.3		Bendungan Urugan Zonal Inti Kedap Air Tegak	13
3.2	Pei	nentuan Parameter Bahan Timbunan Untuk Analisis Stabilitas Tu	
	Be	ndungan	15
3.2	.1	Kadar Air	
3.2	2	Berat Volume	15
3.2	3	Triaxial	16
3.2	.4	Permeabilitas	16
3.3	Me	etode Analisa Stabilitas Lereng Statik Bendungan Tipe Ur	ugan
11	Be	rdasarkan RSNI M-03-2002	17
3.3	.1	Kondisi Pembebanan	17
3.3	.2	Parameter Kondisi Pembebanan	18
3.3	.3	Faktor Keamanan Minimum	19
3.4	Me	etode Analisa Stabilitas Bendungan Tipe Urugan Akibat Beban Ge	mpa
	Be	rdasarkan Pd T-14-2004-A	23
3.4	.1	Klasifikasi Kelas Risiko Beban Gempa	23
3.4	2	Percepatan Gempa Maksimum di Permukaan Tanah	24
3.4	3	Metode Analisis dengan Koefisien Gempa Termodifikasi	26
		T .	
BAB	IV N	METODOLOGI PENELITIAN	28
<i>1</i> 1	Ra	gan Alir Metodologi	28

4.2	Da	ta Bendungan	9
4.2	2.1	Dara Teknis Bendungan Leuwikeris	9
4.2	2.2	Data Material Bendungan Leuwikeris	9
BAB	V A	NALISA STABILITAS DAN <i>PIPING</i> 32	2
5.1	Per	modelan Analisis Stabilitas Tanpa Beban Gempa	2
5.1	1.1	Pemodelan Analisis Bendungan Kondisi "Setelah Konstruksi" 32	2
	5.1.1	1.1 Pemodelan Lereng Hilir Kondisi "Setelah Konstruksi" 33	3
	5.1.	1.2 Pemodelan Lereng Hulu Kondisi "Setelah Konstruksi" 38	3
5.1	1.2	Pemodelan Analisis Bendungan Kondisi "Muka Air Normal" 42	2
	5.1.2	2.1 Pemodelan Lereng Hilir Kondisi "Muka Air Normal" 43	3
	5.1.2	2.2 Pemodelan Lereng Hulu Kondisi "Muka Air Normal" 48	8
5.1	1.3	Pemodelan Analisis Bendungan Kondisi "Surut Cepat"	2
	5.1.3		
	5.1.3		
		5.1.3.2.1 Pemodelan Lereng Hulu Kondisi "Surut Cepat" pa	
١.		Waktu 1,2 jam 60	
1)		5.1.3.2.2 Pemodelan Lereng Hulu Kondisi "Surut Cepat" pa	7
		Waktu 12 jam 65	
		5.1.3.2.3 Pemodelan Lereng Hulu Kondisi "Surut Cepat" pa	
		Waktu 24 jam 70	
5.2	Pei	modelan Analisis Stabilitas dengan Beban Gempa	
5.2		Pemodelan Analisis Bendungan Kondisi "Setelah Konstruksi" deng	
		Beban Gempa	
	5.2.1		
		Beban Gempa	
	5.2.1	T T	
	. .	Beban Gempa	
5.0	2.2	Pemodelan Analisis Bendungan Kondisi "Muka Air Normal" deng	
J.2		Beban Gempa	
		Decum Gempu	_

	5.2.2.1	Pemodelan Lereng Hilir Kondisi "Muka Air Normal" d	engan
		Beban Gempa	. 89
	5.2.2.2	Pemodelan Lereng Hulu Kondisi "Muka Air Normal" d	engan
		Beban Gempa	95
5.2	2.3 Pem	odelan Analisis Bendungan Kondisi "Surut Cepat" dengan	Beban
	Gem	npa	101
5.3	Rekap I	Hasil Analisis Lereng Tubuh Bendungan pada Berbagai K	ondisi
	Pembeb	anan	. 101
5.4	Analisis	Faktor Keamanan Tubuh Bendungan Terhadap Piping	. 104
	A	S. Cr.	
BAB	VI KESII	MPULAN DAN SARAN	. 106
6.1	Kesimpi	ulan	. 106
6.2			
DAF'	TAR PUS	TAKA	. 107
LAM	IPIRAN		108

DAFTAR TABEL

No	Nama Tabel	Hal
2.1	Hasil Analisis Stabilitas Bendungan Titab	12
3.1	Klasifikasi Umum Bendungan Urugan	14
3.2	Persyaratan Faktor Keamanan Minimum Untuk Stabilitas Bendungan Tipe Urugan	21
3.3	Kriteria Faktor Risiko untuk Evaluasi Keamanan Bendungan	23
3.4	Kelas Risiko Bendungan dan Bangunan Air	24
3.5	Koefisien Zona Gempa Indonesia	24
3.6	Percepatan Gempa Dasar untuk Berbagai Periode Ulang	25
3.7	Faktor Koreksi Pengaruh Jenis Tanah Setempat	25
5.1	Data Pemodelan Lereng Hilir Kondisi "Setelah Konstruksi"	33
5.2	Data Pemodelan Lereng Hulu Kondisi "Setelah Konstruksi"	38
5.3	Data Pemodelan Lereng Hilir Kondisi "Muka Air Normal"	43
5.4	Data Pemodelan Lereng Hulu Kondisi "Muka Air Normal"	48
5.5	Data Pemodelan Lereng Hilir Kondisi "Surut Cepat"	54
5.6	Data Pemodelan Lereng Hulu Kondisi "Surut Cepat" pada Waktu 1,2 jam	60
5.7	Data Pemodelan Lereng Hulu Kondisi "Surut Cepat" pada	65
5.8	Waktu 12 jam Data Pemodelan Lereng Hulu Kondisi "Surut Cepat" pada Waktu 24 jam	70
5.9	Data Pemodelan Lereng Hilir Kondisi "Setelah Konstruksi"	77
5.10	dengan Beban Gempa Data Pemodelan Lereng Hulu Kondisi "Setelah Konstruksi" dengan Beban Gempa	83
5.11	Data Pemodelan Lereng Hilir Kondisi "Muka Air Normal"	89
5.12	dengan Beban Gempa Data Pemodelan Lereng Hulu Kondisi "Muka Air Normal" dengan Beban Gempa	96
6.1	Hasil Analisis Lereng Tubuh Bendungan pada Berbagai Kondisi Pembebanan	102

DAFTAR GAMBAR

No	Nama Gambar	Hal
2.1	Analisis Stabilitas Bidang Longsor Berbentuk Lingkaran	6
2.2	Diagram Menentukan Nilai M _i (Janbu dkk, 1956)	8
2.3	Gaya yang Bekerja pada Irisan Metode Bishop	8
4.1	Bagan Alir Analisis Stabilitas Bendungan Leuwikeris	28
4.2	Data Teknis Bendungan	31
5.1	Pemodelan Lereng Hilir Kondisi "Setelah Konstruksi"	33
5.2	Gaya yang Bekerja pada Irisan No. 5 Lereng Hilir Kondisi "Setelah Konstruksi"	36
5.3	Pemodelan Lereng Hulu Kondisi "Setelah Konstruksi"	38
5.4	Gaya yang Bekerja pada Irisan No. 5 Lereng Hulu Kondisi "Setelah Konstruksi"	40
5.5	Pemodelan Lereng Hilir Kondisi "Muka Air Normal"	43
5.6	Gaya yang Bekerja pada Irisan No. 5 Lereng Hilir Kondisi "Muka Air Normal"	46
5.7	Pemodelan Lereng Hulu Kondisi "Muka Air Normal"	48
5.8	Gaya yang Bekerja pada Irisan No. 5 Lereng Hulu Kondisi "Muka Air Normal"	50
5.9	Grafik Faktor Keamanan vs. Waktu pada Analisis Lereng Hilir Kondisi "Surut Cepat"	53
5.10	Pemodelan Lereng Hilir Kondisi "Surut Cepat"	54
5.11	Gaya yang Bekerja pada Irisan No. 5 Lereng Hilir Kondisi "Surut Cepat"	57
5.12	Grafik Faktor Keamanan vs. Waktu pada Analisis Lereng Hulu Kondisi "Surut Cepat"	59
5.13	Pemodelan Lereng Hulu Kondisi "Surut Cepat" pada Waktu 1,2	60
1	Jam	11
5.14	Gaya yang Bekerja pada Irisan No. 5 Lereng Hulu Kondisi "Surut Cepat" pada Waktu 1,2 Jam	63
5.15	Pemodelan Lereng Hulu Kondisi "Surut Cepat" pada Waktu 12 Jam	65
5.16	Gaya yang Bekerja pada Irisan No. 5 Lereng Hulu Kondisi "Surut Cepat" pada Waktu 12 Jam	68
5.17	Pemodelan Lereng Hulu Kondisi "Surut Cepat" pada Waktu 24 Jam	70
5.18	Gaya yang Bekerja pada Irisan No. 5 Lereng Hulu Kondisi "Surut Cepat" pada Waktu 24 Jam	73
5.19	Pemodelan Lereng Hilir Kondisi "Setelah Konstruksi" dengan Beban Gempa	77
5.20	Gaya yang Bekerja pada Irisan No. 5 Lereng Hilir Kondisi "Setelah Konstruksi" dengan Beban Gempa	81
5.21	Pemodelan Lereng Hulu Kondisi "Setelah Konstruksi" dengan Beban Gempa	83

DAFTAR GAMBAR

(Lanjutan)

No	Nama Gambar	Hal
5.22	Gaya yang Bekerja pada Irisan No. 5 Lereng Hulu Kondisi	87
	"Setelah Konstruksi" dengan Beban Gempa	
5.23	Pemodelan Lereng Hilir Kondisi "Muka Air Normal" dengan	89
	Beban Gempa	
5.24	Gaya yang Bekerja pada Irisan No. 5 Lereng Hilir Kondisi	93
	"Muka Air Normal" dengan Beban Gempa	
5.25	Pemodelan Lereng Hulu Kondisi "Muka Air Normal" dengan	95
	Beban Gempa	
5.26	Gaya yang Bekerja pada Irisan No. 5 Lereng Hulu Kondisi	99
_/	"Muka Air Normal" dengan Beban Gempa	
5.27	Plotting nilai hasil Faktor Keamanan tanpa beban gempa,	103
A	berdasarkan angka kemanan minimum	.)
5.28	Plotting nilai hasil Faktor Keamanan dengan beban gempa,	103
	berdasarkan angka kemanan minimum	
5.29	Gradien Hidraulik Bendungan Leuwikeris Kondisi Muka Air	105
	Normal	

DAFTAR PERSAMAAN

No	Nama Tabel	Hal
2-1	Faktor Keamanan dengan Cara Keseimbangan Batas	5
2-2	Faktor Keamanan dengan Metode Bishop	6
2-3	Nilai N Metode Bishop	7
2-4	Faktor Keamanan (Beban Gempa) dengan Metode Bishop	7
2-5	Nilai F _h Beban Gempa	7
2-6	Nilai M _i Metode Bishop	7
2-7	Faktor Keamanan Piping	9
2-8	Nilai i _{cr} dalam Faktor Keamanan <i>Piping</i>	9
3-1	Kadar Air	15
3-2	Berat Volume	15
3-3	Permeabilitas	16
3-4	Kelas Beban Gempa	23
3-5	Percepatan Gempa	24
3-6	Koefisien Gempa Dasar	27
3-7	Koefisien Gempa Desain Terkoreksi	27
3-8	Koefisien Gempa Rata-rata $0 < Y/H \le 0,4$	27
3-9	Koefisien Gempa Rata-rata $0.4 < Y/H \le 1.0$	27

DAFTAR LAMPIRAN

Nama Tabel	Hal
Data Teknis dan Zona Bendungan	108
Data dan Grafik Gradasi Test Pit Material Eks. Spillway	109

INTISARI

STUDI KELAYAKAN MATERIAL GALIAN EKS. SPILLWAY SEBAGAI MATERIAL SUBTITUSI ZONA ROCKFILL DENGAN MENGANALISA STABILITAS LERENG DAN PIPING (Studi Kasus: Proyek Bendungan Leuwikeris, Jawa Barat), Felicia Febrianti, NPM. 160216437, Tahun 2020, Bidang Peminatan Geoteknik, Program Studi Teknik Sipil, Fakultas Teknik, Universitas Atma Jaya Yogyakarta.

Bendungan Leuwikeris termasuk dalan jenis bendungan urugan zonal yang memiliki inti kedap air berupa lapisan tanah lempung yang berada tegak di tengah tubuh bendungan. Selama kegiatan konstruksi berlangsung, terdapat beberapa masalah yang mengharuskan pihak-pihak yang terlibat dalam proyek untuk mencari alternatif bahan konstruksi tubuh bendungan yang lain. Oleh karena itu, dari beberapa alternatif yang ada, salah satu alternatif yang dipilih untuk dijadikan sebagai bahan konstruksi tubuh bendungan adalah dengan memanfaatkan eks. Galian Spillway sebagai material subtitusi pada zona 3 tubuh bendungan bagian hilir.

Perubahan bahan material pada salah satu zona tentunya akan berdampak pada kestabilitasan tubuh bendungan secara keseluruhan, oleh karena itu dengan menggunakan hasil trial embankment dan large scale test dari eks. Galian Spillway akan dilakukan analisis stabilitas tubuh bendungan yang baru sesaat setelah konstruksi, saat muka air normal dan saat surut cepat sebelum diberi beban gempa dan setelah diberi beban gempa dengan menggunakan metode Bishop dan dibandingkan dengan hasil perhitungan pada Geostudio 2018. Selain itu pada analisis ini akan diperhitungkan pula keamanan tubuh bendungan terhadap piping sebab bendungan urugan terdiri dari material-material lepas yang rentan terhadap peristiwa piping.

Dari analisa yang telah dilakukan dengan menggunakan material eks. Galian Spillway sebagai material subtitusi zona 3 tubuh bendungan, diperoleh faktor keamanan pada berbagai kondisi yang dapat dilihat pada tabel 5.13, gambar 5,27 dan gambar 5,28. Serta diperoleh faktor keamanan terhadap *piping* sebesar 4,578. Hasil-hasil analisa yang telah diperoleh menyatakan bahwa material eks. Galian Spillway layak untuk digunakan sebagai material subtitusi zona 3.

Kata kunci: Material, Bendungan Urugan, Spillway, Stabilitas, *Piping*, *Bishop*